Expandable member for deploying a prosthetic device

Abstract
An apparatus and method for delivering a prosthetic device through the vasculature of a patient includes a radially expandable member coupled to the distal end of an elongate shaft. The expandable member has an open frame configuration and an outer mounting surface for mounting the prosthetic device in a collapsed state thereon. The expandable member expands radially outwards from a first configuration to a second configuration to expand a prosthetic device mounted thereon.
Description
FIELD

The present invention relates generally to medical devices and methods. More particularly, the present invention provides minimally invasive methods and devices for percutaneous transcatheter implantation of expansible prosthetic heart valves within or adjacent a valved anatomic site within the heart.


BACKGROUND

When treating certain medical conditions, it is sometimes desirable to expand a frame or other radially expandable member in an orifice or conduit of a patient's body. For example, expandable tubes called stents are commonly inserted into a natural conduit of a patient's body and expanded inside the conduit to hold the conduit in an open position. Such expandable stents can be used to expand, widen, or otherwise provide structural support to various conduits of the human body, including, for example, arteries, veins, bile ducts, the esophagus, and the colon. In other treatment procedures, prosthetic heart valves that include a frame member are implanted into the body at a treatment site (e.g., a heart valve annulus). These prosthetic heart valves can be positioned in the heart valve annulus by expanding the frame member to roughly the size of the valve annulus.


Such frames or stents can be self-expanding or expanded using an expansion balloon. One conventional method involves positioning a frame on a balloon of a balloon catheter, maneuvering the balloon and frame to the treatment site, and inflating the balloon with a fluid to expand the frame or stent to the desired size. Such an approach, however, can have drawbacks. For example, during the expansion of the balloon the orifice or conduit is usually at least partially, if not completely, occluded, which can cause certain undesirable effects. Accordingly, it is desirable to provide methods and delivery systems that eliminate or reduce these and other potential drawbacks.


SUMMARY

In the deployment of prosthetic devices in the aortic arch or in the intracranial arteries, blockage of the lumen by the balloon during the implantation process, even for a short period of time, can introduce complications to the medical procedure. The apparatuses and methods described in various embodiments herein can reduce and/or substantially eliminate the occlusion of the lumen (e.g., artery or other passageway) during expansion of a prosthetic device therein.


The apparatuses and methods described in various embodiments herein can prolong prosthetic device deployment time, eliminate pacing and its associated risks, as well as permitting repositioning of the prosthetic device during deployment.


In one embodiment, an apparatus for delivering a prosthetic device through the vasculature of a patient comprises an elongate shaft having a distal end and a radially expandable member coupled to the distal end of the elongate shaft. The expandable member can comprise a distal end portion and a proximal end portion that are movable relative to one another between a first orientation and a second orientation. A plurality of struts can be coupled to at least one of the distal end and proximal end portions of the expandable member and can have a prosthetic device receiving area. In the first orientation the distal end and proximal end portions are a first distance apart, and in the second configuration the distal end and proximal end portions are a second distance apart. The second distance can be less than the first distance. Movement of the distal end and proximal end portions from the first orientation to the second orientation can cause connecting members to expand radially outwards from a first configuration to a second configuration to expand the prosthetic device


In specific implementations, the expandable member can comprise a screw member that extends between the distal end portion and the proximal end portion, and rotation of the screw member can cause the distal end and proximal end portions to move from the first to the second orientation. In other specific implementations, the expandable member can comprise a wire that extends between the distal end portion and the proximal end portion, and movement of the wire can cause the distal end and proximal end portions to move from the first to the second orientation.


In other specific implementations, one or more of the plurality of struts can extend from the distal end portion to the proximal end portion. In other specific implementations, the expandable member can comprise a cover that at least partially surrounds the plurality of struts. In other specific implementations, the cover can be configured to open to permit fluid to flow through the expandable member from the distal end portion to the proximal end portion and to close to substantially prevent fluid from flowing through the expandable member from the proximal end portion to the distal end portion. In other specific implementations, the cover can have at least one slit near the proximal end portion to allow the cover to open.


In specific implementations, one or more of the plurality of struts can be configured to expand in a predetermined manner. In other specific implementations, one or more of the plurality of struts can have a notch at an internal face of a desired bending point to facilitate expansion of the expandable member in the predetermined manner.


In other specific implementations, some of the plurality of struts can extend from the distal end portion and some of the plurality of struts can extend from the proximal end portion. The prosthetic device can be removably coupled at a first end to the struts that extend from the distal end portion and at a second end to the struts that extend from the proximal end portion.


In another embodiment, an apparatus for delivering a prosthetic device through the vasculature of a patient comprises an elongate shaft having a distal end and a radially expandable member coupled to the distal end of the elongate shaft. The expandable member can have an open frame configuration and an outer mounting surface for mounting the prosthetic device in a collapsed state thereon. The expandable member can be configured to expand radially outwards from a first configuration to a second configuration to expand the prosthetic device.


In specific implementations, the expandable member can comprise a screw member that extends between the distal end portion and the proximal end portion, and rotation of the screw member can cause the distal end and proximal end portions to move closer together and cause the plurality of struts to expand radially.


In other specific implementations, the expandable member can comprise a plurality of longitudinally extending struts that extend between a distal end portion and a proximal end portion. In other specific implementations, one or more of the plurality of struts are configured to expand in a predetermined manner.


In other specific implementations, the expandable member can comprise a cover that at least partially surrounds the plurality of struts. The cover can be configured to open to permit fluid to flow through the expandable member from the distal end portion to the proximal end portion and to close to substantially prevent fluid from flowing through the expandable member from the proximal end portion to the distal end portion. In specific implementations, the cover has at least one slit near the proximal end portion to allow the cover to open.


