Expandable medical device with tapered hinge

Information

  • Patent Grant
  • 6964680
  • Patent Number
    6,964,680
  • Date Filed
    Friday, January 25, 2002
    22 years ago
  • Date Issued
    Tuesday, November 15, 2005
    19 years ago
Abstract
According to the present invention there is provided an expandable medical device having, a plurality of elongated beams, the plurality of elongated beams joined together to form a substantially cylindrical device which is expandable from a cylinder having a first diameter to a cylinder having a second diameter. A plurality of hinges connecting the elongated beams have a hinge width, wherein the hinge width is smaller than the beam width. A pawl is disposed adjacent to and substantially parallel to the hinge prior to expansion of the medical device and a plurality of teeth are adapted to receive the pawl. The present invention additionally provides the benefit of limiting the amount of recoil of an expandable device by engaging a locking mechanism, thereby retaining the expanded diameter of the device.
Description
FIELD OF THE INVENTION

This invention relates to expandable medical devices, more particularly to an expandable medical device including a locking mechanism and low recoil after expansion from one diameter to a greater second diameter.


SUMMARY OF THE RELATED ART

In the past, permanent or biodegradable devices have been developed for implantation within a body passageway to maintain patency of the passageway. These devices are typically introduced percutaneously, and transported transluminally until positioned at a desired location. These devices are then expanded either mechanically, such as by the expansion of a mandrel or balloon positioned inside the device, or expand themselves by releasing stored energy upon actuation within the body. Once expanded within the lumen, these devices, called stents, become encapsulated within the body tissue and remain a permanent implant.


Known stent designs include monofilament wire coil stents (U.S. Pat. No. 4,969,458); welded metal cages (U.S. Pat. Nos. 4,733,665 and 4,776,337); and, most prominently, thin-walled metal cylinders with axial slots formed around the circumference (U.S. Pat. Nos. 4,733,665, 4,739,762, and 4,776,337). Known construction materials for use in stents include polymers, organic fabrics and biocompatible metals, such as, stainless steel, gold, silver, tantalum, titanium, and shape memory alloys such as Nitinol.


U.S. Pat. Nos. 4,733,665, 4,739,762, and 4,776,337 disclose expandable and deformable intraluminal vascular grafts in the form of thin-walled tubular members with axial slots allowing the members to be expanded radially outwardly into contact with a body passageway. After insertion, the tubular members are mechanically expanded beyond their elastic limit and thus permanently fixed within the body.


Many of the known stents display a large elastic recovery, known in the field as “recoil,” after expansion inside a lumen. Large recoil necessitates over-expansion of the stent during implantation to achieve the desired final diameter. Over-expansion is potentially destructive to the lumen tissue and is known to cause higher rates of restenosis. Known stents of the type described above experience recoil of up to about 9 to 21% from maximum expansion.


Large recoil also makes it very difficult to securely crimp most known stents onto delivery catheter balloons. As a result, slippage of stents on balloons during intralumenal transportation, final positioning, and implantation has been an ongoing problem. Many ancillary stent securing devices and techniques have been advanced to attempt to compensate for this basic design problem. Some of the stent securing devices include collars and sleeves used to secure the stent onto the balloon.


Some materials have intrinsic properties that are beneficial in some aspects of stent design, and undesirable in other aspects. U.S. Pat. No. 5,545,210, for example, discloses a thin-walled tubular stent geometrically similar to those discussed above, but constructed of a nickel-titanium shape memory alloy (“Nitinol”). Martensitic Nitinol has a very low Young's Modulus, and a low, nearly horizontal “de-twinning” stress plateau that provide an exceptionally large strain range before plastic deformation commences. When incorporated into conventional stent designs, these properties produce stents that have unusually good flexibility, deliverability, conformability and radiopacity, but also unacceptably high recoil and poor radial strength. For example, recoil of a typical design Nitinol stent ranges from 10% to 25%, typically about 12% to 16%.


One approach to remedying material-based recoil and radial strength problems is to employ locking or detent features in the stent design. A number of such locking stent designs have been proposed for conventional materials like stainless steel, but none has proven workable in practice. Many of the designs are simply impossible to manufacture on a small scale. More fundamentally, most of the designs fail to provide the basic mechanical requirements of a ratchet or detent mechanism: 1) two degree-of-freedom differential motion between the engaging elements, and 2) a restoring or spring force between the elements. It is relatively easy to provide these two elements in larger mechanisms comprised of discrete components, but much more difficult to provide this functionality while cutting all features into a very small, continuous, cylindrical surface.



FIG. 1 shows a typical prior art “expanding cage” stent design. The stent 10 includes a series of axial slots 12 formed in a cylindrical tube 14. Each axial row of slots 12 is displaced axially from the adjacent row by approximately half the slot length providing a staggered slot arrangement. The material between the slots 12 forms a network of axial struts 16 joined by short circumferential links 18. The cross section of each strut 16 remains constant or varies gradually along the entire length of the strut and thus the rectangular moment of inertia and the elastic and plastic section moduli of the cross section also remain constant or vary gradually along the length of the strut. Such a strut 16 is commonly referred to as a prismatic beam. Struts 16 in this type of design are typically 0.005 to 0.006 inches (0.127–0.1524 mm) wide in the circumferential direction. Strut thicknesses in the radial direction are typically about 0.0025 inches (0.0635 mm) or less to keep expansion forces within acceptable levels. However, most stent materials must be approximately 0.005 inches (0.127 mm) thick for good visibility on conventional fluoroscopic equipment. This high ratio of strut width to thickness, combined with the relatively high strut length and the initial curvature of the stent tubing combine to cause the instability and bucking often seen in this type of stent design. When expanded, the stent structure of FIG. 1 assumes the roughly diamond pattern commonly seen in expanded sheet metal.


