Field of the Disclosure
This disclosure generally relates to expandable members with at least one wave inhibitor and methods of using the same.
Description of the Related Art
Members are installed in openings of workpieces for a variety of reasons, including improving fatigue performance, reinforcement, and installing components. One method of installing a member in the form of a bushing is the FORCEMATE® installation process developed by Fatigue Technology, Inc. The FORCEMATE® installation process is especially suitable for assemblies that will undergo repetitive load cycles and/or may be susceptible to accumulating fatigue damage. Various types of other installation processes can also be used to install bushings.
When a hole is cold expanded or a bushing is installed using the cold expansion method of drawing a tapered mandrel into and through the inner diameter (ID) of the bushing, the majority of material is displaced radially. However, a portion of material is also displaced longitudinally, in-line with the axis of the bushing and just ahead of the mandrel. The amount of material that is displaced longitudinally and the extent to which it is displaced is dependent on many factors including, for example, the thickness of the receiving structure, length of the bushing, the applied expansion, the mandrel taper angle, etc. As the mandrel travels along the length of the hole, the longitudinally displaced material ahead of the mandrel tends to accumulate. As the mandrel nears the exit end of the hole, this material often tends to dissipate in one of two ways. If the cold expansion tooling is configured such that the exit end of the hole or bushing is not constrained, the accumulated material often results in deformation at the exit surface of the bushing or exaggerated extrusion of the bushing. If the cold expansion tooling is configured such that the exit end of the hole or bushing is constrained (e.g., the exit end is in contact with the front of installation tooling), the accumulated material often results in exaggerated radial expansion near or at the exit end of the assembly and may also result in locally increased interference between the mandrel and the hole or the bushing and the receiving structure at the exit end as compared to the interference at the entry end of the assembly. A combination of both radial and axial deformation will often result. Whether resulting in deformation, exaggerated bushing growth, or imbalanced interference from end to end, the longitudinally displaced wave of material associated with a traditional cold expansion or bushing installation may be problematic for several reasons. The wave of material may cause over expansion of the exit side of the workpiece, resulting in unwanted crack initiation, crack growth, shear tears (e.g., shear tears emanating from an edge of the hole in which the bushing is installed), and other failure mechanisms associated with high strains, especially if the expansion exceeds the elongation properties of the workpiece. Accordingly, waves of material formed during expansion processes often decrease fatigue performance, load bearing capabilities, and the like.
When a hole of a workpiece is radially expanded, beneficial residual stresses may be induced in a region of the workpiece about the hole. Increased applied expansion at the exit end of the workpiece, attributable to the wave effect during cold expansion or bushing installation, will often move both a zone of material in compression and a balancing zone of material in tension that is positioned radially away from the edge of the hole. This may result in material in tension proximate to features where tension is undesirable, such as the outer edge of a highly loaded lug.
Installation of a bushing may also produce upset or distorted material at the exit side of the bushing because of the wave of material generating a bi-axial stress distribution in the workpiece along the length of the hole in which the bushing is installed. Bi-axial stress distributions often cause workpiece material at the exit side of the bushing to deform and bulge outwardly and, in some cases, may cause a “volcano” effect. It may be difficult to incorporate a workpiece with bulging surfaces into a load transfer joint because the bulging surfaces may separate faying surfaces in the joint.
If numerous bushings are installed in a parent component, localized deformations in the parent component may produce considerable overall distortion of the parent component. Cupping of regions of the parent component (e.g., an attachment lug or fitting) surrounding the bushings, cupping of bushing flanges (e.g., flanges at exit sides of bushings), or combinations thereof may be the result of a non-uniform stress state through the thicknesses of the parent component and/or bushing. A stress concentration in the workpiece at the exit side of the bushing often results in an outwardly bulging workpiece surface that causes cupping of a bushing flange.
When expanding a bushing into a composite material, a steady increase in applied expansion caused by displaced material building in front of a mandrel and the bi-axial strain induced by the bushing are often detrimental to the surrounding composite material. Non-uniform expansion and bi-axial strain, alone or in combination, often result in localized over expansion, delamination, and damage (e.g., micro-cracking) within the composite sub-structure.
The longitudinal length of a bushing may increase during the installation process such that an exit end of the bushing protrudes outwardly from the workpiece. For example, bushings that have relatively thick walls are well suited for achieving high retention forces. Unfortunately, extremely high axial forces are used to radially expand such thick-walled bushings. These forces, necessary for proper radial expansion, often result in significant lengthening of the bushing, as well as a significant amount of bushing material upset. Additionally, extrusion or growth of the bushing may not be uniform across a non-flanged end of the bushing where, for example, a majority of the growth occurs in a region adjacent to an inner surface of the bushing.
Some embodiments include a member adapted to prevent, diminish, limit, or substantially eliminate a traveling wave of material before the traveling wave reaches an exit side of the member and/or workpiece in which the member is installed. In some embodiments, the member has a transverse cross-sectional area that varies along at least a portion of its longitudinal length such that drawn material ahead of an expansion mandrel is inhibited by the portion of the member with the varying cross-sectional area. In some embodiments, the transverse cross-sectional area at or near an exit end of the member, i.e., the end at which the mandrel exits, can be decreased to minimize, limit, or substantially eliminate unwanted conditions (e.g., distortions or material upset of the workpiece, excessively high strains in the workpiece, lengthening of the member, and the like) caused, at least in part, by the wave of material.