In another embodiment, a method for delivering a prosthetic device through the vasculature of a patient is provided. The method can comprise providing an expandable member at a distal end of an elongate shaft, coupling the prosthetic device to the plurality of struts, and expanding the expansion device from a first configuration to a second configuration to expand the prosthetic device. The expandable member can have plurality of struts that form an open frame configuration.


In other specific implementations, the expandable member can comprise a plurality of struts that extend from a distal end portion of the expandable member to a proximal end portion of the expandable member and the method can further comprise the act of reducing the distance between the distal end portion and the proximal end portion to cause the plurality of struts to radially expand.


In other specific implementations, at least some of the plurality of struts can extend from a distal end portion of the expandable member and at least some of the plurality of struts extend from a proximal end portion of the expandable member, and the prosthetic device can be releasably coupled at a first end to the struts that extend from the distal end portion and at a second end to the struts that extend from the proximal end portion. The method can further comprise releasing the prosthetic device from the plurality of struts. In other specific implementations, after expanding the prosthetic device, the expandable member can be collapsed back to the first configuration and retracted from the body.


The foregoing and other advantages of the various embodiments disclosed herein will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an expandable member for implanting a prosthetic device within the body.



FIG. 2 is a side view of the expandable member of FIG. 1.



FIG. 3 is an end view of the expandable member of FIG. 1.



FIG. 4 is a side view of a portion of an expandable member.



FIG. 5 is a view of an expandable member, shown in a collapsed configuration and with portions removed for clarity.



FIG. 6 is a view of an expandable member, shown in a partially collapsed configuration and with portions removed for clarity.



FIG. 7 is a view of an expandable member, shown in an expanded configuration and with portions removed for clarity.



FIG. 8 is a cross-sectional view of a delivery system with an expandable member.



FIG. 9 is a partial cross-sectional view of a delivery system with an expandable member and a prosthetic device mounted thereon.



FIG. 10 is a view of a delivery system with an expandable member and a prosthetic device mounted thereon, shown with a cover and with the expandable member in an expanded configuration.



FIG. 11 is a partial cross-sectional view of an expandable member with a cover at least partially surrounding the expandable member.



FIG. 12 is a view of an expandable member with a cover at least partially surrounding the expandable member, with the cover shown in an open configuration.



FIG. 13 is a partial cross-sectional view of a prosthetic device being expanded within the body by an expandable member.



FIG. 14 is a view of a delivery system with an expandable member, shown with a prosthetic device mounted thereon.



FIG. 15 is a view of a delivery system with an expandable member and prosthetic device mounted there, shown in an expanded configuration.



FIG. 16 is a view of a delivery system with an expandable member at a treatment site in the body, with a prosthetic device shown in an expanded configuration.



FIG. 17A is a delivery system with an expandable member and a collapsed prosthetic device mounted thereon.



FIG. 17B is a cross-sectional view taken at line 17B-17B of FIG. 17A.



FIG. 18 is a view of a strut of an expandable members and a connection means for connecting the strut to a prosthetic device.



FIG. 19 shows a view of an anchoring device.



FIG. 20 shows a view of the anchoring device of FIG. 19 positioned within the body to hold a prosthetic device in position relative to the anchoring device.



FIG. 21A shows a cross-sectional view of a delivery system with the anchoring device shown in FIG. 19, with the anchoring device shown in a non-deployed state.



FIG. 21B shows a cross-sectional view of a delivery system with the anchoring device shown in FIG. 19, with the anchoring device shown in a deployed state.



FIG. 22 shows an illustration of a delivery system that has an expandable member that is deployable by a ratchet mechanism.



FIG. 23 shows an illustration of a shaft suitable for use with the delivery system of FIG. 22.



FIG. 24 shows an illustration of a mechanism for use with a delivery system of the type shown in FIG. 22.



FIG. 25 shows an illustration of a delivery system with an expandable member that is operable using an actuation device positioned adjacent the expandable member.





DETAILED DESCRIPTION

The following description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Various changes to the described embodiment may be made in the function and arrangement of the elements described herein without departing from the scope of the invention.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally means electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items.


Although the operations of exemplary embodiments of the disclosed method may be described in a particular, sequential order for convenient presentation, it should be understood that disclosed embodiments can encompass an order of operations other than the particular, sequential order disclosed. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Further, descriptions and disclosures provided in association with one particular embodiment are not limited to that embodiment, and may be applied to any embodiment disclosed.


Moreover, for the sake of simplicity, the attached figures may not show the various ways (readily discernable, based on this disclosure, by one of ordinary skill in the art) in which the disclosed system, method, and apparatus can be used in combination with other systems, methods, and apparatuses. Additionally, the description sometimes uses terms such as “produce” and “provide” to describe the disclosed method. These terms are high-level abstractions of the actual operations that can be performed. The actual operations that correspond to these terms can vary depending on the particular implementation and are, based on this disclosure, readily discernible by one of ordinary skill in the art.


In certain embodiments, the delivery systems and methods disclosed herein can be used to deploy a frame member or stent without an expansion balloon. Thus, many of the difficulties associated with the use of such expansion balloons for delivering intraluminal devices, particularly intravascular devices, can be avoided or substantially eliminated. The delivery systems and methods disclosed herein can be substantially the same as those used in traditional methods, except that the expansion of the prosthetic devices can be achieved by effecting relative movement between mechanical elements, rather than by the expansion and contraction of a balloon member.



FIGS. 1-3 disclose an illustrated embodiment of an expandable member (expandable basket) 100 with an open-frame configuration. Expandable member 100 can comprise a plurality of longitudinally-extending, circumferentially-spaced struts 102 terminating and joined together at opposite ends of the expandable member. As shown in FIG. 1, for example, struts 102 can extend between the distal end 104 and proximal end 106 of the expandable member 100. Struts 102 can be formed of a variety of materials and in a variety of shapes, as long as the shape and structure is sufficiently strong to cause expansion of a prosthetic device, as described in more detail below. For example, each strut 102 can be formed of a tubular structure of elastic material, such as stiff plastic or metal. In addition, the expandable member 100 can be formed of a variety of number of struts 102, so long as the struts are of sufficient number, strength, and/or shape so as to provide sufficient force to surfaces and/or contact points of the prosthetic device to expand the device as described herein.