Another stent described in PCT publication number WO 96/29028 uses struts with relatively weak portions of locally-reduced cross sections that on expansion of the stent act to concentrate deformation at these areas. However, as discussed above non-uniform expansion is even more of a problem when smaller feature widths and thicknesses are involved because manufacturing variations become proportionately more significant. The locally-reduced cross section portions described in this document are formed by pairs of circular holes. The shape of the locally reduced cross section portions undesirably concentrates the plastic strain at the narrowest portion. This concentration of plastic strain without any provision for controlling the level of plastic strain makes the stent highly vulnerable to failure.


U.S. Pat. No. 6,241,762, entitled “EXPANDABLE MEDICAL DEVICE WITH DUCTILE HINGES” filed Oct. 10, 1998 and assigned to Conor Medsystems Inc., is incorporated herein by reference in its entirety. This patent discloses a stent design that provides a stent with large, non-deforming strut and link elements, which can contain holes without compromising the mechanical properties of the strut or link elements, or the device as a whole. Further, these holes may serve as large, protected reservoirs for delivering various beneficial agents to the device implantation site.


In view of the drawbacks of prior art stents, it would be advantageous to have an expandable medical device with low radial recoil and high radial force (circumferential crush strength) independent of the intrinsic properties of the material of fabrication.


It would further be advantageous to have a tissue-supporting device that could be expanded to a range of final diameters independent of the means of expansion or the force levels applied.


It would also be desirable to control the maximum material strain to a desired level wherein when the expandable medical device is deployed the material remains below its elastic limit, and may be expanded to a greater diameter if necessary without plastically deforming the material.


SUMMARY OF THE PRESENT INVENTION

The present invention makes novel use of hinges to provide both the spring force and two degrees-of-freedom motions required for a true self-locking expandable medical device design. In addition to that above the present invention provides a novel expandable medical device that is capable of self-expansion or expansion through the use of a balloon catheter or similar device. Further still, the expandable medical device according to the present invention may be utilized to deliver a beneficial agent to the area adjacent to the expanded medical device.


In accordance with one aspect of the present invention there is provided an expandable medical device including a plurality of elongated beams. The plurality of elongated beams are joined together to form a substantially cylindrical device. The cylindrical device is expandable from a cylinder having a first diameter to a cylinder having a second diameter, the plurality of the elongated beams having a beam width in a circumferential direction. A plurality of hinges connecting the elongated beams have a hinge width, wherein the hinge width is smaller than the beam width. A pawl is disposed adjacent to and substantially parallel to the hinge prior to expansion of the medical device and a plurality of teeth are adapted to receive the pawl.


In accordance with another aspect of the present invention there is provided an expandable medical device including a cylindrical tube and a plurality of axial slots formed in the cylindrical tube in an arrangement to define a network of elongated struts, wherein each of the elongated struts are radially displaced from adjacent struts, and each elongated strut further includes at least one tooth disposed thereupon. A pawl formed between the elongated struts has a distal end adapted to be received by the tooth. A plurality of hinges formed between the elongated struts allow the cylindrical tube to be expanded from a first diameter to a second diameter by bending of the hinges and engaging the distal end of the pawl with the tooth.


In accordance with another aspect of the present invention there is provided an expandable medical device including, a cylindrical expandable body of Nitinol and a locking feature for locking the expanded body in an expanded position, wherein the locking mechanism prevents recoil of the expanded body of greater than 5 percent.


In accordance with another aspect of the present invention there is provided a method of processing an expandable medical device, the method including the steps of fabricating a cylindrical expandable medical device from martensitic Nitinol, where the expandable medical device is fabricated with a first unexpanded diameter. Expanding the cylindrical expandable medical device to an expanded second diameter, wherein deformation during expansion is confined to a hinge and the deformation is below the elastic limit of the material. Processing the expandable medical device, and restoring the expandable medical device to the unexpanded first diameter by applying heat to the expandable medical device.


In accordance with another aspect of the present invention there is provided an expandable medical device, the expandable medical device includes a plurality of elongated beams and a plurality of hinges. The plurality of elongated beams joined together to form a substantially cylindrical device that is expandable to form a cylinder having a first diameter to a cylinder having a second diameter. The plurality of the elongated beams have a beam width in a circumferential direction, the beam width of the elongated members being less than the width of the hinges. The expandable medical device further including an internal self locking mechanism.


