The present invention relates to an apparatus and a method for extending the length of an existing tubular and an apparatus for sealing a tubular portion to another tubular. The apparatus and method are particularly suited for use in oil and gas wells.
Oil and gas wells are conventionally drilled using a drillstring to create a subterranean borehole. After drilling, the borehole is usually completed by running in a casing/liner string that is typically cemented in place. Additional liner strings may be required to be installed or coupled to the initially installed casing string in order to extend the reach of the completed borehole. This is conventionally achieved using liner hangers to couple additional liner strings to the lower end of the existing casing or liner string in the borehole. The liner hangers typically use mechanically or hydraulically set slips to bite into the existing casing. Furthermore, a packer is usually also used to provide a fluid tight seal at the location of the liner hanger to prevent fluid, in particular, gas ingress.
According to a first aspect of the invention, there is provided an apparatus for extending the length of an existing tubular, the apparatus comprising a tubular portion and a securing and sealing means for securing the tubular portion to the existing tubular to thereby extend the length of the existing tubular and simultaneously provide a sealed coupling between the tubular portion and the existing tubular.
The tubular portion is preferably radially expandable.
Preferably the apparatus provides a means to hang a new tubular portion, such as a liner string from a previously installed, existing tubular, such as cemented casing string or a cemented liner string and therefore acts as a liner hanger.
Part of the tubular portion can have a first sidewall thickness, which is less than a second sidewall thickness adjacent the part of the tubular having the first sidewall thickness.
The tubular portion can comprise a tapered part of tubular located between the parts of the tubular having the first wall thickness and the second wall thickness wherein the tapered part of the tubular portion has a wall thickness gradually increasing from the first sidewall thickness to the second sidewall thickness.
The diameter of the tubular portion can preferably be expanded by means of an expansion tool. The tubular portion can be radially expanded using a hydraulically operated expansion tool. The tool can be arranged to sealingly engage with an inner diameter of the tubular portion at two axially spaced locations. The tool can be arranged to engage with the inner diameter of the tubular portion in the region of the part of tubular having the second sidewall thickness on either side of the part of the tubular having the first wall thickness.
The tool can be capable of applying a fluid pressure within the tubular portion in the area between the points of engagement of the tool and the inner diameter of the tubular portion. The fluid pressure can cause the tubular portion to radially expand. The tubular portion can initially expand in the region of the first wall thickness, and subsequently in the region of the tapered part.
The tubular portion and the existing tubular may be expandable to form at least one shoulder portion. Two or more shoulder portions can be provided and the part of tubular therebetween can have a greater outer diameter than the tubular portion and existing tubular outwith the region between the shoulder portions. The tool can be arranged to radially expand the tubular portion and the existing tubular. The tool can be arranged to radially expand the tubular portion such that plastic deformation of the tubular portion is experienced. The tool can be arranged to radially expand the tubular portion into the existing tubular such that elastic deformation and optionally plastic deformation of the existing tubular is experienced. The expansion tool can create two annular shoulders in the region that the tool seals against the inner diameter of the tubular portion and the existing tubular. Preferably the tubular portion and the existing tubular are at least in part in interfacial contact in the region of each shoulder. This has the effect of securing the tubular portion to the existing tubular. The interfacial contact between the tubular portion and the existing tubular along the radially expandable part of the tubular preferably creates a fluid tight seal.
The tubular portion can have a substantially uniform outer diameter prior to expansion thereof.
The securing and sealing means can be provided on an outer surface of the tubular portion. The securing and sealing means could in certain embodiments be provided simply by the outer surface of the tubular portion. However, the securing and sealing means can preferably comprise a roughened part of the outer surface of the tubular portion to enhance the grip of the tubular portion on the pre-existing tubular. At least part of an outer surface of the tubular portion can be coated with an elastomeric material to aid sealing. The securing and sealing means can comprise at least one annular seal. The or each seal can be provided in an annular groove within the outer surface or on the outer surface of the tubular portion. The securing and sealing means can further comprise at least two axially spaced annular seals. Alternatively, or additionally, the securing and sealing means can comprise a profile applied to an outer surface of the tubular portion.
The or each seal can be provided on the outer surface of the tubular portion in the region of the tapered part with the gradually changing wall thickness.
According to the first aspect of the invention, there is provided a method of extending the length of an existing tubular, comprising the steps of:
The method can include radially expanding at least a part of the tubular portion to secure and seal the tubular portion to the existing tubular.