The plurality of struts 102 can define an annular supporting surface for an expandable intraluminal device to be delivered. Each strut 102 in the annular array can be laterally deformable to radially expand or radially contract the annular array of struts 102, and the annular supporting surface defined by them.


The expandable member 100 can be expandable between a first or non-expanded configuration (FIG. 5) to a second or expanded configuration (FIG. 1). The expandable member 100 is desirably configured so that shape defined by the annular supporting surface of the expandable member in its expanded configuration (FIG. 1) is substantially predetermined and known. Thus, when the expandable member 100 is expanded, the annular supporting surface of the expandable member 100 will push against the prosthetic device mounted thereon to expand the prosthetic device to a predetermined shape (i.e., a shape that is complementary to the shape of the expandable member 100 in its expanded configuration).


The expandable member 100 can be configured so that it will expand to a predetermined expanded configuration in a variety of ways. For example, struts 102 can be pre-formed or “heat-set” into a desired expanded configuration prior to deployment. The pre-formed struts 102 of perfusion basket 100 may then be stretched down or collapsed into a deployable configuration. By pre-forming struts 102 in this manner, upon expansion of the expandable member 100, the struts 102 will conform to the predetermined shape into which they have been pre-formed.


Alternatively, or in addition to pre-forming struts 102, struts 102 may each include at least one notch 108 formed at an internal face of a desired bending point 110 on struts 102. Notching the appropriate bending points 110 as shown in FIG. 4, facilitates the bending of struts 102 and can provide greater control over the shape of the expandable member 100 during deployment. Also, notches 108 can allow the struts 102 to be deployed using less actuating (e.g., compressive) force. The size and depth of notches 108 can vary depending on the strength to formability ratio desired for each strut 102.


A variety of different mechanisms can be used to expand and/or collapse expandable member 100. In one embodiment, as shown in FIGS. 5-7, the mechanism for expanding and/or collapsing the expandable member 100 can comprise a screw mechanism 120 configured to apply a longitudinal force to expand or collapse expandable member 100. For clarity, FIGS. 5-7 illustrate expandable member 100 with all but one strut 102 removed. Referring to FIG. 5, a prosthetic device (not shown) can be mounted on the expandable member 100 while it is in a collapsed configuration. Then the expandable member 100 can be expanded from the collapsed configuration to the expanded configuration shown in FIG. 7. FIG. 6 illustrates a partially collapsed configuration, which the expandable member 100 can pass through during expansion of the expandable member 100. Alternatively, the partially collapsed configuration (FIG. 6) can be the initial configuration of the expandable member 100. In other words, the expandable member 100 can be expandable from any first configuration (e.g., the completely collapsed configuration of FIG. 5, the partially collapsed configuration of FIG. 6, or another partially collapsed configuration) to a second, expanded configuration (e.g., FIG. 7).


When in the lowest profile configuration (i.e., the initial collapsed or partially collapsed configuration), the proximal end 106 of the expandable member 100 and the distal end 104 of the expandable member are furthest apart and screw mechanism 120 is in an extended position. To expand the expandable member 100 and deploy the prosthetic device mounted thereon, the expandable member 100 can be expanded by actuating an external mechanism. Actuation of the external mechanism (for example, rotation of actuating member 130 on an external handle as shown in FIG. 8) causes screw mechanism 120 to rotate about the longitudinal axis of the expandable member 100, as shown by arrow 122 in FIG. 7. As shown in FIG. 8, screw mechanism 120 can have an externally threaded portion 136 that is received in an internally threaded portion 134 of distal end 104. The rotation of screw mechanism 120 causes the externally threaded portion 136 of screw mechanism 120 to extend further into the internally threaded portion 134 of distal end 104, causing distal end 104 to move toward proximal end 106. As the distance between the two ends of the expandable member 100 shortens, struts 102 are axially compressed (as shown by arrows 121, 124) and forced to radially expand (FIG. 7).


After the prosthetic device is expanded, the expandable member 100 can be collapsed back to a lower profile configuration for removal from the treatment site through the patient's vasculature. To return expandable member 100 to the collapsed configuration (FIG. 5) or partially collapsed configuration (FIG. 6), the rotation of screw mechanism 120 can be reversed, causing the distance between the proximal end 106 and distal end 104 of the expandable member 100 to increase and the struts to radially contract.



FIG. 8 illustrates an embodiment of a delivery system that comprises an expandable member 100 at a distal end. A rotatable actuating member 130 can be coupled to the screw mechanism 120. Screw mechanism 120 can extend longitudinally through one or more shafts 132 and attach to a distal end of expandable member 100. As discussed above, distal end 104 of expandable member 100 is preferably coupled to an internally threaded member 134 that is in threaded engagement with an externally threaded portion 136 of screw mechanism 120. Rotation of actuating member 130 causes screw mechanism 120 to rotate, shortening the distance between the proximal end 106 and distal end 104 of expandable member 100 as discussed above.



FIG. 9 illustrates an exemplary embodiment of a delivery system 150 for deploying a prosthetic device 152 using expandable member 100. Prosthetic device 152 can be any expandable intraluminal device, such as an expandable prosthetic heart valve. In this exemplary embodiment, delivery system 150 can include an outer member (shaft) 154 and an inner member (shaft) 156, with outer member 154 coaxially disposed around inner member 156. Outer member 154 and inner member 156 can be made from any number of suitable materials, such as a polymeric or metallic material.