In accordance with yet another aspect of the present invention there is provided a method of constructing an expandable medical device. The method including the steps of fabricating an expandable medical device from a cylindrical member, the expandable medical device is formed having a first unexpanded diameter, retracting the expandable medical device to an unexpanded second diameter where deformation during retraction is confined to a hinge portion of the expandable medical device, and retaining the expandable medical device in the unexpanded diameter.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements utilize like reference numerals, and wherein;



FIG. 1 is an isometric view of a prior art tissue-supporting device;



FIG. 2A is a planar view of a representative portion of an unexpanded tissue-supporting device in accordance with one embodiment of the invention;



FIG. 2B is a sectional planar view of a single expanding member in accordance with the present invention;



FIG. 3A is a detail view of the expandable medical device of FIG. 2 undergoing sequential expansion;



FIG. 3B is a detail view of the expandable medical device of FIG. 2 undergoing sequential expansion;



FIG. 3C is a detail view of the expandable medical device of FIG. 2 undergoing sequential expansion;



FIG. 3D is a detail view of an alternative embodiment of the expandable medical device in accordance with the present invention;



FIG. 4 is a planar view of the expandable device of the present invention in an expanded and locked state; and



FIG. 5 is a stress/strain curve of a martensitic Nitinol alloy illustrating the extended sub-plastic strain range and the horizontal “de-twinning plateau” of the material.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to FIGS. 2A and 2B, there is shown a planar view of a representative portion of an unexpanded tissue-supporting medical device 200. The expandable medical device 200 includes a series of axial slots 210 formed in a cylindrical tube (not shown). Each axial slot 210 is displaced radially from the slots in the adjacent rows of slots by approximately 0.010 inches. The plurality of axial slots 210 define a plurality of elongated beams 220. The plurality of elongated beams 220 are interconnected by a hinge 250 disposed at one end and a locking area disposed at the other end. A U-shaped link 270 interconnects adjacent rows of beams 220.


The elongated beam 220 further includes a pawl 230 having a distal end 235 disposed at one end of the elongated beam 220 and a plurality of teeth 240 disposed at the other end opposite the pawl 230. The elongated beam 220 further includes a hinge 250 adjacent the pawl 230. The hinge 250 further contains a first end 252 and a second end 254 defining a section 265, wherein the section 265 between the first end 252 and the second end 254 is designed where it will act as a stress/strain concentration area. Specifically, the hinge 250 contains a first portion extending along about ⅓ of the length of the hinge 250 and a second section gradually tapering, extending about ⅔ of the length of the hinge 250. It is contemplated that other ratios may be utilized as well as other geometries in order to confine the maximum stress/strain to the hinge section 265. Furthermore, the length and width of the hinge can be adjusted to confine the maximum strain in the hinge 250, to some desired value at the maximum required bend radius of the hinge 250.


For example, if the maximum desired bend angle of the hinge 250 was set at ninety (90) degrees, and the minimum hinge width was fixed at about 0.002 inches, a hinge length could be determined which would guarantee that the maximum strain in the hinge 250 was well below the elastic limit of some specified material. For example, the expandable medical device could be manufactured of materials such as titanium, stainless steel, polymers, or preferably a Nitinol alloy, wherein the Nitinol alloy may be either martensitic or austenitic super-elastic.


With reference to the drawings and the discussion, the width of any feature is defined as its dimension in the circumferential direction of the cylinder. The length of any feature is defined as its dimension in the axial direction of the cylinder. The thickness of any feature is defined as the wall thickness of the cylinder.


When manufactured as a continuous array as shown in FIG. 2, the distal end 235 of the pawl 230 is adjacent to the teeth 240 of the adjacent elongated member 220.


Referring now to FIGS. 3A through 3C there is shown a plan view of a section of the expandable medical device 200 as the device is deployed. The expandable device 200 may be expanded radially by placing an appropriate device, such as a balloon catheter within the inner diameter of the expandable device 200 and expanding the balloon catheter until the expandable device has been expanded to a desired diameter.


Additionally the expandable medical device 200 may be constructed having a plurality of apertures for receiving a beneficial agent, which may be released after insertion within a patient. For a more detailed description of the apparatus and methods for delivering a beneficial agent, See co-pending U.S. Patent application Ser. No. 09/649,217 entitled “Expandable Medical Device With Ductile Hinges”, filed Aug. 28, 2000 which is hereby incorporated by reference in its entirety.


Furthermore, the expandable device 200 may be constructed of materials such as polymers, biodegradable materials, or combinations of polymers, biodegradable materials and Nitinol. The locking mechanism of the present invention provides the ability to decrease the recoil and increase the radial strength of expandable devices constructed of these materials, thereby allowing an expandable device to be constructed of these materials.


The polymer and/or the biodegradable materials may be further adapted to receive a beneficial agent that may then be eluted after the expandable device is deployed within a patient. For example, the beneficial agent may be contained within the polymer or biodegradable material, in which the characteristics of the polymer or biodegradable material control the release rate of the beneficial agent after the expandable device is deployed within a patient.


As shown in FIG. 3A, a partial section of the expandable device 200 is shown. As described in detail above, the expandable device 200 includes a plurality of elongated members 220, spaced apart by radial slots 210. The elongated members have a pawl 230 disposed on one end thereof and a plurality of teeth 240 disposed on the other, and a hinge 250 adjacent to the pawl 230. The plurality of elongated members 220 are joined together by the hinge 250 and the locking configuration. In an unexpanded state, as shown in FIG. 3A, the pawl 230 disposed at one end of an elongated member 220 is substantially parallel to hinge 250. Further still the distal end 235 of the pawl 230 is designed having a ‘chisel’ shape adapted for being received by at least one of the plurality of teeth 240 on the adjacent substantially parallel elongated member 220.


