1. Field of Invention
The present application relates to a shelter system, and more particularly, to an expandable shelter system.
2. Related Art
Deployable shelter systems generally provide self-contained shelters for use in a variety of environments. Deployable shelter systems are known which are configured to be in the size and shape of a standard ISO (International Organization for Standardization) shipping container. In this way, the shelters may be shipped by commercial means, such as by railway, boat or aircraft, including military aircraft. Such a shelter may be deployed at a remote location. These shelters typically are expandable from the size of an ISO container to a larger size. Such shelters may be used for a variety of purposes, such as medical, temporary housing, disaster recovery, meeting space, office space, or laboratory space.
In accordance with one aspect of the present invention, an expandable shelter is provided. The expandable shelter has an expanded configuration and a collapsed configuration in which the shelter has the approximate dimensions of a standard International Organization for Standardization (ISO) freight container. The shelter comprises first and second substantially parallel corner posts, the first and second corner posts are disposed at a first end of the shelter. The first and second corner posts have first and second ends. The shelter also comprises an upper frame support extending between the first ends of the first and second corner posts. The shelter additionally comprises a lower frame support extending between the second ends of the first and second corner posts. The shelter also comprises a wall support attached to the first and second corner posts and the upper frame support. The shelter further comprises a displaceable panel hinged at the first end of the shelter and configured to fit securely on the interior of the first and second corner posts when in a closed configuration in which the displaced panel is disposed between the first and second corner posts, wherein the shelter has sufficient strength to withstand the forces of at least eight similar shelters stacked on top of the shelter.
In accordance with another aspect of the present invention, an expandable shelter is provided. The expandable shelter has an expanded configuration and a collapsed configuration in which the shelter has the approximate dimensions of a standard International Organization for Standardization (ISO) freight container. The shelter comprises first and second substantially parallel corner posts disposed at a first end of the shelter. The shelter also comprises a ramp coupled with hinges at the first end of the shelter and configured to fit securely on the interior of the first and second corner posts when in a closed configuration in which the ramp is disposed between the first and second corner posts, wherein the shelter has sufficient strength to withstand the forces of at least eight similar shelters stacked on top of the shelter.
In accordance with a further aspect of the present invention, an expandable shelter is provided. The expandable shelter has an expanded configuration and a collapsed configuration in which the shelter has the approximate dimensions of a standard International Organization for Standardization (ISO) freight container. The shelter comprises first and second substantially parallel corner posts, the first and second corner posts are disposed at a first end of the shelter. The first and second corner posts have first and second ends. The shelter also comprises an upper frame support extending between the first ends of the first and second corner posts. The shelter additionally comprises a lower frame support extending between the second ends of the first and second corner posts. The shelter also comprises a wall support attached to the first and second corner posts and the upper frame support. The shelter additionally comprises a fabric connector connected to the wall support. The shelter further comprises a displaceable panel hinged at the first end of the shelter and configured to fit securely on the interior of the first and second corner posts when in a closed configuration in which the displaced panel is disposed between the first and second corner posts, wherein the shelter has sufficient strength to withstand the forces of at least eight similar shelters stacked on top of the shelter.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like descriptor. For purposes of clarity, not every component may be labeled in every drawing.
The advantages and features of this invention will be more clearly appreciated from the following detailed description, when taken in conjunction with the accompanying drawings, in which:
The present invention relates to a deployable, expandable, shelter which may be expanded from a collapsed condition in which it has the size and shape of a standard ISO container to a condition in which it is about three times its original, collapsed size. The collapsed shelter of the present invention can be stacked nine units high for shipping or storage. The shelter of the present invention, when deployed, may be used for hospital or medical purposes, laboratory space, disaster recovery, temporary housing, meeting or office space, or other like purposes.
In one embodiment, the deployable, expandable shelter may be transported along with other standard ISO shipping containers by cargo aircraft, military aircraft, rail, truck and container ship. For example, two such shelters can be accommodated in a military C-130 aircraft. The shelters may be stacked one on top of the other to a height of nine for shipping on the deck of a container ship or for storage. These shelters are built to structural standards for shipping containers and to comply with ISO 1496/1 test requirements.