Inner member 156 can comprise an expandable member 100 attached near the distal end of inner member 156. Inner member 156 can also have a guide wire lumen so that the delivery system 150 can be advanced over a guide wire 158, with the guide wire passing through the lumen. Guide wire 158 can be introduced into a body lumen and guided to the proper location in accordance with the conventional methods that used with balloon-type catheters. The expandable member 100 and prosthetic device 152 can track the guide wire 158 to the target location for deployment of the prosthetic device 152.



FIG. 9 shows struts 102 of the expandable member 100 in a substantially unexpanded configuration. FIG. 9 illustrates the expandable member 100 in a partially collapsed configuration (as shown in FIG. 6); however, as discussed above, expandable member 100 could be further collapsed (as shown in FIG. 5) to achieve a lower profile configuration. Prosthetic device 152 is shown mounted on the outer surfaces of struts 102, which collectively define an annular surface for receiving prosthetic device 152 in a contracted state. As shown in FIG. 9, expandable member 100 can be collapsed into and constrained by the distal end of outer member 154, which forms a sheath extending over the valve. Thus, prosthetic device 152 can be constrained and/or positioned in a contracted condition between outer member 154 and the annular surface defined by struts 102. Prosthetic device 152 can be maneuvered through the patient's vasculature to the treatment site while mounted on expandable member 100, as shown in FIG. 9.


Alternatively, as described in U.S. Patent Publication No. 2008/0065011 and U.S. patent application Ser. No. 12/247,846, the prosthetic device 152 can be initially mounted in a collapsed (crimped) state at a location that is either distal or proximal to expandable member 100. The entire disclosures of U.S. Patent Publication No. 2008/0065011 and U.S. patent application Ser. No. 12/247,846 are incorporated by reference herein. After the prosthetic device is advanced through narrow portions of the patient's vasculature (for example, the iliac artery which is typically the narrowest portion of the relevant vasculature), the prosthetic device can be positioned on (or over) the expandable member 100. If the prosthetic device has not yet been advanced to the deployment site when the expandable member is repositioned underneath the prosthetic device, then the prosthetic device and expandable member can be advanced to the treatment site together and the expandable member can be expanded to deploy the prosthetic device at the treatment site. In this manner, prosthetic device can be crimped to an even smaller diameter and the profile of the delivery system can be further reduced.


Once the prosthetic device 152 and expandable member 100 reach the desired deployment location, outer member 154 can be retracted proximally, exposing the prosthetic device 152 for deployment. FIG. 10 illustrates the expandable member 100 in an expanded configuration after the outer member 154 has been retracted relative to the expandable member 100. The expansion of expandable member can be caused (as discussed above) by actuating screw mechanism 120 to compress the expandable member 100 longitudinally and force struts 102 to expand radially. As shown in FIG. 10, the delivery system can have an actuating member 130 positioned on or around an external handle member 128. External handle member 128 can have visual indicia 131 which indicate the amount of expansion of expandable member. The rotation of the actuating member 130 (as discussed above, for example, with regard to FIG. 8) forces struts 102 on expandable member 100 to longitudinally contract and radially expand, causing prosthetic device 152 to be expanded and anchored at the target location.


The delivery system 150 shown in FIGS. 9 and 10 desirably also comprises a cover 160 that at least partially surrounds expandable member 100. As shown in FIGS. 11 and 12, cover 160 can be disposed over a working length (prosthetic device mounting area) 162 of the expandable member 100, with cover 160 extending the length of prosthetic device 152 and over a proximal end portion 164 of expandable member 100. For clarity, FIG. 11 shows cover 160 partially cut-away, showing the location of struts 102 beneath cover 160 at the working length 162 and proximal end portion 164. Desirably, distal end portion 166 remains uncovered as shown in FIG. 11. Cover 160 is desirably attached to the outer surface of struts 102 along the working length 162. Cover 160 is desirably includes one or more slits 170 and is at least partially detached from the outer surface of struts 102 at proximal end portion 164.


Slits 170 can be arranged approximately 120 degrees about the circumference of cover 160 at proximal end portion 164. Slits 170 allow proximal end portion 164 of cover 160 to act as temporary leaflets 168, which may open (second configuration) when fluid flows through expandable member 100 from the distal end 104 to the proximal end 106 as indicated by arrows 172 (FIGS. 10 and 12) and close (first configuration) as when fluid tries to pass through expandable member 100 from the proximal end 106 to the distal end 104 as indicated by arrows 174 (FIG. 11).


By providing a cover 160 that permits fluid flow in one direction, but restricts it in the other, the delivery system can mimic a native valve while the prosthetic device 152 is being deployed. In conventional systems, for example, a balloon member can occlude the orifice (such as the aortic valve) causing difficulties. The pressure drop across the aortic valve when the valve is closed and the flow across the valve (˜5 L/min) is so great that occlusion of the annulus may result in the ventricle ejecting the occluding member (e.g., expandable balloon) into the aorta. By permitting flow through the expandable member, pressure build-up during prosthetic device deployment can be avoided.


Also, by allowing fluid to flow through the orifice during deployment of the prosthetic device, the need for pacing the heart can be reduced or entirely eliminated. Although current pacing procedures are effective, they still require rapid deployment of prosthetic devices. For example, in certain procedures, the prosthetic device should be deployed in about 3 to 5 seconds. Since the deployment systems described herein permit flow across the orifice during deployment of the prosthetic device, the prosthetic device can be deployed more slowly, and can be repositioned and/or moved by an operator during deployment. In contrast, pacing procedure do not generally allow for any repositioning or movement of the prosthetic device during deployment. Additionally, by eliminating pacing, the procedure can be greatly simplified and variations in patient anatomy and systems (e.g., ventricular pressure and flow) for the purpose of pacing need not be considered.