Referring now to FIG. 3B, there is shown the partial section of the expandable device 200 having been expanded to a second partially expanded diameter. As indicated by arrow 300 a general rotational motion is achieved by pawl 230 as the diameter of the expandable device 200 is increased and hinge 250 bends. As shown, the locus of points drawn out by distal tip 235 of the pawl 230 as it rotates describes a non-circular arc. The hinge 250 bends initially about a pre-determined point within the region 265 as shown in FIG. 3B. The predetermined bending point is determined by narrowing the width of the hinge 250 within the section 265 as defined by the first end 252 and the second end 254 of the hinge 250. As shown FIG. 3B, as the pawl rotates during expansion of the device from an unexpanded state as shown in FIG. 3A to a partially expanded state as shown in FIG. 3B the pawl 230 is no longer substantially parallel to the hinge 250 due to the bending of the hinge 250.


If the expandable device of FIG. 3B were fabricated of an martensitic Nitinol (shape memory) alloy, it could at this point be fully restored to the configuration of FIG. 3A by heating the device above its transformation temperature. This is possible because the pawl has not yet engaged the first tooth in the adjacent strut, and the material is never stressed beyond its elastic limit. This feature is useful for intermediate fabrication steps, for example electropolishing, where the device can be expanded to an “open” configuration for more effective polishing and then thermally restored to a smaller diameter for mounting on a delivery system.


Referring now to FIG. 3C, there is shown the section of the expandable medical device 200 in an expanded state during engagement of the locking mechanism. As shown, a significant curvature develops in the hinge 250, specifically in the section 265. As this curvature occurs, the pawl 230 and the distal end 235 of the pawl 230 become capable of both continued angular deflection, as indicated by arrow 300, and also a linear motion along the axis of the pawl 230, as indicated by arrow 320. The angular motion 300 and the linear motion 320 are both possible in this region because the axis of the pawl 230 is no longer directly aligned with the now-curved, centroidal axis of the hinge 250. Rather, the motion of the pawl 230 along its own axis requires only additional bending of the hinge 250 near second end 254 of the hinge 250. This ability of the hinge 250 to provide both the rotational motion 300 and the axial motion 320 allows the distal tip 235 of the pawl 230 to follow the contour of the teeth 240 without local plastic yielding of either feature. Additionally, the elastic energy stored in the hinge 250 provides a means for creating a spring return force (not shown) that can be resolved at the distal tip 235 of the pawl into components parallel and perpendicular to the axis of the pawl. When the expansion device has positioned the distal tip 235 of the pawl 230 beyond one of the locking teeth 240, and the expansion device is then withdrawn, these spring return forces force the distal tip 235 to contact the locking tooth 240, thereby locking the expandable device 200 into an expanded state as shown in FIG. 4. The mating faces of the distal tip 235 and the locking tooth 240 are contoured according to well-known techniques to insure that forces that are externally applied to the tissue-supporting device 200 act to further lock the features in position. Furthermore, throughout the description reference is made to the teeth 240, it shall be understood that this reference should not be considered limiting. For example, the teeth 240 may comprise many different geometrical shapes, which are adapted to receive the distal end 235 of the pawl 230. For example, the teeth 240 may be comprised of depressions adapted to receive the distal end 235 of the pawl 230. Thus, the teeth 240 as shown and described are not to be considered limiting and are exemplary only; it is contemplated that the teeth 240 as well as the distal end 235 of the pawl 230 may comprise many different shapes as shall be apparent to one skilled in the art.


For example, when the expandable medical device 200, as described above, is fabricated from a Nitinol alloy, an exceptionally large sub-plastic strain range is available, and very large deformations are possible without exceeding the material's elastic limit. If the locking teeth of the expandable device 200 were absent, the device could be restored to its original shape by heating, since it is never plastically deformed during the expansion sequence of FIG. 3.


Additionally, the hinge 250 may be contoured as described above in order to control the bending pattern of the hinge 250 and thus the motion of the pawl during the bend sequence. For example, when the width of the hinge is narrowest near the pawl proximal end 232 of the pawl 230, the hinge tends to bend in this area first. As a result, the instant center of rotation of the pawl is initially closer to the proximal end 232 of the pawl 230, and the arc traced by the distal tip 235 of the pawl 230 quickly passes through the region 238 as indicated in FIGS. 3A–3C. This may be visualized by imagining the limiting case of a simple pivot point located at end 252 of hinge 250 the arc traced by distal tip 235 would in this case be circular, and the initial motion of the tip 235 would be orthogonal to the axis of pawl 230 (i.e., downward, or directly toward the adjacent strut 220). The second limiting case would correspond to a pivot point at the other end 254 of hinge 250. The arc traced by distal tip 235 would again be circular, but in this case, the initial motion of the tip 235 would be parallel to the axis of pawl 230, the tip of the pawl would move away from contact with adjacent strut 220 from the outset, and no locking would be possible with teeth 240 of the adjacent strut 220. By contouring the shape of hinge 250 between these extremes, the relative motion of pawl 230 with respect to adjacent strut 220 containing teeth 240 may be optimized.