One end of the shelter may be provided with a panel which forms the end wall of the shelter in a collapsed condition and which may be pivoted downwardly about a bottom hinge to form a ramp. A portico may be attached to the shelter by a fabric connector on a wall support when the ramp is lowered. The wall support provides strength and rigidity to that end of the shelter. The portico permits the maintenance of a controlled environment, or a sterile environment in the interior of the shelter. The ramp end may be provided with stabilizers.
The end of the ramp may be provided with a flexible transition panel. The transition panel provides a transition from the ramp end to the ground or to another ramp, and is flexible to accommodate an uneven ground surface. This permits easy movement of wheeled objects to and from the interior of the shelter through, for example, a portico.
Corner posts are provided at each corner of the shelter. These posts are load-bearing, and are reinforced to permit stacking of the shelter. The corner posts may be provided with jacks that may pivot outwardly from the post. Typically the jacks are provided with feet, such as sand feet, which assist in stabilizing the shelter. The jacks in the posts level the shelter. These jacks may be either manually operated, or, if access to power is provided, there is a self-leveling system which automatically levels the shelter. Each of the expanded modules of the shelter are also provided with stabilizers having feet which permit leveling of those portions of the shelter.
In one embodiment, panels which serve as the side panels to the shelter when collapsed are pivoted downwardly and serve as floor panels for first and second modules on either side of the shelter when in an expanded condition. The side walls and top walls of the modules on either side of the shelter may be rolled or slid outwardly along rails disposed on the floor panels. Each floor panel may be lowered by a winch, which could be manually operated or power operated.
One embodiment of shelter 10 of this invention will now be described with respect to
Shelter 10 includes a main section 12 which has a first end 14, a second end 16, a roof 152, a floor panel 118 having a floor surface 116, panel 62, panel 82, and four corner posts 20. As shown in
Corner post 20 will now be described with particular reference to
In one embodiment, each post 20 contains a jack 22.
Foot 36 may have a base plate 38 with flanges 40 and reinforcing ribs 42. Foot 36 may include a post 34 which is attached at a bottom end to the base plate 38. The top end of post 34 may include a spherical head 32. The bottom end of each ram 24 may be fitted with a spring ball connector 26 which is shown in
A hinge 44 having arms 272 may be attached to pins 266 on housing 264. Hinge arms 272 may be fitted onto pins 268 on spacers 269 which are attached to the inside of post 20. Hinges 44 permit pivoting of jack 22 outwardly with respect to post 20. A stop 270 may be attached at 271 to the hinge arms 272. When jack 22 is in a stowed position, stop 270 abuts the inside of post 20 and when jack 22 is in a deployed condition, stop 270 abuts housing 264, preventing further outward pivoting or movement of jack 22. As shown in
Panel 62 may form a side panel of section 12 when in a collapsed condition, but may form a floor panel of first expanded module 60 when in an expanded condition as will be described. Similarly, panel 82 may form a side panel of section 12 when in a collapsed condition, but may form a floor panel of the second expandable module 80 when in an expanded condition. Locking bars 140 hold panels 62 and 82 in place in a collapsed condition. Locking bars 140 are conventional, and may include cam 142 at one end which may be inserted into a receiver 144. The cam 142 is rotated into a locking position by handle 146 which, when the locking bar is fully locked, is flush with the outer surface of panel 62 or 82 and may be held in place with clamp 147.
The first end 14 containing a first end wall 154 may include a door 156. Door 156 may contain a latch 160 and is mounted on hinges 162. A window 158 may be provided in door 156. Second end 16 may include a wall support 186, a frame 188 and an opening 180 for a ramp 18 which pivots downwardly, as will be described. Ramp 18 may include a door 202 having a handle 204 mounted on hinges 206.
First expandable module 60 will now be described with particular reference to
Each support arm 100 typically is anchored at an upper end at anchor point 110 to an adjacent side frame member 13 of section 12. The lower end of each support arm 100 typically is attached to panel 62 at an anchor point 112. Typically, although not necessarily, turnbuckles 108 are provided at the upper and lower end of each support arm 100 at anchor points 110 and 112 to adjust the length of the support arm to equalize the length on both sides, and to ensure that when deployed, panel 62 is substantially horizontal.