FIG. 13 illustrates a specific embodiment where the prosthetic device 152 is a prosthetic heart valve that is to replace the native aortic valve. The embodiments disclosed herein permit blood to flow from the left ventricle 182 through the expandable member 100 and into the aorta 184. As the prosthetic device 152 is moved into position at the aortic annulus 180, blood can flow from the left ventricle 182 through the aortic annulus 180 into the aorta 184 (as shown by arrow 185). However, when the flow of blood is reversed, cover 160 closes (as shown in FIG. 11) and at least substantially blocks blood from flowing from the aorta 184 back into the left ventricle 182. Thus, while prosthetic device 152 is being deployed cover 160 (and its leaflets 168) open (as shown in FIGS. 10, 13, and 13) allowing blood to flow into the aorta. When the ventricles finish contracting and begin to relax, however, cover 160 (and its leaflets 168) move against struts 102 at the proximal end portion 164 (FIG. 11) and substantially prevent blood from flowing back into the left ventricle.


Cover 160 can also provide protection to flexible membranes or other components of the expandable prosthetic device to be delivered by forming a barrier between struts 102 and the prosthetic device during delivery and deployment of the prosthetic device at the treatment site. Cover 160 can be formed of any suitable material, including, for example urethane and the like. Moreover, instead of the slits 170 and leaflets 168 shown in the illustrated embodiments, cover 160 can comprise any suitable shape and configuration, so long as that shape and configuration is suitable to restrict flow in one direction and permit flow in the other direction during placement and deployment of the prosthetic device.


Various prosthetic devices are suitable for deployment with the delivery systems disclosed herein, including, for example, heart valves that comprise expandable frame members and one or more leaflet members attached to the expandable frame members. After deployment of the prosthetic device, the expandable member can be radially contracted as discussed above and the expandable member can be retracted from the body.


In other embodiments, the prosthetic device itself can comprise at least a portion of the expandable member. FIG. 14 is an illustration of a delivery system 200 where the open-frame expandable member comprises a prosthetic device. In the illustrated embodiment, delivery system 200 comprises an implantable prosthetic device 202 (hereinafter “valve 202”) that is suitable for percutaneous deployment and that is releasably coupled to expansion struts 216 to form an expandable member. Valve 202 is preferably adapted to be radially crimped and radially expanded, which simplifies navigation through the narrow passages of the patient's vasculature during delivery and positioning of valve 202. Valve 202 preferably also comprises a flexible membrane 204 and a collapsible support structure (frame) 206.


After deployment at a treatment location, flexible membrane 204 can be positioned in a flow path through valve 202 to permit flow in a first direction, and substantially resist flow in a second direction. In one embodiment, flexible membrane 204 can include a collapsible pliant material formed as flexible leaflets 208, which can be arranged to collapse in, for example, a mono cusp, bicuspid, or tricuspid arrangement.


In the illustrated embodiment, collapsible support structure 206 can be expandable from a first diameter to a second diameter, and can have a flow path through the collapsible support structure 206 along its structural axis. Collapsible support structure 206 can include a generally cylindrical expandable framework of frame members 210, which primarily secure valve 202 at or adjacent to the defective valve annulus. Collapsible support structure 206 can provide stability to the valve 202 and help to prevent valve 202 from migrating after it has been implanted.


Prosthetic valves of this type are usually implanted in one of the channels of the body to replace a native valve. In the illustrated embodiment, the prosthetic valve will be explained in connection with a cardiac valve prosthesis configured for implantation at the aortic annulus; however, it should be understood that the delivery systems disclosed herein can be used with other expandable members and prosthetic devices.


Collapsible support structure 206 may be a support stent configured to crimp evenly so as to present a relatively low profile or narrow configuration. The collapsible support structure 206 can also be radially deployable from the low profile configuration so as to extend to occupy the passage at the target location for implantation in a body duct. In one embodiment, collapsible support structure 206 can comprise a series of frame members (struts) 210 arranged and connected to define a geometrical structure that causes collapsible support structure 206 to expand radially as the structure is compressed axially. For example, frame members 210 can define substantially diamond shaped cells 212 that when axially compressed force collapsible support structure 206 to expand radially. Valve 202 can be releasably coupled to connecting struts (linkages) 216 at attachment areas 214 located at proximal and distal ends of valve 202.


In operation, a delivery catheter advances valve 202 while coupled to expansion struts 216 through a sheath over a guidewire to a target location in a body duct, for example, the aortic valve. As shown in FIG. 14, when in a collapsed position, connecting struts 216 can be disposed substantially axially relative to the deployment system. To expand valve 202, the distance between distal end 104 and proximal end 106 can be shortened by rotating screw mechanism 120. As discussed above, the rotation of screw mechanism causes distal end 104 to move closer to proximal end 106, which forces connecting struts 216 to extend radially. To facilitate the radial expansion of connecting struts 216, the connecting struts can have hinge or bend areas 217, about which the connecting struts bend. These bend areas can be pre-formed or notched, or otherwise configured so that connecting struts 216 will radially extend at the bend area 217 when they are axially compressed.


Because connecting struts 216 are connected to frame members 210 at attachment areas 214, the radial expansion of connecting struts 216 applies radially directed forces to the valve 202 via frame members 210. The radially movement of connecting struts 216 causes valve 202 to radially expand (deploy). As shown in FIG. 16, once valve 202 begins to expand, leaflets 204 may be immediately activated and begin to regulate flow through the annulus. Once valve 202 is completely deployed, connecting struts 216 may be disengaged from attachment areas 214 and removed from the target location.