In some embodiments, a section of an expandable member for expanding a hole of a workpiece has a profile that gradually decreases along an entire longitudinal length of the member or along only a portion of the longitudinal length. The profile can gradually decrease towards an exit end of the member such that an amount of displaced material of the member pushed ahead of an expandable mandrel is minimized or substantially eliminated during the installation process. The profile can also be selected to control expansion throughout the thickness of the workpiece. For example, the profile can be selected to achieve a general uniform residual stress zone between the entry and exit sides of the workpiece while avoiding excessively high residual stresses (e.g., compressive or tensile stresses) that may damage the workpiece.
In some embodiments, an expandable member includes a wave inhibitor dimensioned to accommodate a substantial portion or most of a wave of displaced material moving ahead of an expansion mandrel during radial expansion of the member. As used herein, the term “wave” is broadly construed to include, without limitation, a moving mass of material. When a member is radially expanded, it is compressed between a workpiece and a mandrel. The compression causes displacement of member material that moves away from the region of compression along a longitudinal axis of the member. The wave inhibitor, for example, can accommodate a sufficient amount of the wave such that a substantially uniform stress field is produced in a portion of the workpiece surrounding an opening in which the expandable member is installed.
The differences between residual stresses induced in the workpiece at a mandrel entry side and at a mandrel exit side can be minimized, limited, or substantially eliminated, thereby preventing or alleviating cracking (e.g., local surface cracking), tears (e.g., shear tears), and other types of damage often produces at an exit side using traditional techniques. Additionally, the expandable member can be installed without a significant amount of localized surface bulging and/or distortion (local or overall) of the workpiece.
In some embodiments, an expandable member for installation in an opening of a workpiece is provided. The expandable member comprises a member body having a first end, a second end opposite the first end, and a sidewall extending between the first end and the second end and defining a longitudinal passageway. The sidewall includes a longitudinally tapered section adjacent to the second end. The tapered section is dimensioned to accommodate displaced material of the member body moving along a longitudinal axis of the member body away from the first end towards the second end when an expansion mandrel moves through the longitudinal passageway to install the member in the opening. The tapered section is adapted to radially expand the workpiece while accommodating the displaced material so as to substantially prevent stress concentrations associated with the displaced material in a portion of the workpiece radially adjacent to the second end of the member body.
In some embodiments, a member installation includes a workpiece and a member. The workpiece includes a first opening, a second opening, and a hole extending between the first and second openings. The member is within the hole of the workpiece. The member has a first end, a second end, and a member body extending between the first end and the second end. The member body defines a longitudinal passageway. The member body further includes a wave inhibitor that has been radially expanded by an expansion mandrel so as to fix the member to the workpiece after the wave inhibitor at least diminishes an amount of material in a wave of material ahead of an expansion portion of the expansion mandrel such that a first stress state in a first portion of the workpiece surrounding the first opening is approximately equal to a second stress state in a second portion of the workpiece surrounding the second opening. The wave of material includes longitudinally displaced material of the member.
In some embodiments, a system includes a mandrel and an expandable member. The mandrel is coupleable to an installation tool and includes an expansion section. The expandable member includes a first end, a second end opposite the first end, and a tubular main body extending between the first end and the second end. The tubular main body defines a longitudinal passageway sized to receive the mandrel. The main body includes a tapered section adjacent to the second end. The tapered section is dimensioned to accommodate displaced material of the main body pushed along a longitudinal axis of the member by the expansion section of the mandrel moving along the passageway prior to the expansion section of the mandrel fully expanding the tapered section such that the displaced material and the tapered section are expanded together.
In some embodiments, a method of installing a member into a workpiece is provided. The method includes positioning a member in an opening of a workpiece. The member has a first end, a second end, and a tubular body extending between the first end and the second end. An expansion mandrel is moved through a passageway of the tubular body. The member is radially expanded causing longitudinally displaced material resulting from compression of the member such that the displaced material moves along a longitudinal axis of the member towards a tapered section of the member that accommodates the displaced material so as to prevent stress concentrations attributable to the displaced material in a region of the workpiece surrounding the second end of the member as both the tapered section and the displaced material expand into the region of the workpiece to form an interference fit or to cold expand the opening to induce fatigue enhancing stresses in the workpiece. In some embodiments, the displaced material is expanded into the region of the workpiece to both form the interference fit and cold expand the opening to induce fatigue enhancing stresses.
In certain embodiments, a radially expanded member can be removed from an opening to induce fatigue enhancing stresses in a workpiece without permanently installing the expanded member. Removing the radially expanded member from the opening may include allowing the radially expanded member to contract inwardly to provide a clearance fit between the member and a hole in the workpiece. The radially expanded member may contract as the mandrel is pulled out of the member.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. The shapes of various elements and angles may not be drawn to scale, and some of these elements may be arbitrarily enlarged and positioned to improve drawing legibility.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the art will understand that the disclosed embodiments may be practiced without these details.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.” It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the context clearly dictates otherwise.
