Expandable metal displacement plug

Information

  • Patent Grant
  • 12338705
  • Patent Number
    12,338,705
  • Date Filed
    Friday, August 6, 2021
    4 years ago
  • Date Issued
    Tuesday, June 24, 2025
    4 months ago
Abstract
Provided, in at least one aspect, is a displacement plug for us in a wellbore tubular, a method for entering a well system, and a related well system. The displacement plug, in one aspect, includes a plug body for landing in a wellbore tubular, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular. The displacement plug, in one or more aspects, additionally includes one or more displacement features engaged with the plug body for displacing the plug body downhole.
Description
BACKGROUND

In cementing casing or liners (both referred to hereinafter as “casing”) in well bores (a process known as primary cementing), a cement slurry is pumped downwardly through the casing to be cemented and then upwardly into the annulus between the casing and the walls of the well bore. Upon setting, the cement bonds the casing to the walls of the well bore and restricts fluid movement between formations or zones penetrated by the well bore.


Prior to a primary cementing operation, the casing is suspended in a well bore and both the casing and the well bore are usually filled with drilling fluid. In order to reduce contamination of the cement slurry at the interface between it and the drilling fluid, a displacement plug for sealingly engaging the inner surfaces of the casing is pumped ahead of the cement slurry whereby the cement slurry is separated from the drilling fluid as the cement slurry and drilling fluid ahead of it are displaced through the casing. The displacement plug wipes the drilling fluid from the walls of the casing and maintains a separation between the cement slurry and drilling fluid until the plug lands on a float collar attached near the bottom end of the casing.


The displacement plug, which precedes the cement slurry and separates it from drilling fluid is referred to herein as the “bottom plug.” When the predetermined required quantity of the cement slurry has been pumped into the casing, a second displacement plug, referred to herein as the “top plug”, is released into the casing to separate the cement slurry from additional drilling fluid or other displacement fluid used to displace the cement slurry. In certain situations, the bottom plug is not used, but the top plug is.


When the bottom plug lands on the float collar attached to the casing, a valve mechanism opens which allows the cement slurry to proceed through the plug and the float collar upwardly into the annular space between the casing and the well bore. The design of the top plug is such that when it lands on the bottom plug it shuts off fluid flow through the cementing plugs which prevents the displacement fluid from entering the annulus. After the top plug lands, the pumping of the displacement fluid into the casing is often continued whereby the casing is pressured up and the casing and associated equipment including the pump are pressure tested for leaks or other defects.





BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a well system including an exemplary operating environment that the apparatuses, systems and methods disclosed herein may be employed;



FIGS. 2A and 2B illustrate a displacement plug for use in a wellbore tubular designed and manufactured according to one or more embodiments of the disclosure;



FIG. 3 illustrates is one embodiment of a displacement plug designed and manufactured according to one or more embodiments of the disclosure within a wellbore tubular;



FIG. 4 illustrates the displacement plug of FIG. 3 after it has expanded to form an expanded displacement plug;



FIG. 5 illustrates an alternative embodiment of a displacement plug for use in a wellbore tubular designed and manufactured according to one or more embodiments of the disclosure;



FIG. 6 illustrates an alternative embodiment of a displacement plug for use in a wellbore tubular designed and manufactured according to one or more embodiments of the disclosure;



FIG. 7 illustrates an enlarged view of the displacement plug and the wellbore tubular of FIG. 6, clearly depicting the one or more plug member; and



FIG. 8 illustrates the displacement plug and the wellbore tubular of FIG. 7 after the one or more plug member have expanded to seal the flow path.





DETAILED DESCRIPTION

In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms.


Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.


Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.


Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally toward the surface of the ground; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of a well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.


Referring to FIG. 1, depicted is a well system 100 including an exemplary operating environment that the apparatuses, systems and methods disclosed herein may be employed. For example, the well system 100 could include a pre or post expansion displacement plug 180 according to any of the embodiments, aspects, applications, variations, designs, etc. disclosed in the following paragraphs. As depicted, the well system 100 includes a workover and/or drilling rig 110 that is positioned above the earth's surface 115 and extends over and around a wellbore 120 that penetrates a subterranean formation 130 for the purpose of recovering hydrocarbons. The subterranean formation 130 may be located below exposed earth, as shown, as well as areas below earth covered by water, such as ocean or fresh water. As those skilled in the art appreciate, the wellbore 120 may be fully cased, partially cased, or an open hole wellbore. In the illustrated embodiment of FIG. 1, the wellbore 120 is partially cased, and thus includes a cased region 140 and an open hole region 145.


The wellbore 120 may be drilled into the subterranean formation 130 using any suitable drilling technique. In the example illustrated in FIG. 1, the wellbore 120 extends substantially vertically away from the earth's surface 115. Notwithstanding, in other embodiments the wellbore 120 could include a vertical wellbore portion, deviate from vertical relative to the earth's surface 115 over a deviated wellbore portion, and then transition to a horizontal wellbore portion. In alternative operating environments, all or portions of a wellbore 120 may be vertical, deviated at any suitable angle, horizontal, and/or curved. The wellbore 120 may be a new wellbore, an existing wellbore, a straight wellbore, an extended reach wellbore, a sidetracked wellbore, a multi-lateral wellbore, or any other type of wellbore for drilling, completing, and/or the production of one or more zones. Further, the wellbore 120 may be used for both producing wells and injection wells.