In a specific implementation shown in FIGS. 17A, 17B, and 18, connecting struts 216 can be pivotably coupled to a portion of annular members 230, 232 at pivot connection areas (bending areas) 234. For example, in one embodiment, the proximally located connecting struts can be coupled to a first annular member 230 at the proximal end and distally located connecting struts can be coupled to a second annular member 232 at the distal end. Annular members 230 and 232 can comprise a plurality of adjacent, circumferentially spaced extending members 236 with spaces located between adjacent extending members 236 for receiving connecting struts 216. Connecting struts 216 can be positioned and captured between extending members 236 and configured to pivot or bend about pivot connection area 234. A ring member 219 can pass through each of the connecting struts 216 to hold each connecting strut 216 in position at one of the annular members 230 and 232.


In this and in the other embodiments, the number of connecting struts 216 can vary. For example, FIG. 17B illustrates four circumferentially spaced connecting struts 216; however, more or fewer connecting struts 216 can be used, so long as the outwardly directed force generated by the connecting struts 216 as they undergo compression is sufficient to expand valve 202 from an unexpanded configuration with a smaller diameter to an expanded configuration with a greater diameter. In the illustrated embodiment, FIG. 17B shows eight different locations between extending members 236 into which connecting struts 216 can be located.


Relative movement of annular members 230 and 232 can be caused by a screw mechanism or other axially applied forces (as described in more detail above), causing connecting struts 216 to expand radially. To expand valve 202 uniformly, it can be desirable to space connecting struts 216 annularly around annular members 230 and 232. In addition, it may be desirable to connect struts 216 to the valve at areas where the valve has structural supports or posts so that the valve has sufficient rigidity at the area where struts 216 contact valve 202.


Various means for attaching connecting struts 216 to valve 202 can be used. For example, connecting struts 216 can have a first end pivotably coupled to annular members 230 and 232, and a second end that comprises a securing mechanism for securing the valve 202 to the connecting strut as shown in FIG. 18. For example a wire member 238 can pass through connecting strut 216 and a portion of the valve 202 can be captured between wire 238 and a holding area 240 of connecting strut 216 (e.g., wire member 238 can pass through a loop or opening formed in one of struts 210 and positioned in area 240). The valve 202 can be released from connecting strut 216 by pulling wire 238 towards a proximal end (in the direction of arrow 242) a distance great enough to release valve 202 from the holding area 240.



FIGS. 19-21 show an embodiment of an expandable anchoring device 300 that can be used to hold a valve 302 in a desired position during deployment of valve 302. As shown in FIG. 19, anchoring device 300 can include a plurality of flexible members, or fingers, 304. These flexible members 304 can be used to anchor the delivery system in place during deployment of valve 302. As shown in FIG. 20, for example, during deployment of a prosthetic device (valve 302) at an aortic annulus, flexible members 304 can be expanded in the left ventricle, where flexible members 304 can be configured to contact a portion of tissue surrounding the native aortic valve 310. Once deployed, anchoring device 300 can fix the position of valve 302 relative to the native valve 310. Thus, valve 302 can then be expanded in the native valve 310 without concern for positioning error caused by, for example, movement of the beating heart or the blood pressure through the native valve 310.


In addition, anchoring device 300 can help hold the valve in the proper position by preventing the delivery system from moving proximally during deployment. For example, after expansion of anchoring device 300 within the left ventricle, the delivery system can be moved proximally until the anchoring device 300 contacts the ventricle walls near the aortic annulus, effectively preventing the delivery system from moving any further proximally. After the anchoring device 300 secures the relative position of the prosthetic device (valve), the prosthetic device can be expanded at the aortic annulus.


Referring to FIGS. 21A and 21B, the anchoring device 300 can be delivered to the treatment site (or anchoring location) constrained in an outer member (cover) 314. To deploy anchoring device 300, outer member 314 can be retracted, exposing flexible members 304. Flexible members 304 can be biased outwards and upon retraction of the cover member 314, flexible members 304 radially expand and can be placed in contact with tissue near the native annulus 310. The expandable portion of the anchoring device can be formed in a variety of shapes. For example, if desired, flexible members 304 can be replaced with an expandable braided cup. After positioned appropriately, valve 302 can be expanded using a member 315, which can be, for example, an expandable member as described herein or a balloon member.


To remove anchoring device 300 from the treatment location, a retraction collar 308 can be utilized to “recapture” flexible members 304. In one embodiment, a pull wire 312 can be attached to a collar 308 that is located near the distal ends of flexible members 304 of anchoring device 300. By pulling pull wire 312 proximally, the collar 308 can move proximally over flexible members 304, causing them to radially collapse along the axis of the delivery system. Once collapsed, the anchoring device 300 can be removed from the treatment site by being retracted from the body through a catheter of the delivery system.


Screw mechanism 120 is a particularly desirable mechanism for expanding the expandable member, since it can provide significant compressive force at a local area (e.g., the expandable member), thereby forcing the expandable member to radially expand without imparting significant forces throughout other locations of the delivery system. However, as discussed above, other mechanisms for expanding the expandable member can be utilized. For example, FIG. 22 illustrates another embodiment of a deployment system where the distance between the distal end 104 and proximal end 106 of an expandable member 100 can be adjusted to expand a valve or other prosthetic device.


In this embodiment, the distance between the two ends of the expandable member can be adjusted by applying a longitudinal (non-rotational) force the length of the deployment system 400. As with the other deployment systems described herein, deployment system 400 can be used for delivering a prosthetic device, such as a heart valve, but is not limited thereto, and may be adapted to stent delivery systems as well. In one embodiment, deployment system 400 can include a shaft 402 that can track through the vasculature and yet have sufficient “longitudinal” compressive strength to allow a wire or cable 404 to be pulled through a center lumen defined through shaft 402 with sufficient force to deploy, for example, expandable member 100 (shown with some struts 102 removed for clarity).


In one embodiment, one end of wire 404 extends through expandable member 100 and is coupled to distal end 104 of expandable member 100. A proximal end of wire 404 is operatively coupled to a handle 406 to interface with a ratcheting mechanism 420 (shown in FIG. 24).