The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed embodiments. The following description relates to, without limitation, expandable members, wave inhibitors, expansion mandrels, and installation systems. The terms “proximal” and “distal” are used to describe the illustrated embodiments and are used consistently with the description of non-limiting exemplary applications. The terms proximal and distal are used in reference to the user's body when the user operates an installation tool, unless the context clearly indicates otherwise.
Generally, an expandable member for installation in a workpiece can have at least one wave inhibitor for reducing, limiting, or substantially eliminating a traveling wave of material formed during the installation process. The wave inhibitor can be a section of the member having a profile with a gradually decreasing outer dimension, inner dimension, or both. When the member is expanded, the wave inhibitor can both expand an adjacent region of a workpiece and control the wave of material.
The wave inhibitor can extend along an entire longitudinal length of the member or along only a section of the longitudinal length. The wave inhibitor promotes substantially uniform radial expansion through the thickness of the workpiece, and in some embodiments, a resultant residual stress zone may be somewhat uniform from an entry side to an exit side of the member. Residual compressive stresses or residual tensile stresses in the workpiece can be kept at or below a desired level to, for example, avoid exceeding a yield strength of the workpiece material, as well as to decrease or substantially eliminate surface upset, localized distortions, or overall distortion of the workpiece.
If the workpiece is made of a composite material, excessive interlaminar shear stresses in the composite matrix, through the bore of the hole, that are caused by the wave effect during expansion can be controlled to reduce the occurrence of sub-surface or surface delamination. Delamination may or may not be detectable (e.g., visually detectable) and may lead to premature failure of the assembly. The expandable members disclosed herein may be installed without causing delamination often associated with traditional members.
The illustrated member 140 of
With continued reference to
The installation tool 104 can be driven electrically, hydraulically, pneumatically, or by any other suitable drive system. In some embodiments, the main body 124 houses a drive system capable of driving the mandrel 120, preferably along a predetermined path (e.g., a line of action), in a proximal direction and/or distal direction. A pair of fluid lines 130, 132 provides pressurized fluid (e.g., pressurized gas, liquid, or combinations thereof) to a piston drive system that actuates the mandrel 120. One of ordinary skill in the art can select the type of drive system used to achieve the desired motion of the mandrel 120.
The mandrel 120 comprises an elongated body configured to radially expand the member 140 when the mandrel 120 is moved axially through a passageway in the member 140. As used herein, the term “mandrel” is a broad term and includes, but is not limited to, an elongated component having at least one tapered portion or expansion portion used to expand a member. In some embodiments, a gradually tapered portion of a mandrel can be used to radially expands an expandable member so as to produce an interference fit between the expandable member and a workpiece. Mandrels can have a one-piece or multi-piece construction. In some embodiments, the mandrel 120 has a monolithically formed body. In other embodiments, the mandrel 120 has a multi-piece construction. For example, the mandrel 120 can be a split mandrel.
As used herein, the term “member” includes, but is not limited to, a bushing (including a one-piece or multi-piece bushing), liner, tube, sleeve (including a split sleeve), fastener, structural expandable fastener (e.g., an expandable fastener that is incorporated into a structural workpiece), and other structures that are suitable for coupling to a workpiece. An expandable member can be expanded from a first configuration to a second configuration. In some embodiments, for example, the expandable member 140 is a bushing that can be radially expanded in order to form an interference fit with the illustrated through-hole 150. The term expandable member refers to a member in a pre-expanded state and a post-expanded state, unless the context clearly dictates otherwise. Various types of expansion processes can be employed to expand expandable members. In a cold expansion process, for example, the expandable member 140 is radially expanded without appreciably raising its temperature to produce residual stresses in the workpiece 160 and/or expandable member 140 to enhance fatigue performance. The residual stresses are preferably compressive stresses that can minimize, limit, inhibit, or prevent crack initiation and/or crack propagation.
The expandable member 140 of
The sidewall 176 of
The section 200 is a relatively thick section of the sidewall 176, and the tapered section 142 is a narrowed section of the sidewall 176. The tapered section 142 has an average transverse cross-sectional area along its longitudinal length that is less than or equal to an average cross-sectional area of the section 200. As shown in
Referring to
The illustrated transition outer dimension 214 of
With continued reference to
The expandable member 140 of
Referring to
The expansion mandrel 120 can be inserted into and through the expandable member 140 of
The expansion section 250, illustrated as a tapered section, continues to expand the expandable member 140 and pushes the wave of displaced material away form the first end 172 towards the second side 222. In this manner, the wave 260 (
Of course, the taper of the expansion section 250 can be shallower than the taper illustrated in
As the expansion section 250 in
After the mandrel 120 moves out of the second end 174 of the expandable member 140, the installation tool 104 and the mandrel 120 can be removed from the installation 235 (shown in
With continued reference to
The tapered section 142 can be adapted to reduce or limit any volcano effect of the expandable member 140 and/or of a region 300 of the workpiece 160 immediately radially adjacent the second end 174, stress concentrations at the region 300, cupping, and/or distortion of the workpiece, as well as other mechanisms associated with overexpansion, such as, without limitation, unwanted cracking and/or induced shear tears. Stress concentrations can be highly localized stresses that damage the workpiece 160. The tapered section 142 can be employed to prevent the formation of excessively high stress concentrations.
