The field of the invention is packers that are set by expansion of the mandrel and more particularly with a recess feature for the element to give it protection for run in with the adjacent bumps also acting as grip locations.
Packers are isolation devices that are mounted to a tubular mandrel. Some are set with compression of a sealing element external to the mandrel to reduce the length of the sealing element and increase its radial dimension. Other designs expand the mandrel from within to bring the sealing element to the borehole wall. Some designs employ swelling elements to bridge the gap to the borehole wall after exposure to well fluids over a period of time.
One recurring issue with packers is that they must be run into the well through a tubular with a drift dimension not much larger than the packer run in dimension and then the packer may have to be set in a much larger borehole. Packers with expandable mandrels have typically put the sealing element on the outside diameter of the mandrel leaving the sealing element exposed to damage during running in. US Publication 2010/0314130 puts the sealing elements on the mandrel outer diameter and uses a system of internal rings through which the swage has to pass to expand only at the seal locations with a resulting uniform internal diameter after expansion since the size of the swage is no larger than the drift diameter of the tubular being expanded.
Other designs place gripping members adjacent a sealing element and expand the mandrel from its interior. In this design the assembly is placed on the mandrel outer diameter which limits the initial internal dimension of the mandrel for run in which makes it more difficult to expand to a sealing condition in a larger wellbore. Such a design is illustrated in U.S. Pat. No. 7,117,949.
Other designs that are focused on using lighter wall pipe and giving it strength to resist collapse with a series of closely spaced corrugations make the claim that a sealing material can be deployed in the corrugations and a roller expander can be used to enlarge the corrugated segment with the sealing material for use as an isolation device. It claims protection for the sealing material during run in via the corrugations. The reality is that if the corrugations act as protection for a sealing material in a helical or circumferential groove then to try to get a seal with expansion will require elimination of the groove to even get the seal against the borehole wall. If that happens then the seal material will comprise of thin unsupported strips as the corrugations will be eliminated to even get sealing contact. The unsupported strips will roll on themselves and will not provide a reasonable annular seal. On the other hand if the corrugations are buried for run in then the sealing element is not protected for run in by the corrugations. Also a factor is that since the corrugations enable the use of thinner wall tubulars the expansion to the point of returning to parallel wall structure by flattening out all the corrugations will present a weaker mandrel that will have a fairly low differential pressure rating and may be too weak to retain the sealing element against the borehole wall in a sealing relationship. Such a design is illustrated in U.S. Pat. No. 7,350,584.
What is needed and provided by the present invention is an expandable packer that can have the element protected for run in while still be configured to sealingly be expanded to the surrounding wellbore. These features are addressed by projections on opposed ends of long recesses that hold the sealing element. The projections can extend radially upon expansion to act as anchors or extrusion barriers. A swelling material can optionally be used. Those skilled in the art will better understand the invention from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be determined from the appended claims.
An expandable packer features a sealing element in an exterior recess that is straddled by projections or bumps. Upon expansion the bumps move out against the borehole wall as an anchor support. Optionally, the bumps may be covered with a sealing material and may be constructed to assist in their radial movement to the borehole wall as a result of expansion particularly if the mandrel is expanded in compression. The bumps are not necessarily expanded with the swage and their radial growth can be induced from longitudinal shrinkage resulting from radial expansion. Shrinkage from expansion occurs from axial loading in compression from the swage to be advanced and it also occurs as a consequence of radial expansion resulting from advancing of the swage.
a is a variation of the
The swage 32 has an outer dimension 34 that in the preferred embodiment is no larger than internal diameter 36 of the humps 20, with an exception as pointed out below. In this manner as expansion occurs, with the mandrel 14 preferably in compression but can also occur with the mandrel 14 in tension, the valleys 28 disappear. The expansion in the radial direction reduces the axial length of the mandrel 14 so that the bumps are pushed radially outwardly against the borehole wall as shown in
Another option to the preferred embodiment is to size the swage outer dimension 34 to be larger than internal diameter 36 so that as a result of expansion the humps 20 are radially expanded beyond their run in drift outer dimension.
Another option for the humps 20 is shown in
a shows mandrel 14″ covered with sealing element 18″ with hump 20″ preferably extending radially about as far as the outer surface 37 of mandrel 14″. The hump 20″ is preferably a continuous arcuate inner surface 38 that externally defines opposed valleys 40 and 42 on opposed sides of peak surface 44. In this embodiment the expansion that causes longitudinal shrinkage induces collapse of mandrel 14″ at valleys 40 and 42 that drives surface 44 into the seal 18″ to enhance the sealing against the borehole wall.
Those skilled in the art will appreciate that in the
In the
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
Number | Name | Date | Kind |
---|---|---|---|
5333692 | Baugh et al. | Aug 1994 | A |
6854521 | Echols et al. | Feb 2005 | B2 |
7117949 | Doane et al. | Oct 2006 | B2 |
7350584 | Simpson et al. | Apr 2008 | B2 |
7360592 | McMahan | Apr 2008 | B2 |
7387168 | Ellington et al. | Jun 2008 | B2 |
7431078 | Carmody et al. | Oct 2008 | B2 |
20030080515 | Milberger et al. | May 2003 | A1 |
20050269108 | Whanger et al. | Dec 2005 | A1 |
20070267824 | Baugh et al. | Nov 2007 | A1 |
20090205843 | Gandikota et al. | Aug 2009 | A1 |
20100212899 | Huang et al. | Aug 2010 | A1 |
20100314130 | Durst et al. | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120227957 A1 | Sep 2012 | US |