Referring now to FIG. 3D there is shown an exemplary alternative embodiment of the expandable device according to the present invention. Referring to FIG. 3D there is shown a planar view of a representative portion of an unexpanded expandable medical device 200′ in accordance with an alternative embodiment of the present invention. The expandable medical device 200′ includes a series of spaced apart areas 211′ formed within a cylindrical tube (not shown). The cylindrical tube being constructed of superelastic Nitinol alloy, wherein the cylindrical tube defines a first diameter of the expandable medical device 200′. By utilizing a superelastic Nitinol alloy for the construction of the expandable medical device 200′, the expandable medical device 200′ can be formed in a semi-expanded state as shown in FIG. 3D. Each spaced apart area 211′ defines a plurality of elongated beams 220′. The plurality of elongated beams are interconnected by a hinge 250′ disposed at one end and a locking area disposed at the other end. A U-shaped link 270′ interconnects adjacent rows of beams 220′. As shown, the elongated beam 220′ further includes a pawl 230′ having a distal end 235′ disposed at one end of the elongated beam 220′ and a plurality of teeth 240′ disposed at the other end opposite the pawl 230′. The hinge 250′ further includes a first end 252′ and a second end 254′ defining a section 265′, wherein the section 265′ between the first end 252′ and the second end 254′ is designed where it will act as a stress/strain concentration area. Specifically, the hinge 250′ contains a first portion extending along about ⅓ of the length of the hinge 250′ and a second section gradually tapering, extending about ⅔ of the length of the hinge 250′. It is contemplated that other ratios may be utilized as well as other geometries in order to confine the maximum stress/strain to the hinge section 265′. Furthermore, the length and width of the hinge can be adjusted to confine the maximum strain in the hinge 250′ to some desired value at the maximum required bend radius of the hinge 250′.


As shown in FIG. 3D, it can be seen that expandable medical device 200′ is constructed in a semi-expanded state wherein the distal end 235′ of the pawl 230′ has not been engaged with the teeth 240′. By constructing the expandable medical device 200′ in this manner enables the expandable medical device 200′ to be reduced to a diameter less than the initial fabrication diameter of the cylindrical tube. By reducing the diameter of the expandable medical device 200′ it can be loaded onto a delivery device such as any of the delivery catheters available from many different manufacturers. The expandable medical device 200′ may be retained in a compressed state through the use a removable sleeve or similar device such as those known to one skilled in the art.


In use, the expandable medical device 200′ would be placed within a patient's artery in a desired location, the sleeve or retaining device would be removed and/or activated wherein the expandable medical device 200′ would then expand to the first diameter of the cylindrical tube which is the origional fabrication diameter of the expandable medical device 200′. The expandable medical device 200′ will automatically expand to this first diameter without the need to utilize any expanding means such as an inflatable balloon disposed within the inner diameter of the expandable medical device. The expandable medical device 200′ can then be further expanded to engage the pawl and locking teeth, thereby locking the expandable medical device in an expanded position at a third diameter.


Throughout this description reference has been made to materials that may be utilized in the construction of the expandable device 200. In a preferred embodiment the expandable device 200 is constructed of Nitinol alloy. Referring now to FIG. 5, there is shown a stress/strain diagram of a martensitic Nitinol alloy that may be utilized in the construction of the expandable device 200. As shown in FIG. 5, the alloy 500 has a very low Young's Modulus, a low, nearly horizontal “de-twinning” stress plateau, and a 0.2% offset yield stress (elastic limit) of approximately 108 ksi. These characteristics provide an exceptionally large strain range before plastic deformation commences.


This exceptionally large strain range, when incorporated in the present invention, provides the benefit of a device that may be expanded from an initial diameter to a range of pre-determined diameters, the range of pre-determined diameters depend only on the geometry of the locking elements and not on the forces applied by an expansion means. By utilizing the elastic and “de-twinning” strain ranges of Nitinol, the expandable device 200 of the present invention remains below its elastic limit before, during, and after the deployment of the device within an appropriate location.


Furthermore, the locking mechanism 280, which includes the pawl 230, and the teeth 240, provides the ability to decrease the ‘recoil’ of the expandable device 200. As described in detail above, stents that have been manufactured of Nitinol exhibit recoil percentages greater than many other suitable materials, thus Nitinol has not been commonly utilized for the construction of expandable stents. The locking mechanism 280 of the present invention reduces the amount of recoil associated with expandable Nitinol devices. For example, the expandable device of the present invention exhibits recoil between about 2% and about 8%, and preferably between about 4% and about 6%. Additionally, due to the locking mechanism 280 of the present invention, other materials may be utilized in the construction of expandable medical devices that could not have been utilized before due to large recoil percentages of the material. For example, an expandable device may be constructed of a polymer, a biodegradable material, or a combination of a polymer and Nitinol.


A further feature of the expandable devices in accordance with the present invention is the reduced necessity to over-expand the device in service. Prior art stents, and in particular nitinol stents often required over-expansion during deployment to achieve an acceptable “minimum lumen diameter,” or MLD, post procedure. This is undesirable for several reasons, including the risk of collateral damage to the lumen, including perforation, and increased risk of long-term restenosis of the artery. Once the desired MLD has been achieved in the present invention, however, that diameter can be sustained without additional expansion due to the locking mechanism. At the same time, the present invention easily permits additional expansion, if required: due to the plurality of teeth 240 provided on one end of the elongated member 220, the distal end 235 of the pawl 230 may be advanced to engage another one of the teeth 240, thereby increasing the overall expanded diameter of the expandable device 200.


In addition to the embodiments above, it is contemplated that the expandable device 200/200′ may further include a means for retaining and delivering a beneficial agent. For example, the beams 220 may include a plurality of apertures (not shown) disposed there through, in which a beneficial agent may be disposed. After the expandable device 200 has been placed within a vessel/artery, the beneficial agent is released from the apertures in a controlled fashion. Furthermore, it is contemplated that the expandable device 200 may be constructed from many different types of materials, such as, polymers, biodegradable materials, biocompatible materials, super-elastic alloys or a composite of any of the materials.