If the workpiece 160 is made of a composite material, such as a composite laminate, the compressive stresses in the first section 310 can be sufficiently close to the compressive stresses in the second section 312 to minimize or limit delamination. For example, the compressive stress can be close enough to one another to prevent reaching the ultimate stress (e.g., ultimate shear stresses) for the composite. The expandable member 140 of
If the workpiece 160 is made, in whole or in part, of a composite material, the tapered section 142 can be adapted to avoid excessive interlaminar shear stresses attributable to the wave effect during the expansion process in a region of the composite matrix along the length of the hole 150. In this manner, problems associated with the wave effect can be alleviated or avoided altogether. Because many types of delamination may or may not be detectable, delamination may be difficult to identify and may lead to premature failure of the workpiece 160. The expandable member 140 can be installed to significantly improve the working life of the workpiece 160 as compared to conventional members, even though visual inspection of a workpiece with a conventional member may appear similar to the workpiece 160.
The composite materials can include, without limitation, reinforcing elements (e.g., fibers, particles, and the like), fillers, binders, matrix, or the like. Wood, fiberglass, polymers, plastics, metals, ceramics, glass, and the like can be combined to produce the workpiece 160 with properties that are different from the properties of its constituents individually. In some embodiments, the workpiece 160 can comprise a fiber-reinforced composite, particle-reinforced composite, laminate (e.g., a stack of laminas), or combinations thereof. The matrix of the reinforced composites can be made of metal, polymers, ceramics, or other suitable materials for encapsulating other reinforcement features. The laminates can be unidirectional laminates, cross-ply laminates, angle-ply laminates, symmetric laminates, or the like.
Composites may have relatively low strain capabilities as compared to metals. Expansion of the expandable member 140 can cause compressive loading in the composite material surrounding the opening 150. If the compressive loading is too high, fibers in a fiber-reinforced composite material can buckle, which in turn affects the material's properties. Micro-buckling of fibers may significantly reduce the water resistance of the composite material because buckled fibers may cause micro-cracking of the matrix surrounding the fibers. Splitting due to Poisson's ratio effect, matrix yielding, fiber splitting, debonding (e.g., fiber debonding, interlamina debonding, or the like), and other failure modes are often caused by compressive loading or high strains. Strains can be kept at or below a desired level to prevent these types of failure modes when installing the expandable member 140.
The wave inhibitors disclosed herein can extend along a portion of a longitudinal length of a member or along substantially all of the longitudinal length of a member.
Referring to
The expandable members can have a one-piece or multi-piece construction. In some embodiments, expandable members can include a plurality of separate components, wherein at least one of the components has one or more tapered sections.
If the flange 620 becomes spaced from the surface 622, various types of post installation processes can be performed to bring the flange 620 against the surface 622. As noted above, the tapered section 604 of
The techniques and methods disclosed herein can also be used to expand holes without permanently installing an expandable member. After the expansion process, the expanded member can be removed from the workpiece. To allow convenient removal, the member can have a split tubular body. For example, the expandable member 140 in
All patents and publications mentioned herein are hereby incorporated by reference in their entireties. Except as described herein, the embodiments, features, systems, devices, materials, methods and techniques described herein may, in some embodiments, be similar to any one or more of the embodiments, features, systems, devices, materials, methods and techniques described in U.S. Pat. Nos. 3,566,662; 3,892,121; 4,187,708; 4,423,619; 4,425,780; 4,471,643; 4,524,600; 4,557,033; 4,809,420; 4,885,829; 4,934,170; 5,083,363; 5,096,349; 5,405,228; 5,245,743; 5,103,548; 5,127,254; 5,305,627; 5,341,559; 5,380,136; and 5,433,100; and in U.S. patent application Ser. Nos. 09/603,857; 10/726,809; 10/619,226; and 10/633,294, and in Provisional Patent Application No. 61/034,843, which are incorporated herein by reference. In addition, the embodiments, features, systems, devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in the incorporated U.S. patents and patent applications.
The articles disclosed herein may be formed through any suitable means. For example, the articles can be formed through injection molding, machining, and other methods disclosed herein. The various methods and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments disclosed herein. Similarly, the various features and steps discussed above, as well as other known equivalents for each such feature or step, can be mixed and matched by one of ordinary skill in this art to perform methods in accordance with principles described herein. Additionally, the methods which are described and illustrated herein are not limited to the exact sequence of acts described, nor are they necessarily limited to the practice of all of the acts set forth. Other sequences of events or acts, or less than all of the events, or simultaneous occurrence of the events, may be utilized in practicing the disclosed embodiments.