In accordance with the disclosure, the wellbore 120 may include a wellbore tubular 150 (e.g., wellbore tubulars 150a, 150b). The wellbore tubular 150a, in the illustrated embodiment, is wellbore casing. The wellbore tubular 150b, in the illustrated embodiment, is a liner. Nevertheless, the present disclosure should not be limited to any specific wellbore tubular. In particular, the wellbore tubular may include any tubular having an annulus that surrounds it, as might be found with a concentric set of wellbore tubulars. The wellbore tubular 150a, in the illustrated embodiment of FIG. 1, is held in place by cement 160a in the cased region 140. The wellbore tubular 150b, in the illustrated embodiment of FIG. 1, is held in place by cement 160b in the open hole region 145.


In the illustrated embodiment of FIG. 1, a shoe track 170 has been positioned at a lower end of the wellbore tubular 150. The shoe track 170, in one embodiment, includes a landing collar 172, a float collar 174, and a float shoe 176. Nevertheless, other designs for shoe tracks are within the scope of the disclosure.


In the illustrated embodiment, the displacement plug 180 has landed within the shoe track 170, and more specifically within the landing collar 172 of the shoe track. The displacement plug 180, pre-expansion, includes a plug body for landing in the wellbore tubular, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular, and one or more displacement features engaged with the plug body for displacing the plug body downhole. The displacement plug 180, post-expansion, includes a cement plug body locked in the wellbore tubular, and one or more displacement features engaged with the cement plug body.


As briefly indicated above, the expandable metal (e.g., in at least on embodiment) automatically, and without intervention, expands in response to hydrolysis to lock the displacement plug 180 in place. Accordingly, what results are one or more expanded metal sections of the displacement plug 180. The term expandable metal, as used herein, refers to the expandable metal in a pre-expansion form. Similarly, the term expanded metal, as used herein, refers to the resulting expanded metal after the expandable metal has been subjected to reactive fluid, as discussed below. Additionally, the term partially expanded metal, as used herein, refers to the resulting expanded metal after a portion of the expandable metal has been subjected to reactive fluid, as discussed below.


The expanded metal, in accordance with one or more aspects of the disclosure, comprises a metal that has expanded in response to hydrolysis. In certain embodiments, the expanded metal includes residual unreacted metal, such as when it is partially expanded metal. For example, in certain embodiments the expanded metal is intentionally designed to include the residual unreacted metal. The residual unreacted metal has the benefit of allowing the expanded metal to self-heal if cracks or other anomalies subsequently arise, or for example to accommodate changes in the tubular or mandrel diameter due to variations in temperature and/or pressure. Nevertheless, other embodiments may exist wherein no residual unreacted metal exists in the expanded metal.


The expandable metal, in some embodiments, may be described as expanding to a cement like material. In other words, the expandable metal goes from metal to micron-scale particles and then these particles expand and lock together to, in essence, seal two or more surfaces together. The reaction may, in certain embodiments, occur in less than 2 days in a reactive fluid and in certain temperatures. Nevertheless, the time of reaction may vary depending on the reactive fluid, the expandable metal used, the downhole temperature, and surface-area-to-volume ratio (SA:V) of the expandable metal.


In some embodiments, the reactive fluid may be a brine solution such as may be produced during well completion activities, and in other embodiments, the reactive fluid may be one of the additional solutions discussed herein, including drilling fluid and/or cement slurry. The metal, pre-expansion, is electrically conductive in certain embodiments. The metal may be machined to any specific size/shape, extruded, formed, cast or other conventional ways to get the desired shape of a metal, as will be discussed in greater detail below. Metal, pre-expansion, in certain embodiments has a yield strength greater than about 8,000 psi, e.g., 8,000 psi+/−50%. It has been measured that the post expansion displacement plug 180 can hold over 3,000 psi in a 4½″ tubing with an 18″ long plug, which is about 160 psi per inch. In certain other embodiments, the displacement plug 180 may hold at least 300 psi per inch of plug length.


The hydrolysis of the expandable metal can create a metal hydroxide. The formative properties of alkaline earth metals (Mg—Magnesium, Ca—Calcium, etc.) and transition metals (Zn—Zinc, Al—Aluminum, etc.) under hydrolysis reactions demonstrate structural characteristics that are favorable for use with the present disclosure. Hydration results in an increase in size from the hydration reaction and results in a metal hydroxide that can precipitate from the fluid.


The hydration reactions for magnesium is:

Mg+2H2O→Mg(OH)2+H2,

where Mg(OH)2 is also known as brucite. Another hydration reaction uses aluminum hydrolysis. The reaction forms a material known as Gibbsite, bayerite, boehmite, aluminum oxide, and norstrandite, depending on form. The possible hydration reactions for aluminum are:

Al+3H2O→Al(OH)3+ 3/2H2.
Al+2H2O→Al O(OH)+ 3/2H2
Al+ 3/2H2O→½Al2O3+ 3/2H2

Another hydration reaction uses calcium hydrolysis. The hydration reaction for calcium is:

Ca+2H2O→Ca(OH)2+H2,

Where Ca(OH)2 is known as portlandite and is a common hydrolysis product of Portland cement. Magnesium hydroxide and calcium hydroxide are considered to be relatively insoluble in water. Aluminum hydroxide can be considered an amphoteric hydroxide, which has solubility in strong acids or in strong bases. Alkaline earth metals (e.g., Mg, Ca, etc.) work well for the expandable metal, but transition metals (Al, etc.) also work well for the expandable metal. In one embodiment, the metal hydroxide is dehydrated by the swell pressure to form a metal oxide.