Still further, constructing the expandable medical device 200′ of superelastic Nitinol alloy further increases the safety of the expandable medical device. That is, the locking mechanism of the expandable medical devices in accordance with the present invention provides increased resistance to circumferential compression forces. Examples of such circumferential forces are artery spasms and elasticity of the artery wall or recoil as described above. Additionally, constructing the expandable medical device of superelastic Nitinol alloy allows the device to recover from deformations caused by forces applied perpendicular to the longitudinal axis of the device, such as flat plate crushing forces. For example, the expandable medical device 200′ may be utilized in a peripheral location such as the carotid artery, where the medical device is more vulnerable to being crushed by an external force or blow to the patient's neck. A conventional stainless steel stent cannot be utilized in this location because once deformed the stent will not return to its expanded state, thus potentially blocking the artery of which it was intended to support. By contrast, the expandable medical device 200′ in accordance with the present invention will return to its expanded and locked state if it is crushed due to an applied force because of the material properties of superelastic nitinol and the geometry of the expandable medical device 200′.


While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention.

Claims
  • 1. An expandable medical device comprising: a plurality of elongated beams, the plurality of elongated beans joined together to form substantially cylindrical elements which are expandable from cylinders having a first diameter to cylinders having a second diameter, the plurality of elongated beams having a beam width in a circumferential direction and wherein adjacent elongated beams form substantially V-shapes when the cylinders are at the second diameter;a plurality of flexible links interconnecting the substantially cylindrical elements; anda plurality of hinges connecting the elongated beams and positioned away from apexes of the substantially V-shapes, wherein deformation during expansion is confined substantially to the hinges and the flexible links, wherein the plurality of hinges each have a tapered portion such that an end of each hinge closer to the apex of the substantially V-shapes formed by the adjacent elongated beams has a width which is greater than a width of the hinge at an opposite end, and the tapered portion has a length longer than a non-tapered portion of the hinge.
  • 2. The device of claim 1, wherein the plurality of hinges taper substantially linearly.
  • 3. The device of claim 1, wherein the non-tapered portion extends along about ⅓ of the length of the hinge and the tapered portion extends along about ⅔ of the length of the hinge.
  • 4. The device of claim 1, wherein during expansion the hinges experience deformation below their elastic limit.
  • 5. The device of claim 1, wherein during expansion a structure adjacent the hinges experiences at least two degrees of freedom of motion.
  • 6. The device of claim 1, wherein the plurality of hinges are tapered with the hinge widths, hinge length, and taper adjusted to achieve a desired value of the maximum strain along the hinges.
  • 7. The device of claim 1, wherein the taper is substantially constant along a length of about ⅔ of a length of the hinge.
  • 8. The device of claim 1, wherein the taper extends along a length of about ⅔ of a length of the hinge.
  • 9. The device of claim 1, comprising a pawl disposed adjacent to the hinge and a plurality of teeth adapted to receive the pawl in a locking configuration.
  • 10. The device of claim 9, wherein during expansion, the pawl experiences at least two degrees of freedom of motion.
  • 11. The device of claim 1, wherein the device is laser-cut.
  • 12. The device of claim 1, wherein the elongated beams further include a plurality of apertures disposed therein and a beneficial agent disposed within the apertures.
  • 13. The device of claim 1, wherein a recoil of the medical device after expansion to the second diameter is less than about eight percent.
  • 14. The device of claim 1, wherein a recoil of the medical device after expansion to the second diameter is less than about five percent.
  • 15. The device of claim 1, wherein the device is manufactured of a biodegradable material.
  • 16. The device of claim 1, wherein the device is manufactured of Nitinol, polymer, or a composite of polymer and Nitinol.
  • 17. An expandable medical device according to claim 1, wherein the width of the hinge closest to the apex of the substantially V-shapes is smaller than the beam width.
  • 18. An expandable medical device according to claim 1, wherein the hinges are coaxial with an adjacent elongated beam when the stent is in the first diameter.
  • 19. An expandable stent comprising: a plurality of elongated beams joined together to form a substantially cylindrical elements which are expandable from cylinders having a first diameter to cylinders having a second diameter, wherein adjacent ones of the plurality of elongated beams form substantially V-shapes when the cylinders are at the second diameter;a plurality of flexible links interconnecting the substantially cylindrical elements; anda plurality of hinges connecting the elongated beams and positioned away from apexes of the substantially V-shapes, wherein deformation during expansion is confined substantially to the hinges and the flexible links, wherein the plurality of hinges each includes a tapered portion such that an end of each hinge closer to the apex of the substantially V-shapes formed by the adjacent elongated beams has a width which is greater than a width of the hinge at an opposite end, and wherein substantially the entire tapered portion of the hinge deforms during expansion of the cylinder from the first diameter to the second diameter.
  • 20. The stent of claim 19, wherein the tapered portion tapers substantially linearly.
  • 21. The stent of claim 19, wherein a non-tapered portion of the hinge extends along about ⅓ of the length of the hinge and the tapered portion of the hinge extends along about ⅔ of the length of the hinge.
  • 22. The stent of claim 19, wherein during expansion the hinges experience deformation below their elastic limit.
  • 23. The stent of claim 19, wherein during expansion a structure adjacent the hinges experiences at least two degrees of freedom of motion.
  • 24. The stent of claim 19, wherein the plurality of hinges are tapered with the hinge widths, hinge length, and taper adjusted to achieve a desired value of the maximum strain along the hinges.
  • 25. The stent of claim 19, wherein the taper is substantially constant along a length of about ⅔ of a length of the hinge.
  • 26. The stent of claim 19, wherein the taper extends along a length of about ⅔ of a length of the hinge.
  • 27. The stent of claim 19, comprising a pawl disposed adjacent to the hinge and a plurality of teeth adapted to receive the pawi in a locking configuration.
  • 28. The stent of claim 27, wherein during expansion, the pawl experiences at least two degrees of freedom of motion.
  • 29. The stent of claim 19, wherein the device is laser-cut.
  • 30. The stent of claim 19, wherein the elongated beams further include a plurality of apertures disposed therein and a beneficial agent disposed within the apertures.
  • 31. The stent of claim 19, wherein a recoil of the medical device after expansion to the second diameter is less than about eight percent.
  • 32. The stent of claim 19, wherein a recoil of the medical device after expansion to the second diameter is less than about five percent.
  • 33. The stent of claim 19, wherein the device is manufactured of a biodegradable material.
  • 34. The stent of claim 19, wherein the device is manufactured of Nitinol, polymer, or a composite of polymer and Nitinol.
  • 35. The stent of claim 19, wherein the width of the hinge closest to the apex of the substantially V-shapes is smaller than the beam width.
  • 36. The stent of claim 19, wherein the hinges are axially aligned with an adjacent elongated beam when the stent is in the first diameter.
CLAIM OF PRIORITY