Although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/034,843 filed Mar. 7, 2008. This provisional application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
295593 | Thayer | Mar 1884 | A |
810430 | Pfluger et al. | Jan 1906 | A |
1081496 | Gillmor | Dec 1913 | A |
1106964 | Pahler | Aug 1914 | A |
1226090 | Ludlum | May 1917 | A |
1297142 | Gibbons | Mar 1919 | A |
1480298 | Pearson | Jan 1924 | A |
1881867 | Nelson | Oct 1932 | A |
1979686 | Hall et al. | Nov 1934 | A |
2092358 | Robertson | Sep 1937 | A |
2146461 | Bettington | Feb 1939 | A |
2150361 | Chobert | Mar 1939 | A |
2188596 | Hobert | Jan 1940 | A |
2275451 | Maxwell | Mar 1942 | A |
2282711 | Eklund | May 1942 | A |
2357123 | Maxwell | Aug 1944 | A |
2385294 | Lowy | Sep 1945 | A |
2405399 | Bugg et al. | Aug 1946 | A |
2430554 | Bugg et al. | Nov 1947 | A |
2433425 | Burckle | Dec 1947 | A |
2468985 | Krotz | May 1949 | A |
2501567 | Huck | Mar 1950 | A |
2528180 | Roehl | Oct 1950 | A |
2538623 | Keating | Jan 1951 | A |
2583719 | White | Jan 1952 | A |
2608751 | Hutton | Sep 1952 | A |
2661182 | Kipp | Dec 1953 | A |
2672175 | Howard | Mar 1954 | A |
2695446 | Meyer | Nov 1954 | A |
2700172 | Rohe | Jan 1955 | A |
2808643 | Weatherhead, Jr. | Oct 1957 | A |
2887003 | Brilmyer | May 1959 | A |
2943667 | Ewing et al. | Jul 1960 | A |
3107572 | Orloff | Oct 1963 | A |
3128999 | Schmitt | Apr 1964 | A |
3129630 | Wing et al. | Apr 1964 | A |
3137887 | Mannino et al. | Jun 1964 | A |
3149860 | Hallesy | Sep 1964 | A |
3164054 | Biesecker | Jan 1965 | A |
3222977 | Vaughn | Dec 1965 | A |
3244034 | Severdia | Apr 1966 | A |
3252493 | Smith | May 1966 | A |
3262353 | Waeltz et al. | Jul 1966 | A |
3290770 | Silverman et al. | Dec 1966 | A |
3345730 | Laverty | Oct 1967 | A |
3358492 | Richter | Dec 1967 | A |
3377907 | Hurd | Apr 1968 | A |
3399435 | Ackerman | Sep 1968 | A |
3434746 | Watts | Mar 1969 | A |
3443474 | Blakeley et al. | May 1969 | A |
3498648 | Hallesy | Mar 1970 | A |
3537163 | Steidl | Nov 1970 | A |
3566662 | Champoux | Mar 1971 | A |
3578367 | Harvill et al. | May 1971 | A |
3596948 | Spoehr | Aug 1971 | A |
3601771 | Dozier | Aug 1971 | A |
3643544 | Massa | Feb 1972 | A |
3657956 | Bradley et al. | Apr 1972 | A |
3674292 | Demler, Sr. | Jul 1972 | A |
3677684 | Platz | Jul 1972 | A |
3678535 | Charles | Jul 1972 | A |
3693247 | Brown | Sep 1972 | A |
3695324 | Gulistan | Oct 1972 | A |
3763541 | Jaffe | Oct 1973 | A |
3765078 | Gulistan | Oct 1973 | A |
3778090 | Tobin | Dec 1973 | A |
3787945 | Pasek et al. | Jan 1974 | A |
3820297 | Hurd | Jun 1974 | A |
3835525 | King, Jr. | Sep 1974 | A |
3835688 | King, Jr. | Sep 1974 | A |
3837208 | Davis et al. | Sep 1974 | A |
3875649 | King, Jr. | Apr 1975 | A |
3878760 | Jeal et al. | Apr 1975 | A |
3879980 | King, Jr. | Apr 1975 | A |
3892121 | Champoux et al. | Jul 1975 | A |
3895409 | Kwatonowski | Jul 1975 | A |
3915052 | Ruhl | Oct 1975 | A |
3934325 | Jaffe | Jan 1976 | A |
3943748 | King, Jr. | Mar 1976 | A |
3949535 | King, Jr. | Apr 1976 | A |
3997193 | Tsuda et al. | Dec 1976 | A |
4003288 | Jeal | Jan 1977 | A |
4044591 | Powderley | Aug 1977 | A |
4089247 | Dahl et al. | May 1978 | A |
4142439 | Landt | Mar 1979 | A |
4143580 | Luhm | Mar 1979 | A |
4157675 | King, Jr. | Jun 1979 | A |
4164807 | King, Jr. | Aug 1979 | A |
4168650 | Dahl et al. | Sep 1979 | A |
4186787 | Husain | Feb 1980 | A |