In an embodiment, the expandable metal used can be a metal alloy. The expandable metal alloy can be an alloy of the base expandable metal with other elements in order to either adjust the strength of the expandable metal alloy, to adjust the reaction time of the expandable metal alloy, or to adjust the strength of the resulting metal hydroxide byproduct, among other adjustments. The expandable metal alloy can be alloyed with elements that enhance the strength of the metal such as, but not limited to, Al—Aluminum, Zn—Zinc, Mn—Manganese, Zr—Zirconium, Y—Yttrium, Nd—Neodymium, Gd—Gadolinium, Ag—Silver, Ca—Calcium, Sn—Tin, and Re—Rhenium, Cu—Copper. In some embodiments, the expandable metal alloy can be alloyed with a dopant that promotes corrosion, such as Ni—Nickel, Fe—Iron, Cu—Copper, Co—Cobalt, Ir—Iridium, Au—Gold, C—Carbon, Ga—Gallium, In—Indium, Mg—Mercury, Bi—Bismuth, Sn—Tin, and Pd—Palladium. The expandable metal alloy can be constructed in a solid solution process where the elements are combined with molten metal or metal alloy. Alternatively, the expandable metal alloy could be constructed with a powder metallurgy process. The expandable metal can be cast, forged, extruded, sintered, welded, mill machined, lathe machined, stamped, eroded or a combination thereof. The metal alloy can be a mixture of the metal and metal oxide. For example, a powder mixture of aluminum and aluminum oxide can be ball-milled together to increase the reaction rate.


Optionally, non-expanding components may be added to the starting metallic materials. For example, ceramic, elastomer, plastic, epoxy, glass, or non-reacting metal components can be embedded in the expandable metal or coated on the surface of the expandable metal. In yet other embodiments, the non-expanding components are metal fibers, a composite weave, a polymer ribbon, or ceramic granules, among others. Alternatively, the starting expandable metal may be the metal oxide. For example, calcium oxide (CaO) with water will produce calcium hydroxide in an energetic reaction. Due to the higher density of calcium oxide, this can have a 260% volumetric expansion (e.g., converting 1 mole of CaO may cause the volume to increase from 9.5 cc to 34.4 cc). In one variation, the expandable metal is formed in a serpentinite reaction, a hydration and metamorphic reaction. In one variation, the resultant material resembles a mafic material. Additional ions can be added to the reaction, including silicate, sulfate, aluminate, carbonate, and phosphate. The metal can be alloyed to increase the reactivity or to control the formation of oxides.


The expandable metal can be configured in many different fashions, as long as an adequate volume of material is available for setting the displacement plug 180. For example, the expandable metal may be formed into a single long member, multiple short members, rings, among others. In another embodiment, the expandable metal may be formed into a long wire of expandable metal, that can be in turn be wound around a tubular as a sleeve. The wire diameters do not need to be of circular cross-section, but may be of any cross-section. For example, the cross-section of the wire could be oval, rectangle, star, hexagon, keystone, hollow braided, woven, twisted, among others, and remain within the scope of the disclosure. In certain other embodiments, the expandable metal is a collection of individual separate chunks of the metal held together with a binding agent. In yet other embodiments, the expandable metal is a collection of individual separate chunks of the metal that are not held together with a binding agent, but held in place using one or more different techniques. In at least one other embodiment, one or more of the displacement features of the displacement plug 180 comprise the expandable metal.


Additionally, a delay coating may be applied to one or more portions of the expandable metal to delay the expanding reactions. In one embodiment, the material configured to delay the hydrolysis process is a fusible alloy. In another embodiment, the material configured to delay the hydrolysis process is a eutectic material. In yet another embodiment, the material configured to delay the hydrolysis process is a wax, oil, or other non-reactive material.


Turning to FIGS. 2A and 2B, illustrated is a displacement plug 200 (e.g., pre-expansion displacement plug) for use in a wellbore tubular designed and manufactured according to one or more embodiments of the disclosure. FIG. 2A illustrates a cross-sectional view of the displacement plug 200, whereas FIG. 2B illustrated an isometric view of the displacement plug 200. With reference to FIG. 2A, the displacement plug 200 includes a plug body 210, wherein at least a portion of the plug body 210 comprises a metal configured to expand in response to hydrolysis to seal against a wellbore tubular, as discussed above. In the illustrated embodiment of FIG. 2A, the plug body 210 includes a nose 212 having a nose shoulder 214, a nose nut 216, a tubular 218 (e.g., mandrel in one embodiment), a lock ring 220, and an O-ring 222. Any one or more of the nose 212, nose nut 216, tubular 218, and/or lock ring 220 may comprise the expandable metal. While the plug body 210 has been illustrated as having a variety of different features, any plug body according to the disclosure could be used.