The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/266,805 filed Feb. 5, 2001, the entirety of which is hereby incorporated by reference.

US Referenced Citations (185)
Number Name Date Kind
3657744 Ersek Apr 1972 A
4300244 Bokros Nov 1981 A
4531936 Godon Jul 1985 A
4542025 Tice et al. Sep 1985 A
4580568 Gianturco Apr 1986 A
4650466 Luther Mar 1987 A
4733665 Palmaz Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4739762 Palmaz Apr 1988 A
4776337 Palmaz Oct 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4824436 Wolinsky Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4955878 See et al. Sep 1990 A
4957508 Kaneko et al. Sep 1990 A
4960790 Stella et al. Oct 1990 A
4969458 Wiktor Nov 1990 A
4989601 Marchosky et al. Feb 1991 A
4990155 Wilkoff Feb 1991 A
4994071 MacGregor Feb 1991 A
5019090 Pinchuk May 1991 A
5049132 Shaffer et al. Sep 1991 A
5053048 Pinchuk Oct 1991 A
5059166 Fischell et al. Oct 1991 A
5059178 Ya Oct 1991 A
5059211 Stack et al. Oct 1991 A
5078726 Kreamer Jan 1992 A
5092841 Spears Mar 1992 A
5102417 Palmaz Apr 1992 A
5157049 Haugwitz et al. Oct 1992 A
5171262 MacGregor Dec 1992 A
5176617 Fischell et al. Jan 1993 A
5195984 Schatz Mar 1993 A
5197978 Hess Mar 1993 A
5213580 Slepian et al. May 1993 A
5234456 Silvestrini Aug 1993 A
5242399 Lau et al. Sep 1993 A
5286254 Shapland et al. Feb 1994 A
5292512 Schaefer et al. Mar 1994 A
5304121 Sahatjian Apr 1994 A
5314688 Kauffamn et al. May 1994 A
5342348 Kaplan Aug 1994 A
5342621 Eury Aug 1994 A
5344426 Lau et al. Sep 1994 A
5380299 Fearnot et al. Jan 1995 A
5383892 Cardon et al. Jan 1995 A
5383928 Scott et al. Jan 1995 A
5403858 Bastard et al. Apr 1995 A
5407683 Shively Apr 1995 A
5415869 Straubinger et al. May 1995 A
5419760 Narciso, Jr. May 1995 A
5439446 Barry Aug 1995 A
5439686 Desai et al. Aug 1995 A
5441515 Khosravi et al. Aug 1995 A
5441745 Presant et al. Aug 1995 A
5443497 Venbrux Aug 1995 A
5443500 Sigwart Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449513 Yokoyama et al. Sep 1995 A
5457113 Cullinan et al. Oct 1995 A
5460817 Langley et al. Oct 1995 A
5462866 Wang Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5473055 Mongelli et al. Dec 1995 A
5499373 Richards et al. Mar 1996 A
5523092 Hanson et al. Jun 1996 A
5545210 Hess et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5556413 Lam Sep 1996 A
5575771 Walinsky Nov 1996 A
5578075 Dayton Nov 1996 A
5578075 Dayton Nov 1996 A
5593434 Williams Jan 1997 A
5607442 Fischell et al. Mar 1997 A
5616608 Kinsella et al. Apr 1997 A
5617878 Taheri Apr 1997 A
5618299 Khosravi et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628787 Mayer May 1997 A
5643314 Carpenter et al. Jul 1997 A
5667764 Kopia et al. Sep 1997 A
5674278 Boneau Oct 1997 A
5697971 Fischell et al. Dec 1997 A
5707385 Williams Jan 1998 A
5713949 Jayaraman Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5725548 Jayaraman Mar 1998 A
5725549 Lam Mar 1998 A
5733330 Cox Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741293 Wijay Apr 1998 A
5759192 Saunders Jun 1998 A
5766239 Cox Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5776181 Lee et al. Jul 1998 A
5800507 Schwartz Sep 1998 A
5817152 Birdsall et al. Oct 1998 A
5824045 Alt Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5827322 Williams Oct 1998 A
5837313 Ding et al. Nov 1998 A
5843117 Alt et al. Dec 1998 A
5843120 Israel et al. Dec 1998 A
5843172 Yan Dec 1998 A
5843175 Frantzen Dec 1998 A
5843741 Wong et al. Dec 1998 A
5853419 Imran Dec 1998 A
5855600 Alt Jan 1999 A
5868781 Killion Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876419 Carpenter et al. Mar 1999 A
5882335 Leone et al. Mar 1999 A
5886026 Hunter et al. Mar 1999 A
5922020 Klein et al. Jul 1999 A
5922021 Jang Jul 1999 A