4187708 | Champoux | Feb 1980 | A |
4230017 | Angelosanto | Oct 1980 | A |
4237768 | Volkmann | Dec 1980 | A |
4249786 | Mahoff | Feb 1981 | A |
4295691 | Rubenthaler | Oct 1981 | A |
4355612 | Luksch | Oct 1982 | A |
4364697 | Binns | Dec 1982 | A |
4370081 | Briles | Jan 1983 | A |
4371154 | Winbigler | Feb 1983 | A |
4386515 | Starke | Jun 1983 | A |
4397061 | Kanzaka | Aug 1983 | A |
4405256 | King, Jr. | Sep 1983 | A |
4423619 | Champoux | Jan 1984 | A |
4425780 | Champoux | Jan 1984 | A |
4447944 | Mohrman | May 1984 | A |
4457652 | Pratt | Jul 1984 | A |
4471643 | Champoux et al. | Sep 1984 | A |
4482089 | Lindahl et al. | Nov 1984 | A |
4491358 | Choung | Jan 1985 | A |
4494398 | Svoboda | Jan 1985 | A |
4522378 | Nelson | Jun 1985 | A |
4524600 | Champoux et al. | Jun 1985 | A |
4530527 | Holmberg | Jul 1985 | A |
4557033 | Champoux | Dec 1985 | A |
4557650 | Molina | Dec 1985 | A |
4579491 | Kull | Apr 1986 | A |
4583388 | Hogenhout | Apr 1986 | A |
4595324 | Sadri | Jun 1986 | A |
4597282 | Hogenhout | Jul 1986 | A |
4609315 | Briles | Sep 1986 | A |
4627775 | Dixon | Dec 1986 | A |
4640479 | Shely et al. | Feb 1987 | A |
4659271 | Pratt et al. | Apr 1987 | A |
4659272 | Pratt | Apr 1987 | A |
4665732 | Hogenhout | May 1987 | A |
4699212 | Andersson et al. | Oct 1987 | A |
4699522 | Jeal | Oct 1987 | A |
4702655 | Kendall | Oct 1987 | A |
4732518 | Toosky | Mar 1988 | A |
4752169 | Pratt | Jun 1988 | A |
4755904 | Brick | Jul 1988 | A |
4759237 | Fauchet et al. | Jul 1988 | A |
4787793 | Harris | Nov 1988 | A |
4809420 | Landy et al. | Mar 1989 | A |
4832548 | Strobel | May 1989 | A |
4869091 | Shemeta | Sep 1989 | A |
4872332 | Potzas | Oct 1989 | A |
4877363 | Williamson et al. | Oct 1989 | A |
4885829 | Landy | Dec 1989 | A |
4950205 | Sadri | Feb 1990 | A |
4905766 | Dietz et al. | Mar 1990 | A |
4934038 | Caudill | Jun 1990 | A |
4934170 | Easterbrook et al. | Jun 1990 | A |
4900115 | Sadri | Aug 1990 | A |
4967463 | Pratt | Nov 1990 | A |
4985979 | Speakman | Jan 1991 | A |
4999896 | Mangus et al. | Mar 1991 | A |
5025128 | Derbyshire | Jun 1991 | A |
5038596 | Noonan et al. | Aug 1991 | A |
5006179 | Pratt | Nov 1991 | A |
5069586 | Casey | Dec 1991 | A |
5083363 | Ransom et al. | Jan 1992 | A |
5093957 | Do | Mar 1992 | A |
5096349 | Landy et al. | Mar 1992 | A |
5103548 | Reid et al. | Apr 1992 | A |
5110163 | Benson et al. | May 1992 | A |
5123792 | Strobel | Jun 1992 | A |
5127254 | Copple et al. | Jul 1992 | A |
5129253 | Austin et al. | Jul 1992 | A |
5178502 | Sadri | Jan 1993 | A |
5207461 | Lasko | May 1993 | A |
5213460 | Sadri et al. | May 1993 | A |
5218854 | Jarzebowicz et al. | Jun 1993 | A |
5238342 | Stencel | Aug 1993 | A |
5245743 | Landy et al. | Sep 1993 | A |
5253773 | Choma et al. | Oct 1993 | A |
5256017 | Smirnov et al. | Oct 1993 | A |
5305627 | Quincey et al. | Apr 1994 | A |
5341559 | Reid et al. | Aug 1994 | A |
5350266 | Espey et al. | Sep 1994 | A |
5380111 | Westrom | Jan 1995 | A |
5380136 | Copple et al. | Jan 1995 | A |
5390808 | Choma et al. | Feb 1995 | A |
5399052 | Volkmann et al. | Mar 1995 | A |
5405228 | Reid et al. | Apr 1995 | A |
5433100 | Easterbrook et al. | Jul 1995 | A |
5466016 | Briody et al. | Nov 1995 | A |
5468104 | Reid et al. | Nov 1995 | A |
5478122 | Seabra | Dec 1995 | A |
5496140 | Gossmann et al. | Mar 1996 | A |
5498110 | Stencel et al. | Mar 1996 | A |
5607194 | Ridenour | Mar 1997 | A |