Engaged with the plug body 210 are one or more displacement features 230. In at least one embodiment, the one or more displacement features are displacement fins. In yet another embodiment, the one or more displacement features are one or more compressible features, such as compressible (e.g., foam) drop balls. The one or more displacement features 230, in one embodiment, comprise rubber. The one or more displacement features 230, in another embodiment, comprise plastic or metal. In yet another embodiment, the one or more displacement features 230 comprise a foam material. In yet another embodiment, at least one of the one or more displacement features 230 comprises a metal configured to expand in response to hydrolysis, as discussed above. While the one or more displacement features 230 have been illustrated with a wiper like shape, other embodiments exist wherein a non-wiper like shape is used, such as when balls are used.


The nose nut 216 may have a variety of different outside diameters (Dn) and remain within the scope of the disclosure. In one embodiment, the nose nut 216 has a diameter (Dn) ranging from 3.4 inches to 17.5 inches. The tubular 218 may have a variety of different inside diameters (Dm) and remain within the scope of the disclosure. In one embodiment, the tubular 218 has a diameter (Dm) ranging from 1.5 inches to 7.5 inches. The lock ring 220 may have a variety of different outside diameters (Dlr) and remain within the scope of the disclosure. In one embodiment, the lock ring 220 has a diameter (Dlr) ranging from 3.7 inches to 18.5 inches. The one or more displacement features 230 may have a variety of different outside diameters (Df) and remain within the scope of the disclosure. In one embodiment, the one or more displacement features 230 have a diameter (Df) ranging from 5.5 inches to 27.5 inches. The displacement plug 200 may have a variety of different lengths (L) and remain within the scope of the disclosure. In one embodiment, the displacement plug 200 has a length (L) ranging from 4 inches to 72 inches, and in another embodiment has a length (L) ranging from 8 inches to 36 inches.


Turning to FIG. 3, illustrated is one embodiment of a displacement plug 300 designed and manufactured according to one or more embodiments of the disclosure within a wellbore tubular 350. The displacement plug 300, in one embodiment, is similar to the displacement plug 200 of FIGS. 2A and 2B. The wellbore tubular 350, in the illustrated embodiment, is a landing plug, nevertheless other wellbore tubulars might be used. Turning to FIG. 4, illustrated is the displacement plug 300 of FIG. 3 after it has expanded to form an expanded displacement plug 410.


Turning to FIG. 5, illustrated is an alternative embodiment of a displacement plug 500 for use in a wellbore tubular 550 designed and manufactured according to one or more embodiments of the disclosure. The displacement plug 500, in the illustrated embodiment, comprises a first casing displacement plug 510 and a second drill pipe displacement plug 520. In accordance with the disclosure, each of the casing displacement plug 510 and the drill pipe displacement plug 520 may include a plug body, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against a wellbore tubular.


Turning to FIG. 6, illustrated is an alternative embodiment of a displacement plug 600 for use in a wellbore tubular 650 designed and manufactured according to one or more embodiments of the disclosure. The displacement plug 600 is similar in many respects to the displacement plug 500 of FIG. 5. Accordingly, like reference numbers have been used to indicate similar, if not substantially identical, features. The displacement plug 600 differs, for the most part, from the displacement plug 500, in that the wellbore tubular 650 is a wet shoe sub. Accordingly, the wellbore tubular 650 has a sliding sleeve 655 disposed therein, the sliding sleeve 655 configured to slide to open a flow path 660 below the plug body. The wellbore tubular 650, in the illustrated embodiment, further includes one or more plug members 665 positioned within the flow path 660, the one or more plug members 665 comprising the metal configured to expand in response to hydrolysis to seal the flow path. The plug member 665 metal may be similar to one or more of those discussed above.


Turning to FIG. 7, illustrated is an enlarged view of the displacement plug 600 and the wellbore tubular 650, clearly depicting the one or more plug member 665. Turning to FIG. 8, illustrated are the displacement plug 600 and the wellbore tubular 650 of FIG. 7 after the one or more plug member 665 have expanded to seal the flow path 660. What results are one or more expanded plug members 865.


The present disclosure has discussed the one or more plug members 665 as being used with the displacement plug 600, however, certain embodiments exist wherein the one or more plug members 665 comprising a metal configured to expand in response to hydrolysis could be used to seal any flow path, but particularly any flow path in an annulus between a sliding sleeve and a wellbore tubular and/or mandrel.


Aspects disclosed herein include:


A. A displacement plug for use in a wellbore tubular, the displacement plug including: 1) a plug body for landing in a wellbore tubular, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular; and 2) one or more displacement features engaged with the plug body for displacing the plug body downhole.


B. A method for entering a well system, the method including: 1) pumping fluid within a wellbore tubular; 2) positioning a displacement plug in the wellbore tubular after pumping the fluid, the displacement plug landing in the wellbore tubular, the displacement plug including: a) a plug body for landing in the wellbore tubular, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular; and 3) subjecting the displacement plug to a wellbore fluid, thereby forming an expanded displacement plug fixed in the wellbore tubular, the expanded displacement plug including a cement plug body.