Ratcheting mechanism 420 may be activated, for example, by gripping and squeezing handles 408 and 410 (FIG. 22) to cause wire 404 to be pulled proximally through the center lumen of shaft 402 and locked into place by opposing locking wheels 422, 424 (FIG. 24) in a manner well known by those of ordinary skill in the art. Other locking elements 439 can be provided to at least temporary secure the position of wire 404 relative to shaft 402. A release knob 412 may also be included on handle 406 and used to release locking wheels 422, 424 and the tension on wire 404 as desired.



FIG. 23 is a cross sectional view along the longitudinal length of flexible shaft 402. In one embodiment, flexible shaft 402 is composed of a circular cross section closed wound coil 430 interposed with a triangular cross section closed wound coil 432. Each coil 430 and 432 is confined within a tubular cover 434, which can be made of vinyl or a similar material. Coils 430 and 432 define a lumen extending the length of flexible shaft 402 with wire 404 disposed therein.


In operation, once expandable member 100 is positioned as desired in the vasculature, ratcheting mechanism 420 of handle 406 can be activated. Ratcheting mechanism 420 pulls proximally (in the direction of arrow 438) on wire 404, this in turn, pulls distal end 104 of expandable member 100 toward proximal end 106 to cause expandable member 100 to “deploy” in a manner previously described. The resulting force (shown by arrow 440) used to pull on wire 404 is transferred to shaft 402, which is configured to absorb the compressive load and resist compression (shown by arrow 442) without significant buckling or shape distortion of shaft 402.


Since shaft 402 provides a stable mounting platform, in an alternative embodiment, instead of deploying expandable member 100 by pulling on wire 404, a rotation actuator 450 can be used. Advantageously, since rotation actuator 450 is mounted to a “rigid” platform, the twisting actuation is acceptable.


The mechanisms described herein can also be actuated by a variety of power sources. For example, the screw mechanisms described above can be actuated using a power source such as a motor or battery. In the illustrated embodiment shown in FIG. 25, a rotation actuator 450, such as DC motor or equivalent, is coupled to the distal end 452 of shaft 402. In this embodiment, rotation actuator 450 may be coupled to a drive shaft 454, such as a threaded rod. Drive shaft 454 can be operatively engaged with a threaded receptacle 456 positioned on a distal end 104 of expandable member 100 (some struts 102 removed). Operationally, rotation actuator 450 makes drive shaft 454 rotate causing threaded receptacle 456 to traverse linearly upon drive shaft 454. The linear movement of threaded receptacle 456 toward proximal end 106 causes distal end 104 to move toward proximal end 106 to deploy expandable member 100.


In one embodiment, a gear reduction mechanism 460 can be added to rotation actuator 450 to create a higher output torque and also allow for fine tuning of the placement procedure. It should be understood that variations in motor voltage (DC only), gearbox ratios, and screw thread pitch may be used to obtain the required or desired torque needed to deploy expandable member 100.


The apparatuses and methods described herein can improve what currently is one of the most critical stages of the deployment procedure by allowing a physician to more accurately position and deploy a prosthetic device without disrupting patient hemodynamics.


Although the specific embodiments discussed above describe methods and apparatuses for expanding various prosthetic devices, it should be understood that the devices and methods disclosed herein can be used for other purposes. For example, the expandable members disclosed herein can be used to replace expandable balloon members in a variety of medical procedures. Thus, the expandable members described herein can be used, for example, for angioplasty (e.g., opening clogged coronary arteries), valvuloplasty (e.g., dilating a stenotic heart valve), and other procedures in which expanding balloon members are conventionally utilized.


The invention has been disclosed in an illustrative manner. Accordingly, the terminology employed throughout should be read in an exemplary rather than a limiting manner. Although minor modifications of the invention will occur to those of ordinary skill in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that scope shall not be restricted, except in light of the appended claims and their equivalents.

Claims
  • 1. A method for deploying an expandable prosthetic device in a patient, the method comprising: positioning an expandable prosthetic device in a crimped state over a plurality of struts of an expandable member in a collapsed configuration, the plurality of struts extending longitudinally in an open-frame configuration, the expandable member disposed on a distal end of an elongate shaft;advancing the shaft through a vasculature of a patient to position the prosthetic device at a deployment site; androtating a screw mechanism to shorten the expandable member longitudinally, causing the plurality of struts to expand radially into an expanded configuration, and urging the prosthetic device into an expanded state and deploying the prosthetic device;wherein the expandable member comprises a cover at least partially covering the plurality of struts, the cover comprising at least one slit, and in the expanded configuration of the expandable member, the cover permitting blood flow through the expandable member in a first direction and restricting blood flow through the expandable member in a second direction opposite the first direction.
  • 2. The method of claim 1, further comprising retracting an outer member proximally relative to the prosthetic device, exposing the prosthetic device.
  • 3. The method of claim 1, wherein positioning the expandable prosthetic device in the crimped state over the plurality of struts of the expandable member comprises positioning the expandable prosthetic device over the plurality of struts within the vasculature.
  • 4. The method of claim 1, wherein the prosthetic device includes a prosthetic heart valve.
  • 5. The method of claim 1, further comprising collapsing the expandable member and retracting the expandable member and elongate shaft from the patient.
  • 6. A method for delivering a prosthetic device through the vasculature of a patient comprising: providing an expandable member at a distal end of an elongate shaft, the expandable member having plurality of struts that form an open frame configuration;coupling the prosthetic device to the plurality of struts; andexpanding the expandable member from a first configuration to a second configuration to expand the prosthetic device, the expandable member including a one-way valve permitting fluid flow in a first direction and preventing fluid flow in a second direction opposite the first direction when the expansion device is in the second configuration.
  • 7. The method of claim 6, wherein the expandable member comprises a plurality of struts that extend from a distal end portion of the expandable member to a proximal end portion of the expandable member, the method further comprising: reducing the distance between the distal end portion and the proximal end portion to cause the plurality of struts to radially expand.
  • 8. The method of claim 6, wherein at least some of the plurality of struts extend from a distal end portion of the expandable member and at least some of the plurality of struts extend from a proximal end portion of the expandable member, and wherein the prosthetic device is releasably coupled at a first end to the struts that extend from the distal end portion and at a second end to the struts that extend from the proximal end portion, the method further comprising: releasing the prosthetic device from the plurality of struts.
  • 9. The method of claim 6, wherein after expanding the prosthetic device, the expandable member is collapsed back to the first configuration and retracted from the body.
  • 10. The method of claim 6, wherein the one-way valve of the expansion device comprises a cover at least partially surrounding the plurality of struts.
  • 11. The method of claim 10, wherein the cover is secured to an outer surface of the plurality of struts.
  • 12. The method of claim 10, wherein the cover comprises at least one slit.
  • 13. The method of claim 6, wherein each of the plurality of struts comprises bend areas.
  • 14. The method of claim 13, wherein the bend areas comprise notches.
  • 15. The method of claim 6, wherein the prosthetic valve includes a prosthetic heart valve.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 12/396,378, filed Mar. 2, 2009, which issued as U.S. Pat. No. 8,460,368 on Jun. 11, 2013, which claims the benefit of U.S. Provisional Application No. 61/032,851, filed Feb. 29, 2008, the entire disclosures of which are hereby incorporated by reference.