5609434 | Yehezkieli et al. | Mar 1997 | A |
5632582 | Gauron | May 1997 | A |
5634751 | Stencel et al. | Jun 1997 | A |
5666710 | Weber et al. | Sep 1997 | A |
5702215 | Li | Dec 1997 | A |
5713611 | Kurimoto et al. | Feb 1998 | A |
5722312 | Kristensen | Mar 1998 | A |
5806173 | Honma et al. | Sep 1998 | A |
5813808 | Wu | Sep 1998 | A |
5816761 | Cassatt et al. | Oct 1998 | A |
5860213 | Knudson | Jan 1999 | A |
5885318 | Shimizu et al. | Mar 1999 | A |
5943898 | Kuo | Aug 1999 | A |
5947326 | O'Hern et al. | Sep 1999 | A |
5947667 | Cassatt et al. | Sep 1999 | A |
6036418 | Stencel et al. | Mar 2000 | A |
6058562 | Satou et al. | May 2000 | A |
6077009 | Hazelman | Jun 2000 | A |
6077010 | Reid et al. | Jun 2000 | A |
6131964 | Sareshwala | Oct 2000 | A |
6183180 | Copple et al. | Feb 2001 | B1 |
6217082 | Orcutt et al. | Apr 2001 | B1 |
6266991 | Kuo | Jul 2001 | B1 |
6289577 | Tanaka et al. | Sep 2001 | B1 |
6325582 | Sadri et al. | Dec 2001 | B1 |
6328513 | Niwa et al. | Dec 2001 | B1 |
6347663 | Hunzinger et al. | Feb 2002 | B1 |
6487767 | Reid et al. | Dec 2002 | B1 |
6488460 | Smith et al. | Dec 2002 | B1 |
6499926 | Keener | Dec 2002 | B2 |
6537005 | Denham | Mar 2003 | B1 |
6623048 | Castel et al. | Sep 2003 | B2 |
6651301 | Liu | Nov 2003 | B1 |
6705149 | Cobzaru et al. | Mar 2004 | B2 |
6761380 | Pachciarz et al. | Jul 2004 | B2 |
6773039 | Muenster et al. | Aug 2004 | B2 |
6792657 | Reid et al. | Sep 2004 | B2 |
6796765 | Kosel et al. | Sep 2004 | B2 |
6826820 | Denham et al. | Dec 2004 | B2 |
RE38788 | Satou et al. | Sep 2005 | E |
6990722 | Reid et al. | Jan 2006 | B2 |
7024908 | Poast et al. | Apr 2006 | B2 |
7024909 | Cobzaru et al. | Apr 2006 | B2 |
7047596 | Sucic et al. | May 2006 | B2 |
7059816 | Toosky | Jun 2006 | B2 |
7100264 | Skinner et al. | Sep 2006 | B2 |
7127792 | Wakamori et al. | Oct 2006 | B2 |
7156051 | Lorton et al. | Jan 2007 | B2 |
7273338 | Summerlin | Sep 2007 | B2 |
7303366 | Smith | Dec 2007 | B2 |
7325796 | Moreland | Feb 2008 | B2 |
7375277 | Skinner et al. | May 2008 | B1 |
7406777 | Grover et al. | Aug 2008 | B2 |
7448652 | Poast et al. | Nov 2008 | B2 |
7509829 | Johnson | Mar 2009 | B2 |
7575404 | Toosky et al. | Aug 2009 | B2 |
7617712 | Glenn | Nov 2009 | B2 |
7641430 | Johnson et al. | Jan 2010 | B2 |
7695226 | March et al. | Apr 2010 | B2 |
7926318 | Glenn | Apr 2011 | B2 |
7926319 | Johnson | Apr 2011 | B2 |
7946628 | Poast et al. | May 2011 | B2 |
8061178 | Glenn | Nov 2011 | B2 |
8069699 | Glenn et al. | Dec 2011 | B2 |
8117885 | Glenn | Feb 2012 | B2 |
8191395 | Glenn | Jun 2012 | B2 |
8297897 | Auriol et al. | Oct 2012 | B2 |
8312606 | Reid et al. | Nov 2012 | B2 |
8322015 | Pratt et al. | Dec 2012 | B2 |
8348566 | Pratt | Jan 2013 | B2 |
8353193 | Johnson | Jan 2013 | B2 |
8387436 | Glenn | Mar 2013 | B2 |
8402806 | Glenn et al. | Mar 2013 | B2 |
8506222 | Reid et al. | Aug 2013 | B2 |
20030110618 | Magnuson | Jun 2003 | A1 |
20040111864 | Skinner et al. | Jun 2004 | A1 |
20040213492 | Kim et al. | Oct 2004 | A1 |
20050000081 | Reid et al. | Jan 2005 | A1 |
20050005669 | Poast et al. | Jan 2005 | A1 |
20050025601 | Poast et al. | Feb 2005 | A1 |
20050262682 | Grover et al. | Dec 2005 | A1 |
20060045649 | Johnson et al. | Mar 2006 | A1 |
20060251490 | Kleinman et al. | Nov 2006 | A1 |
20070048107 | Johnson et al. | Mar 2007 | A1 |
20070110541 | Rawlins et al. | May 2007 | A1 |
20070224016 | Toosky et al. | Sep 2007 | A1 |