C. A well system, the well system including: 1) a wellbore positioned in a subterranean formation; 2) a wellbore tubular positioned within the wellbore, an annulus existing between the wellbore tubular and the wellbore; 3) an expanded displacement plug fixed in the wellbore tubular, the expanded displacement plug including a cement plug body and one or more displacement features engaged with the cement plug body; and 4) cement positioned in the annulus.


D. A valve, the valve including: 1) a housing; 2) a sliding sleeve disposed in the housing and defining an annular flow path between the sliding sleeve and the housing, the sliding sleeve configured to move from a closed positioned closing the annular flow path to an open position opening the flow path; and 3) a plug member positioned within the annular flow path, the plug member comprising a metal configured to expand in response to hydrolysis to seal the annular flow path.


E. A method for sealing, the method including: 1) positioning a valve within a wellbore tubular, the valve including; a) a housing; b) a sliding sleeve disposed in the housing and defining an annular flow path between the sliding sleeve and the housing, the sliding sleeve configured to move from a closed positioned closing the annular flow path to an open position opening the flow path; and CO a plug member positioned within the flow path, the plug member comprising a metal configured to expand in response to hydrolysis to seal the annular flow path; 2) pumping cement within a wellbore tubular; and 3) subjecting the plug member to a reactive fluid, thereby forming an expanded metal plug member in the annular flow path.


F. A well system, the well system including: 1) a wellbore positioned in a subterranean formation; and 2) a valve positioned within the wellbore, the valve including; a) a housing; b) a sliding sleeve disposed in the housing and defining an annular flow path between the sliding sleeve and the housing, the sliding sleeve configured to move from a closed positioned closing the annular flow path to an open position opening the flow path; and c) an expanded metal plug member positioned within the annular flow path, the expanded metal plug member comprising a metal that has expanded in response to hydrolysis to seal the annular flow path.


Aspects A, B, C, D, E, and F may have one or more of the following additional elements in combination: Element 1: wherein the plug body includes a nose, wherein at least a portion of the nose comprises the metal configured to expand in response to hydrolysis. Element 2: wherein the nose includes a nose nut, the nose nut comprising the metal configured to expand in response to hydrolysis. Element 3: wherein the nose includes a tubular, the tubular comprising the metal configured to expand in response to hydrolysis. Element 4: wherein the nose includes a lock ring, the lock ring comprising the metal configured to expand in response to hydrolysis. Element 5: wherein the nose includes an O-ring. Element 6: wherein the plug body is a casing displacement plug body. Element 7: wherein the plug body is a drill pipe displacement plug body. Element 8: wherein the one or more displacement features are one or more displacement fins. Element 9: wherein the one or more displacement fins are coupled to the plug body. Element 10: wherein the displacement plug further includes one or more displacement features engaged with the plug body. Element 11: wherein pumping fluid within the wellbore tubular includes pumping cement within the wellbore tubular. Element 12: wherein the one or more displacement fins are coupled to the cement plug body. Element 13: wherein the wellbore tubular is a landing collar. Element 14: wherein the landing collar is a landing collar of a shoe track. Element 15: wherein the shoe track includes a float collar and a float shoe. Element 16: wherein the landing collar is wellbore casing. Element 17: wherein the landing collar is a wet shoe sub having a sliding sleeve disposed therein, the sliding sleeve configured to slide to open a flow path below the plug body. Element 18: further including one or more plug members positioned within the flow path, the plug member comprising a metal configured to expand in response to hydrolysis to seal the flow path. Element 19: wherein the plug member is configured to be protected from reactive fluid when the sliding sleeve is in the closed position and configured to be exposed to the reactive fluid when the sliding sleeve is in the open position. Element 20: wherein the plug member is a first plug member, and further including a second plug member positioned within the flow path, the second plug member comprising the metal configured to expand in response to hydrolysis. Element 21: wherein the housing and the sliding sleeve form at least a portion of a wet shoe sub. Element 22: further including a displacement plug positioned within the sliding sleeve. Element 23: wherein the displacement plug includes: a plug body for landing in the sliding sleeve, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular; and one or more displacement fins coupled to the plug body for displacing the plug body downhole. Element 24: wherein the subjecting occurs after the sliding sleeve has been moved from the closed position to the open position. Element 25: wherein the reactive fluid is drilling fluid. Element 26: wherein the reactive fluid is cement slurry. Element 27: wherein the housing and the sliding sleeve form at least a portion of a wet shoe sub. Element 28: wherein the expanded metal plug member fixes the sliding sleeve in the open position. Element 29: wherein the housing and the sliding sleeve form at least a portion of a wet shoe sub. Element 30: further including a displacement plug located within the sliding sleeve, and further wherein the displacement plug includes a plug body landed in the sliding sleeve, and one or more displacement fins coupled to the plug body for displacing the plug body downhole.


Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.