The method can include running an expansion tool into the tubular portion and engaging the inner diameter of the tubular portion and expanding at least a part of the tubular portion using the expansion tool.
The method can include applying a fluid pressure within the tubular portion and thereby radially expanding at least part of the tubular portion.
The method can include radially expanding the tubular portion and the adjacent existing casing such that there is residual interfacial contact between the tubular portion and the existing tubular once the pressure is removed.
The method can include providing at least two axially spaced annular seals on an outer surface of the tubular portion and expanding part of the tubular portion between the seals and subsequently expanding the tubular portion in the region of the seals.
The method can include roughening at least a part of the outer surface of the tubular portion and thereby improving the grip of the tubular portion. The method can include machining a profile on an outer surface of the tubular portion to enhance the grip of the tubular portion on the existing tubular in use.
According to a second aspect of the invention, there is provided apparatus for securing a tubular portion to another tubular, the apparatus comprising a tubular portion having a first sidewall thickness and a second sidewall thickness, and having a tapered part therebetween wherein the second sidewall thickness is greater than the first sidewall thickness and the tapered part has a wall thickness gradually increasing from the first sidewall thickness to the second sidewall thickness.
Preferably, the apparatus further comprises a securing means provided on an outer surface of the tubular portion in the region of the tapered part. More preferably, the securing means comprises a securing and sealing means to provide a seal between the tubular portion and the existing tubular such that fluid is prevented from passing therebetween.
The tubular portion is preferably radially expandable. The tubular portion can have a substantially uniform outer diameter.
The part of tubular with the first sidewall thickness can have parts of tubular with the second sidewall thickness either side thereof and the tapered parts can be located therebetween. The securing means can be provided on the outer surface of the tubular portion in the region of each tapered part. The securing and/or sealing means could in certain embodiments be provided simply by the outer surface of the tubular portion. However, preferably, the tubular portion can be provided with an annular recess on the outer surface in the region of the or each tapered part, and the sealing means are preferably provided in the annular recess.
The apparatus can comprise a tool actuable to radially expand the tubular portion. The tool can be arranged to engage with an inner surface of the tubular in the region of the second sidewall thickness and can be actuable to apply a fluid pressure to the inner surface of the tubular portion. The fluid pressure can first cause radial expansion of the tubular portion having the first wall thickness followed by radial expansion of the tubular portion at the tapered part.
Embodiments of the present invention will be described with reference to and as shown in the following Figures, in which:
a is a sectional view of the liner hanger within a casing string;
b is a part sectional view of the liner hanger and an expansion tool in a running-in configuration, being run into the throughbore of the casing string and liner hanger;
c is a part sectional view of the liner hanger being expanded by the expansion tool to thereby seal it to the casing string;
A tubular portion in the form of a liner hanger is shown generally at 10 in
Open ends of the outer parts 38, 39 of the liner hanger 10 are each welded to an end member 14, 15 respectively. The end members 14, 15 are attached to the outer parts 38, 39 respectively by butt welds 16, 17 or other such fixing method. According to one embodiment, the end members 14, 15 are formed from stronger materials than the rest of the liner hanger 10, enabling a casing thread to be cut in each end member 14, 15 and wherein the end members 14, 15 retain sufficient strength to achieve the desired connection torque ratings.