Panel 62 is typically lowered by a cable 306 which is attached to a winch 176. Winch 176 may be mounted to any suitable interior surface of main section 12, such as panel 14 or side frame member 13, on a surface thereof facing the inside of section 12. Winch 176 may be manually operated. In another embodiment, winch 176 may be operated using a tool such as a drill D as shown in
Panel 62 may contain an outer lip 63 which abuts an upper frame member 17 when in a collapsed condition. Panel 62 may also be provided with a flange 78 that extends about the free, outer perimeter of panel 62 to act as a stop to protect panel 62 when in the collapsed condition. Flange 78 may include a gasket to seal the interior of shelter 10 when in a deployed condition.
Rails 74 disposed on floor surface 72 of panel 62 and rails 120 disposed on floor surface 116 of section 12 accommodate slides or rollers 76 on the bottom of walls 66 and 68 to allow module 60 and associated walls 64, 66 and 68 and ceiling 70 to be slid or rolled outwardly away from section 12 in its collapsed condition to an expanded position as shown in
Second expandable module 80 will now be described with particular reference to
Winch 178 may be manually operated, or connected to a drill or other power device through a socket 302. Winch 178 may be fixed to the wall like winch 176, or, in one embodiment, it may be mounted on rails or slides 308 to be movable to allow the winch 178 to be stowed out of the way of wall 66 when the shelter is collapsed. In particular, as shown in
Like the first expandable module 60, the inside surface of panel 82 forms the floor surface 92 of second expandable module 80. Rails 94 are provided on surface 92 and rails 122 are provided on floor surface 116 to accept slides or rollers 96 on the bottom of walls 86 and 88 to permit the expansion of module 80. Flange 98 may limit movement of walls 86, 88 and 84 outwardly. A flange 126 may be provided on ceiling 90 to abut against an interior surface of section 12 to limit outward movement of module 80 and/or to minimize any twisting of module 80 resulting from downward tilting of module 80 with respect to section 12. Handles 124 may also be provided on sidewall 84 to permit manual expansion of module 80. Like module 60, module 80 may be provided with lights 150, such as flat LED lights or other lights that are recessed or that do not interfere with movement of modules 60 and 80 or with sufficient head room within shelter 10.
Stabilizers 148 may be provided adjacent the unsupported corners of panel 62 of module 60 and panel 82 of module 80. Typically, two such stabilizers 148 are provided for each panel 62 and 82. However, more stabilizers 148 may be utilized if necessary. Stabilizers 148 are attached to respective panels 62 and 82 at points 149 of the outer edge thereof, such as by means of a lip disposed beneath the edges of panels 62 and 82. Stabilizers 148 preferably are provided with an enlarged, flat foot on which they are mounted to provide stability. Stabilizers 148 may be provided with spring loaded ratchets which are adjustable in height to accommodate an uneven ground surface and which may be urged upwardly against the edges of panels 62 and 82.
The structure at second end 16 will now be described with reference to
Typically, extending around the perimeter of ramp opening 180, there is a peripheral wall support 186. Wall support 186 provides the required rigidity and strength to second end 16 and permits ramp 18 to extend from post 20 to post 20 to provide the widest ramp possible without sacrificing strength or rigidity. Wall support 186 may be formed of steel. Wall support 186 is attached to posts 20. Bumpers, such as rubber bumpers 184, may be provided on wall support 186 at the upper end of the opening 180 for ramp 18 to allow the ramp to be drawn snugly into an upright position against the outer surface of wall support 186. Wall support 186 may have affixed thereto a fabric connector 190. Connector 190 is clamped to wall support 186 such as by a retainer 192. (See
In another embodiment, a structure forming a portico 350 may be provided. Portico 350 may be formed of two layers. For example, one layer may form an environmental barrier and another layer may form a biological barrier. Each layer may be selectively attached by a connecting device, such as zipper 356, to a connecting device, such as zipper 198, on a respective layer 194 or 196. Other known connecting devices such as VELCRO® hook and loop fasteners, snaps or the like may be used. Portico 350 may be of any desired structure. In one embodiment, air beams (not shown) are used to support the portico structure. Any type of conventional air beam may be used. Air beams typically are tubes of fabric or plastic or the like which are inflated and have a pre-configured shape to provide structural support. Portico 350 may have a door 352, such as a fabric door, at an end spaced from opening 180. Door 352 may be opened or closed using zippers 354. Rings 212, such as D-rings, may be provided on ramp 18, and strap 358 along the bottom and side edges of portico 350 may be tied to rings 212 or the like on the ramp 18 to hold the portico in position. Portico 350 may be stowed within section 12 when shelter 10 is in a collapsed condition and ramp 18 is upright.