Claims
  • 1. A displacement plug for use in a wellbore tubular, comprising: a plug body for landing in the wellbore tubular, wherein at least a portion of the plug body comprises an electrically conductive metal configured to expand in response to hydrolysis to seal against the wellbore tubular, and further wherein during the expansion, the electrically conductive metal is configured to go from metal to micron-scale particles that are larger and lock together; andone or more displacement features engaged with the plug body for displacing the plug body downhole.
  • 2. The displacement plug as recited in claim 1, wherein the plug body includes a nose, wherein at least a portion of the nose comprises the electrically conductive metal configured to expand in response to hydrolysis.
  • 3. The displacement plug as recited in claim 2, wherein the nose includes a nose nut, the nose nut comprising the electrically conductive metal configured to expand in response to hydrolysis.
  • 4. The displacement plug as recited in claim 2, wherein the nose includes a tubular, the tubular comprising the electrically conductive metal configured to expand in response to hydrolysis.
  • 5. The displacement plug as recited in claim 2, wherein the nose includes a lock ring, the lock ring comprising the electrically conductive metal configured to expand in response to hydrolysis.
  • 6. The displacement plug as recited in claim 2, wherein the nose includes an O-ring.
  • 7. The displacement plug as recited in claim 1, wherein the plug body is a casing displacement plug body.
  • 8. The displacement plug as recited in claim 1, wherein the plug body is a drill pipe displacement plug body.
  • 9. The displacement plug as recited in claim 1, wherein the one or more displacement features are one or more displacement fins.
  • 10. The displacement plug as recited in claim 9, wherein the one or more displacement fins are coupled to the plug body.
  • 11. A method for entering a well system, comprising: pumping fluid within a wellbore tubular;positioning a displacement plug in the wellbore tubular after pumping the fluid, the displacement plug landing in the wellbore tubular, the displacement plug including:a plug body for landing in the wellbore tubular, wherein at least a portion of the plug body comprises a metal configured to expand in response to hydrolysis to seal against the wellbore tubular, and further wherein during the expansion, the electrically conductive metal is configured to go from metal to micron-scale particles that are larger and lock together; andsubjecting the displacement plug to a wellbore fluid, thereby forming an expanded displacement plug fixed in the wellbore tubular, the expanded displacement plug including a cement plug body.
  • 12. The method as recited in claim 11, wherein the displacement plug further includes one or more displacement features engaged with the plug body.
  • 13. The method as recited in claim 12, wherein the one or more displacement features are one or more displacement fins coupled to the plug body.
  • 14. The method as recited in claim 11, wherein pumping fluid within the wellbore tubular includes pumping cement within the wellbore tubular.
  • 15. The method as recited in claim 11, wherein the plug body includes a nose, wherein at least a portion of the nose comprises the metal configured to expand in response to hydrolysis.
  • 16. The method as recited in claim 15, wherein the nose includes a nose nut, the nose nut comprising the metal configured to expand in response to hydrolysis.
  • 17. The method as recited in claim 15, wherein the nose includes a tubular, the tubular comprising the metal configured to expand in response to hydrolysis.
  • 18. The method as recited in claim 15, wherein the nose includes a lock ring, the lock ring comprising the metal configured to expand in response to hydrolysis.
  • 19. The method as recited in claim 15, wherein the nose includes an O-ring.
  • 20. A well system, comprising: a wellbore positioned in a subterranean formation;a wellbore tubular positioned within the wellbore, an annulus existing between the wellbore tubular and the wellbore;an expanded displacement plug fixed in the wellbore tubular, the expanded displacement plug including a cement plug body and one or more displacement features engaged with the cement plug body; andcement positioned in the annulus.
  • 21. The well system as recited in claim 20, wherein the one or more displacement features are one or more displacement fins.
  • 22. The well system as recited in claim 21, wherein the one or more displacement fins are coupled to the cement plug body.
  • 23. The well system as recited in claim 20, wherein the wellbore tubular is a landing collar.
  • 24. The well system as recited in claim 23, wherein the landing collar is a landing collar of a shoe track.
  • 25. The well system as recited in claim 24, wherein the shoe track includes a float collar and a float shoe.
  • 26. The well system as recited in claim 23, wherein the landing collar is wellbore casing.
  • 27. The well system as recited in claim 23, wherein the landing collar is a wet shoe sub having a sliding sleeve disposed therein, the sliding sleeve configured to slide to open a flow path below the plug body.
  • 28. The well system as recited in claim 27, further including one or more plug members positioned within the flow path, the plug member comprising a metal configured to expand in response to hydrolysis to seal the flow path.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Ser. No. 63/065,248, filed on Aug. 13, 2020, entitled “SWELLABLE METAL WIPER PLUG,” commonly assigned with this application and incorporated herein by reference in its entirety.