An outer surface of the liner hanger 10 has a substantially uniform diameter. In order to provide a gas tight seal between the liner hanger 10 and the existing tubular into which it is to be expanded, the outer surface of the liner hanger 10 is provided with two annular grooves 18, 19 in the region of the tapered parts 28, 29 respectively as shown in
The liner hanger 10 is expandable using an expansion tool, such as that described in GB0403082.1 and corresponding foreign applications, the full contents of which are incorporated herein by reference. The tool is briefly described below with reference to
The upper inner element 212 is shown in more detail in
The seal assembly 214 (
The expansion tool 210 is hydraulically driven. The tool 210 shown in
Before use of the apparatus according to the invention, a borehole is drilled out and a casing string 40 run-in and cemented in place as shown in
Once the expansion tool 210 reaches the liner hanger 10, the tool 210 is located such that the seals 223, 224 are adjacent the inner diameter of the outer parts 38, 39 respectively with the waisted central part 30 therebetween. The expansion tool 210 is hydraulically actuated. A compressive force is applied to the tool 210 using the displacement means 219. The compressive force causes a downwardly directed displacement of the support sleeve 220 and compression of the support sleeve 221. Consequently, the support sleeve 221 together with the annular seal 223 rises up the wedge member 222 which causes the annular seal 223 and the fingers of the support sleeves 220, 221 to expand radially. The expansion of the support sleeves 220, 221 and the corresponding movement of the lower seal assembly 215 is shown in
Once in the setting position, hydraulic fluid is directed under pressure from the surface to the tool 210 from where it is fed via a port 200 to an annulus 90 between the tool 210 and the liner hanger 10. The application of this fluid pressure on the inner surface of the liner hanger 10 causes radial expansion of the central waisted part 30 initially since the smaller sidewall thickness encourages this part of the liner hanger 10 to radially expand prior to the expansion of adjacent sections having greater wall thicknesses. Following expansion of the central waisted section 30, the tapered parts 28, 29 begin to expand. Throughout the liner hanger 10 expansion, the fingers of the support sleeves 220, 221 are activated at a pre-set pressure ahead of the pressure in the annulus 90. The pressure of fluid from the hydraulic source entering the annulus 90 is controlled via a differential pressure valve (not shown) to reduce the pressure from the hydraulic source. Hence, the pressure acting on the seal assemblies 215 is greater then the pressure of the annulus 90 by the predetermined amount e.g. 2000 psi so as to maintain the hydraulic seal without deforming the seal areas of the liner hanger 10 prior to the waisted central part 30 of the liner hanger 10.
One advantage of the initial expansion of the central waisted part 30 is that substantially all liquid between the outer surface of the liner hanger 10 and the casing 40, for example, water, oil and/or drilling mud or wet cement is squeezed out of the annulus between the liner hanger 10 and the casing 40 before the seals 20, 21 engage the inner surface of the casing 40. The securing of the liner hanger 10 to the casing 40 is aided by the roughened outer surface of the central waisted part 30 to engage a greater proportion of surface area into contact with the inner surface of the casing 40.
The positioning of the seals 20, 21 of the liner hanger 10 in the region of the tapered parts 28, 29 has the added advantage that the annular grooves 18, 19 on the outer surface of the liner hanger 10 (which accommodate the seals 20, 21) are not located in the region of liner hanger with the smallest sidewall thickness and therefore the location of the seals 20, 21 does not represent a weak point of the liner hanger 10. However, the outer surface in the region of the smallest sidewall thickness may also or alternatively be coated in a sealing elastomer or such similar material to aid sealing.
The liner hanger 10 is expanded beyond its elastic limit such that plastic deformation of the liner hanger 10 is experienced. The force applied by the hydraulic fluid to the liner hanger 10 is such that there is a strong interfacial contact between the casing 40 and the liner hanger 10. As a result of continued application of fluid pressure, elastic deformation of the casing 40 is experienced. The elastic and plastic deformation of the casing 40 and the liner hanger 10 respectively causes a compressive force to be applied by the casing 40 to the liner hanger 10 thus improving the quality and strength of the interfacial seal. Deformation of the liner hanger 10 beyond its elastic limit ensures that the radially expanded liner hanger 10 remains in its radially expanded state once the hydraulic fluid pressure is removed. Thus, according to the preferred embodiment, the liner hanger 10 is expanded beyond its elastic limit to experience plastic deformation and the casing 40 is expanded up to its elastic limit but not beyond so that no plastic deformation of the casing 40 is experienced.
Once the liner hanger 10 has been secured to the casing 40, the compressive force on the displacement means 219 is reduced by relieving the pressure in the chambers 219a1 and increasing the pressure in chambers 219au to cause the inner element 212 to move upwardly into the position shown in
According to another embodiment, both the liner hanger 10 and the casing 40 are expanded to create upper and lower annular shoulders to enhance the load capability of the liner hanger 10; these are shown in more detail and described with reference to
An alternative liner hanger 100 is shown in
In
The apparatus and the method of the present invention provide a way of securing and sealing a liner hanger to existing casing without the need for slips or moving parts and is achievable in a one step process.
Modifications and improvements can be made without departing from the scope of the invention. According to other embodiments of the invention, any number of annular seals 20, 21 can be provided in one or more annular grooves.
Number | Date | Country | Kind |
---|---|---|---|
0607551.9 | Apr 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/001369 | 4/13/2007 | WO | 00 | 6/4/2009 |