When ramp 18 is in a down or deployed condition, it may be supported by stabilizers, such as the two stabilizers 216 shown in
As shown in
In another embodiment, as shown in
Preferably, panel 230 extends across the width of ramp 18. In one embodiment, panel 230 is attached to sections 232 and 234, which may be angled structures for strength. Holes 236 in sections 232 and 234 may pass over posts 218 on stabilizers 216. A locking sleeve retainer 220 may pass over posts 218 to lock the panel 230, ramp 18 and stabilizers 216 together as shown in
When panel 230 is stored, sections 232 and 234 may be folded together so that panel 230 can be inserted within the interior of shelter 10. In one embodiment, sections 232 and 234 are connected together by hinge 238. During storage, a storage fixture, such as a pin 224 may be inserted through holes 236 in sections 232 and 234 and a locking sleeve 220 may be attached at one end of pin 224.
Each of fingers 244 may be attached to a sealed tubing spacer 240 by an associated hinge 242. In one embodiment, tubing spacers 240 are welded or otherwise attached to the front of sections 232 and 234. Fingers 244 may be tapered at the end attached to hinges 242 and also at a second end 248. Each finger 244 floats or moves independently of the other fingers 244. Fingers 244 additionally may each have downwardly bent tabs 250 that have holes 252. Fingers 244 typically are joined together on their underside by a rod or rods 254 which pass through holes 252 in tabs 250. A pin 256 may be inserted in each end of rod 254 to prevent movement of rod 254. The holes 252 are oversized to allow a certain amount of sliding movement of rod 254. This arrangement permits a predetermined amount of individual movement of the fingers 244 with respect to one another. This flexibility or movement is illustrated in
Typically, each panel, such as panel 62, wall 64, wail 66, wall 68, panel 82, wall 84, wall 86, wall 88, ramp 18, ceiling 70 and ceiling 90, is formed of a structural panel 130 as illustrated in
When in a retracted or collapsed configuration as shown in
First end wall 154 may be provided with a power and communications panel 164 which typically is flush with wall 154. A leveling bubble may also be provided for manual leveling of the shelter 10. Preferably, however, the shelter is self-leveling. A self-leveling control panel 168 allows the shelter to level itself through the use of built-in sensors and software. Control panel 168 may be in any suitable location, such as on the inside surface of wall 154. A typical self leveling unit employs an inclinometer and electric motors and gear reducers to operate rams 24 of jacks 22 in a known manner to level shelter 10. One exemplary, suitable self-leveling unit is leveling support model 287A, manufactured by Hetek Hebetechnik GmbH, Treffurt, linter den Linden, Germany.
Power may be provided by line 400 to connector 402 (
It should be appreciated that various embodiments may be formed with one or more of the above-described features. The above aspects and features may be employed in any suitable combination as the present invention is not limited in this respect. It should also be appreciated that the drawings illustrate various components and features which may be incorporated into various embodiments. For simplification, some of the drawings may illustrate more than one optional feature of the feature or component. However, the invention is not limited to the specific embodiments disclosed in the drawings. It should be recognized that the invention encompasses embodiments which may include only a portion of the components illustrated in any one drawing figure, and/or may also encompass embodiments combining components illustrated in multiple different drawing figures.
It should be understood that the foregoing description of various embodiments is intended merely to be illustrative thereof and that other embodiments, modifications, and equivalents are within the scope of the invention recited in the claims appended hereto.
The present application claims the benefit of U.S. Provisional Patent Application 61/358,120; filed Jun. 24, 2010.
The work resulting in this invention was supported in part by the U.S. Army Medical Material Development Agency (USAMMDA) under Contract No. W81XWH08-C-0060. The U.S. Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61358120 | Jun 2010 | US |