5957971 Schwartz Sep 1999 A
5964798 Imran Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5976182 Cox Nov 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
6007517 Anderson Dec 1999 A
6017363 Hojeibane Jan 2000 A
6019789 Dinh et al. Feb 2000 A
6022371 Killion Feb 2000 A
6030414 Taheri Feb 2000 A
6042606 Frantzen Mar 2000 A
6056722 Jayaraman May 2000 A
6063101 Jacobsen et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6087479 Stamler et al. Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6099561 Alt Aug 2000 A
6120535 McDonald et al. Sep 2000 A
6120847 Yang et al. Sep 2000 A
6153252 Hossainy et al. Nov 2000 A
6156062 McGuinness Dec 2000 A
6159488 Nagler et al. Dec 2000 A
6174326 Kitaoka et al. Jan 2001 B1
6193746 Strecker Feb 2001 B1
6206914 Soykan et al. Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6206916 Furst Mar 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6241762 Shanley Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6249952 Ding Jun 2001 B1
6273908 Ndondo-Lay Aug 2001 B1
6273910 Limon Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6280411 Lennox Aug 2001 B1
6290673 Shanley Sep 2001 B1
6293967 Shanley Sep 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312460 Drasler et al. Nov 2001 B2
6395326 Castro et al. May 2002 B1
6451051 Drasler et al. Sep 2002 B2
6475237 Drasler et al. Nov 2002 B2
6506411 Hunter et al. Jan 2003 B2
6506437 Harish et al. Jan 2003 B1
6544544 Hunter et al. Apr 2003 B2
6558733 Hossainy et al. May 2003 B1
20010000802 Soykan et al. May 2001 A1
20010027340 Wright et al. Oct 2001 A1
20010034363 Li et al. Oct 2001 A1
20010044648 Wolinsky et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20020002400 Drasler et al. Jan 2002 A1
20020005206 Falotico et al. Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020022876 Richter et al. Feb 2002 A1
20020038145 Jang Mar 2002 A1
20020072511 New et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020094985 Hermann et al. Jul 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20040102836 Fischell et al. May 2004 A1
Foreign Referenced Citations (64)
Number Date Country
2234787 Apr 1998 CA
2002 00 220 Mar 2002 DE
0 335 341 Oct 1989 EP
0 353 341 Feb 1990 EP
0 375 520 Jun 1990 EP
0 470 246 Feb 1992 EP
0 470 569 Feb 1992 EP
0 566 245 Oct 1993 EP
0 567 816 Nov 1993 EP
0 627 226 Dec 1994 EP
0 679 373 Nov 1995 EP
0 734 698 Mar 1996 EP
0 747 069 Dec 1996 EP
0 770 401 May 1997 EP
0 706 376 Jun 1997 EP
0 897 700 Feb 1999 EP
0 950 386 Oct 1999 EP
1 118 325 Jul 2001 EP
1 132 058 Sep 2001 EP
1 172 074 Jan 2002 EP
1 172 074 Jan 2002 EP
1 223 305 Jul 2002 EP
1 236 478 Sep 2002 EP
764 794 May 1934 FR
WO 9013332 Nov 1990 WO
WO 9110424 Jul 1991 WO
WO 9111193 Aug 1991 WO
WO 9112779 Sep 1991 WO
WO 9212717 Aug 1992 WO
WO 9215286 Sep 1992 WO
WO 9306792 Apr 1993 WO
WO 9421308 Sep 1994 WO
WO 9424961 Nov 1994 WO
WO 9503036 Feb 1995 WO
WO 9503795 Feb 1995 WO
WO 9524908 Sep 1995 WO
WO 9603092 Feb 1996 WO
WO 9625176 Aug 1996 WO
WO 9629028 Sep 1996 WO
WO 9632907 Oct 1996 WO
WO 9704721 Feb 1997 WO
WO 9808566 Mar 1998 WO
WO 9818407 May 1998 WO
WO 9819628 May 1998 WO
WO 9823228 Jun 1998 WO
WO 9823244 Jun 1998 WO
WO 9836784 Aug 1998 WO
WO 9858600 Dec 1998 WO
WO 9915108 Apr 1999 WO
WO 9916386 Apr 1999 WO
WO 9916477 Apr 1999 WO
WO 9944536 Sep 1999 WO
WO 9949928 Oct 1999 WO
WO 9955396 Nov 1999 WO
WO 0010613 Mar 2000 WO
WO 0045744 Aug 2000 WO
WO 0069368 Nov 2000 WO
WO 0071054 Nov 2000 WO
WO 0117577 Mar 2001 WO
WO 0145862 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0187376 Nov 2001 WO
WO 0217880 Mar 2002 WO
WO 0226281 Apr 2002 WO
Related Publications (1)
Number Date Country
20020107563 A1 Aug 2002 US
Provisional Applications (1)
Number Date Country
60266805 Feb 2001 US