US Referenced Citations (193)
Number Name Date Kind
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Sammuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5108370 Walinsky Apr 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5232446 Arney Aug 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane et al. May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5599305 Hermann et al. Feb 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian Oct 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245040 Inderbitzen Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian Oct 2001 B1
6302906 Goecoechea et al. Oct 2001 B1
6350277 Kocur Feb 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz Mar 2003 B2
6569196 Vesely et al. May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll Aug 2003 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6830584 Seguin Dec 2004 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
7018406 Seguin et al. Mar 2006 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7621948 Herrmann Nov 2009 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8167932 Bourang May 2012 B2
8407380 Matsunaga Mar 2013 B2
20010021872 Bailey et al. Sep 2001 A1
20020032481 Gabbay Mar 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020173842 Buchanan Nov 2002 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060142837 Haverkost et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259137 Artof et al. Nov 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070027534 Bergheim et al. Feb 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070112422 Dehdashtian May 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070270943 Solem Nov 2007 A1
20080065011 Marchand et al. Mar 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090281619 Le et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100049313 Alon et al. Feb 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20120123529 Levi et al. May 2012 A1
Foreign Referenced Citations (56)
Number Date Country
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0144167 Jun 1985 EP
0597967 Dec 1994 EP
0592410 Oct 1995 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2007 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
WO 9117720 Nov 1991 WO
WO 9217118 Oct 1992 WO
WO 9301768 Feb 1993 WO
WO 9724080 Jul 1997 WO
WO 9829057 Jul 1998 WO
WO 9933414 Jul 1999 WO
WO 9940964 Aug 1999 WO
WO 9947075 Sep 1999 WO
WO 0018333 Apr 2000 WO
WO 0041652 Jul 2000 WO
WO 0047139 Aug 2000 WO
WO 0135878 May 2001 WO
WO 0149213 Jul 2001 WO
WO 0154624 Aug 2001 WO
WO 0154625 Aug 2001 WO
WO 0162189 Aug 2001 WO
WO 0164137 Sep 2001 WO
WO 0176510 Oct 2001 WO
WO 0222054 Mar 2002 WO
WO 0236048 May 2002 WO
WO 0241789 May 2002 WO
WO 0243620 Jun 2002 WO
WO 0247575 Jun 2002 WO
WO 0249540 Jun 2002 WO
WO 03047468 Jun 2003 WO
WO 2005087140 Sep 2005 WO
WO 2005102015 Nov 2005 WO
WO 2006014233 Feb 2006 WO
WO 2006034008 Mar 2006 WO
WO 2006108090 Oct 2006 WO
WO 2006138173 Dec 2006 WO
WO 2008005405 Jan 2008 WO
WO 2008035337 Mar 2008 WO
WO 2008147964 Dec 2008 WO
WO 2008150529 Dec 2008 WO
WO 2009116041 Sep 2009 WO
Non-Patent Literature Citations (25)
Entry
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
Andersen, Henning Rud, “History of Percutaneous Aortic Valve Prosthesis,” Herz 34 2009 Nr. 5, Urban & Vogel, pp. 343-346, Skejby University Hospital Department of Cardiology, Aarhus, Denmark.
Almagor, M.D., Yaron, et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 1, 1990; ISSN 0735-1097.
Sabbah, Ph.D., Hani N., et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989; ISSN 0886-0440.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , Jul. 29, 2009, 2 pages.
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Médecine et Hygiéne, Genève, 1991, pp. 5-47.
Al-Khaja, N., et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery 3:305-311, Jun. 30, 2009.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, Butterworths 1986.
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Inoune, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360.
Dotter, M.D., Charles T., “Transluminal Treatment of Arteriosclerotic Obstruction,” University of Oregon's Minthorn Memorial Laboratory for Cardiovascular Research through Radiology, Circulation, vol. XXX, Nov. 1964, pp. 654-670.
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
M.D. Dake, New Engl.J.Med. 1994;331:1729-34.
Rashkind, M.D., William J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367.
Rösch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, approximately 1968.
Rashkind, M.D., William J., “Creationof an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174.
Porstmann, W., et al., “Der Verschluβ des Ductus Arterosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
Related Publications (1)
Number Date Country
20130310918 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61032851 Feb 2008 US
Continuations (1)
Number Date Country
Parent 12396378 Mar 2009 US
Child 13910348 US