US Referenced Citations (270)
Number Name Date Kind
1525740 Howard Feb 1925 A
2075912 Roye Apr 1937 A
2590931 Cabaniss Apr 1952 A
2743781 Lane May 1956 A
2865454 Richards Dec 1958 A
3206536 Goodloe Sep 1965 A
3371716 Current Mar 1968 A
3616354 Russell Oct 1971 A
3706125 Hopkins Dec 1972 A
4270608 Hendrickson Jun 1981 A
4424859 Sims Jan 1984 A
4424861 Carter Jan 1984 A
4442908 Steenbock Apr 1984 A
4446932 Hipp May 1984 A
4457379 McStravick Jul 1984 A
4527815 Frick Jul 1985 A
4977636 King Dec 1990 A
4979585 Chesnutt Dec 1990 A
5139274 Oseman Aug 1992 A
5220959 Vance Jun 1993 A
5424139 Shuler Jun 1995 A
5492173 Kilgore Feb 1996 A
5517981 Taub et al. May 1996 A
5662341 Ezell et al. Sep 1997 A
5667015 Harestad Sep 1997 A
5803173 Fraser et al. Sep 1998 A
6089320 LaGrange Jul 2000 A
6106024 Herman et al. Aug 2000 A
6840325 Stephenson Jan 2005 B2
6907930 Cavender Jun 2005 B2
6942039 Tinker Sep 2005 B2
7104322 Whanger et al. Sep 2006 B2
7152687 Gano Dec 2006 B2
7322408 Howlett Jan 2008 B2
7347274 Patel Mar 2008 B2
7350590 Hosie et al. Apr 2008 B2
7402277 Ayer Jul 2008 B2
7578043 Simpson et al. Aug 2009 B2
7673688 Jones Mar 2010 B1
7677303 Coronado Mar 2010 B2
7696275 Slay et al. Apr 2010 B2
7963321 Kutac Jun 2011 B2
7996945 Nosker Aug 2011 B2
8042841 Viegener Oct 2011 B2
8109339 Xu Feb 2012 B2
8225861 Foster et al. Jul 2012 B2
8266751 He Sep 2012 B2
8430176 Xu Apr 2013 B2
8453736 Constantine Jun 2013 B2
8459367 Nutley et al. Jun 2013 B2
8469084 Clark et al. Jun 2013 B2
8490707 Robisson Jul 2013 B2
8579024 Mailand et al. Nov 2013 B2
8684096 Harris Apr 2014 B2
8794330 Stout Aug 2014 B2
8807209 King Aug 2014 B2
8875800 Wood et al. Nov 2014 B2
8894070 Bhat et al. Nov 2014 B2
8993491 James Mar 2015 B2
9004173 Richard Apr 2015 B2
9217311 Slup Dec 2015 B2
9249904 Duquette Feb 2016 B2
9279295 Williamson et al. Mar 2016 B2
9347272 Hewson et al. May 2016 B2
9353606 Bruce et al. May 2016 B2
9393601 Ronck Jul 2016 B2
9404030 Mazyar Aug 2016 B2
9534460 Watson et al. Jan 2017 B2
9611715 Smith Apr 2017 B1
9644459 Themig May 2017 B2
9708880 Solhaug Jul 2017 B2
9725979 Mazyar et al. Aug 2017 B2
9732578 McRobb Aug 2017 B2
9745451 Zhao et al. Aug 2017 B2
9765595 Themig et al. Sep 2017 B2
9771510 James et al. Sep 2017 B2
9945190 Crowley Apr 2018 B2
9976380 Davis et al. May 2018 B2
9976381 Martin et al. May 2018 B2
10030467 Al-Gouhi Jul 2018 B2
10060225 Wolf Aug 2018 B2
10119011 Zhao et al. Nov 2018 B2
10179873 Meng Jan 2019 B1
10316601 Walton et al. Jun 2019 B2
10337298 Braddick Jul 2019 B2
10344570 Steele Jul 2019 B2
10352109 Sanchez Jul 2019 B2
10364636 Davis Jul 2019 B2
10472933 Steele Nov 2019 B2
10533392 Walton et al. Jan 2020 B2
10648285 Gaudette et al. May 2020 B2
10718183 Bruce et al. Jul 2020 B2
10758974 Sherman Sep 2020 B2
10794152 Lang et al. Oct 2020 B2
10961804 Fripp Mar 2021 B1
11359448 Fripp Jun 2022 B2
11365611 Gibb Jun 2022 B2
11428066 Andersen Aug 2022 B2
11512552 Fripp Nov 2022 B2
20020088616 Swor et al. Jul 2002 A1
20030132001 Wilson Jul 2003 A1
20030164236 Thornton Sep 2003 A1
20030164237 Butterfield, Jr. Sep 2003 A1
20030205377 Streater Nov 2003 A1
20040194970 Eatwell Oct 2004 A1
20050051333 Weber Mar 2005 A1
20050061369 De Almeida Mar 2005 A1
20050072576 Henriksen Apr 2005 A1
20050093250 Santi et al. May 2005 A1
20050199401 Patel et al. Sep 2005 A1
20060144591 Gonzalez Jul 2006 A1
20060272806 Wilkie et al. Dec 2006 A1
20070089875 Steele et al. Apr 2007 A1
20070089910 Hewson et al. Apr 2007 A1
20070095532 Head May 2007 A1
20070137826 Bosma et al. Jun 2007 A1
20070144734 Xu et al. Jun 2007 A1
20070151724 Ohmer et al. Jul 2007 A1
20070163781 Walker Jul 2007 A1
20070221387 Levy Sep 2007 A1
20070246213 Hailey Oct 2007 A1
20070267824 Baugh et al. Nov 2007 A1