20070266756 | Shuster et al. | Nov 2007 | A1 |
20070289351 | Glenn | Dec 2007 | A1 |
20080005887 | Glenn et al. | Jan 2008 | A1 |
20080034831 | Glenn | Feb 2008 | A1 |
20080066518 | Glenn et al. | Mar 2008 | A1 |
20080250603 | Skinner et al. | Oct 2008 | A1 |
20090304315 | Johnson | Dec 2009 | A1 |
20100000280 | Reid et al. | Jan 2010 | A1 |
20100260572 | Wehrmeister et al. | Oct 2010 | A1 |
20110150599 | Bakken et al. | Jun 2011 | A1 |
20110182689 | Avetisian | Jul 2011 | A1 |
20120304577 | Reid et al. | Dec 2012 | A1 |
20120317787 | Ross et al. | Dec 2012 | A1 |
20130192331 | Ross et al. | Aug 2013 | A1 |
20130200543 | Ross et al. | Aug 2013 | A1 |
20130204422 | Ross et al. | Aug 2013 | A1 |
20130239399 | Reid et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2007204888 | Jul 2007 | AU |
PI0706509-4 | Mar 2011 | BR |
1846092 | Oct 2006 | CN |
2203217 | Jul 1973 | DE |
33 01 849 | Jul 1984 | DE |
3545554 | Jul 1987 | DE |
89 01 317 | Mar 1989 | DE |
0 054 592 | Jun 1982 | EP |
0 140 516 | May 1985 | EP |
0 248 122 | Dec 1987 | EP |
0581385 | May 1997 | EP |
0 785 366 | Jul 1997 | EP |
0643231 | Dec 1998 | EP |
0 891 007 | Jan 1999 | EP |
0696686 | Jul 1999 | EP |
0 945 919 | Sep 1999 | EP |
1166951 | Jan 2002 | EP |
1 202 458 | May 2002 | EP |
1525952 | Apr 2005 | EP |
1061276 | Sep 2005 | EP |
1611976 | Jan 2006 | EP |
1624202 | Feb 2006 | EP |
1032769 | May 2006 | EP |
1779964 | May 2007 | EP |
1803526 | Jul 2007 | EP |
1 872 895 | Jan 2008 | EP |
1 903 221 | Mar 2008 | EP |
1751432 | Jul 2008 | EP |
1893875 | Mar 2011 | EP |
1280621 | Oct 2011 | EP |
2388104 | Nov 2011 | EP |
2019739 | Dec 2011 | EP |
1644142 | Oct 2012 | EP |
2568183 | Mar 2013 | EP |
2061626 | Apr 2013 | EP |
1651365 | Jun 2013 | EP |
2645052 | Oct 1990 | FR |
593607 | Oct 1947 | GB |
1395009 | May 1975 | GB |
2 239 917 | Jul 1991 | GB |
57137031 | Aug 1982 | JP |
60238046 | Nov 1985 | JP |
61157846 | Jul 1986 | JP |
09-072097 | Mar 1997 | JP |
9-99334 | Apr 1997 | JP |
10-274366 | Oct 1998 | JP |
10-299735 | Nov 1998 | JP |
2001-177964 | Jun 2001 | JP |
2004-176254 | Jun 2004 | JP |
2007-500828 | Jan 2007 | JP |
2009-535218 | Oct 2009 | JP |
2009-535577 | Oct 2009 | JP |
2011-513672 | Apr 2011 | JP |
10-2009-0064401 | Jun 2009 | KR |
632463 | Nov 1978 | SU |
8400120 | Jan 1984 | WO |
198701418 | Mar 1987 | WO |
9111273 | Aug 1991 | WO |
199927262 | Jun 1999 | WO |
00 28221 | May 2000 | WO |
WO02059489 | Aug 2002 | WO |
2006026413 | Mar 2006 | WO |
2006132936 | Dec 2006 | WO |
2007082077 | Jul 2007 | WO |
2007121932 | Nov 2007 | WO |
2008144440 | Nov 2008 | WO |
2009052325 | Apr 2009 | WO |
2009111745 | Sep 2009 | WO |
2010009442 | Jan 2010 | WO |
2010118366 | Oct 2010 | WO |
2011084624 | Jul 2011 | WO |
2012167136 | Dec 2012 | WO |
2012174215 | Dec 2012 | WO |
2013116111 | Aug 2013 | WO |
Entry |
---|
Merriam Webster's Collegiate Dictionary, Tenth Edition, 1997, p. 154. |
Callinan et al., “Analysis of Fatigue Crack Growth from Cold-expanded/interference Fitted Stop Drilled Holes,” DSTO-TR-0704, Airframes and Engines Division, Aeronautical and Maritime Research Laboratory, Melbourne, Australia, Jul. 1998, 39 pages. |
Communication pursuant to Article 94(3) EPC, dated May 4, 2016, for European Application No. 09 718 324.8-1702, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20100000280 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61034843 | Mar 2008 | US |