20070277979 Todd et al. Dec 2007 A1
20080047708 Spencer Feb 2008 A1
20080135249 Fripp Jun 2008 A1
20080149351 Marya Jun 2008 A1
20080290603 Laflin Nov 2008 A1
20090014173 Macleod Jan 2009 A1
20090084555 Lee Apr 2009 A1
20090102133 Ruddock Apr 2009 A1
20090159278 Corre Jun 2009 A1
20090200028 Dewar Aug 2009 A1
20090250227 Brown et al. Oct 2009 A1
20090250228 Loretz Oct 2009 A1
20090272546 Nutley et al. Nov 2009 A1
20090321087 Victorov Dec 2009 A1
20100072711 Doane Mar 2010 A1
20100078173 Buytaert et al. Apr 2010 A1
20100096143 Angman Apr 2010 A1
20100108148 Chen May 2010 A1
20100122819 Wildman May 2010 A1
20100139930 Patel Jun 2010 A1
20100155083 Lynde et al. Jun 2010 A1
20100181080 Levy Jul 2010 A1
20100225107 Tverlid Sep 2010 A1
20100257913 Storm, Jr. et al. Oct 2010 A1
20100307737 Mellemstrand Dec 2010 A1
20110061876 Johnson et al. Mar 2011 A1
20110098202 James Apr 2011 A1
20110147014 Chen et al. Jun 2011 A1
20120018143 Lembcke Jan 2012 A1
20120048531 Marzouk Mar 2012 A1
20120048561 Holderman Mar 2012 A1
20120048623 Lafuente et al. Mar 2012 A1
20120049462 Pitman Mar 2012 A1
20120168147 Bowersock Jul 2012 A1
20120175134 Robisson Jul 2012 A1
20120273236 Gandikota et al. Nov 2012 A1
20130048289 Mazyar et al. Feb 2013 A1
20130056207 Wood et al. Mar 2013 A1
20130056221 Johannessen Mar 2013 A1
20130081815 Mazyar et al. Apr 2013 A1
20130152824 Crews Jun 2013 A1
20130153236 Bishop Jun 2013 A1
20130161006 Robisson et al. Jun 2013 A1
20130186615 Hallunbaek et al. Jul 2013 A1
20130192853 Themig Aug 2013 A1
20130277059 Holderman et al. Oct 2013 A1
20130292117 Robisson Nov 2013 A1
20140026335 Smith Jan 2014 A1
20140034308 Holderman Feb 2014 A1
20140051612 Mazyar Feb 2014 A1
20140262324 Greci et al. Sep 2014 A1
20140262352 Lembcke Sep 2014 A1
20150021049 Davis et al. Jan 2015 A1
20150075768 Wright et al. Mar 2015 A1
20150101813 Zhao Apr 2015 A1
20150113913 Kim Apr 2015 A1
20150184486 Epstein Jul 2015 A1
20150233190 Wolf et al. Aug 2015 A1
20150275587 Wolf et al. Oct 2015 A1
20150337615 Epstein et al. Nov 2015 A1
20150345248 Carragher Dec 2015 A1
20150368990 Jewett Dec 2015 A1
20150369003 Hajjari et al. Dec 2015 A1
20160024896 Johnson et al. Jan 2016 A1
20160024902 Richter Jan 2016 A1
20160137912 Sherman et al. May 2016 A1
20160138359 Zhao May 2016 A1
20160145488 Aines et al. May 2016 A1
20160145968 Marya May 2016 A1
20160177668 Watson et al. Jun 2016 A1
20160194936 Allen Jul 2016 A1
20160208569 Anderson et al. Jul 2016 A1
20160230495 Mazyar et al. Aug 2016 A1
20160273312 Steele et al. Sep 2016 A1
20160319633 Cooper et al. Nov 2016 A1
20160326830 Hallundbaek Nov 2016 A1
20160326849 Bruce Nov 2016 A1
20160333187 Bauer et al. Nov 2016 A1
20170015824 Gozalo Jan 2017 A1
20170022778 Fripp et al. Jan 2017 A1
20170107419 Roy et al. Apr 2017 A1
20170107794 Steele Apr 2017 A1
20170113275 Roy et al. Apr 2017 A1
20170159401 Saltel et al. Jun 2017 A1
20170175487 Marcin et al. Jun 2017 A1
20170175488 Lisowski Jun 2017 A1
20170191342 Turley Jul 2017 A1
20170198191 Potapenko Jul 2017 A1
20170234103 Frazier Aug 2017 A1
20170306714 Haugland Oct 2017 A1
20170314372 Tolman Nov 2017 A1
20170350237 Giem et al. Dec 2017 A1
20170356266 Arackakudiyil Dec 2017 A1
20180023362 Makowiecki et al. Jan 2018 A1
20180023366 Deng et al. Jan 2018 A1
20180038193 Walton Feb 2018 A1
20180080304 Cortez et al. Mar 2018 A1
20180081468 Bruce et al. Mar 2018 A1
20180086894 Roy Mar 2018 A1
20180087350 Sherman Mar 2018 A1
20180094508 Smith et al. Apr 2018 A1
20180100367 Perez Apr 2018 A1
20180128072 Larsen May 2018 A1
20180128082 Hollan et al. May 2018 A1
20180209234 Manera Jul 2018 A1
20180223624 Fripp Aug 2018 A1
20180298708 Schmidt et al. Oct 2018 A1
20180334882 Brandsdal Nov 2018 A1
20180347288 Fripp Dec 2018 A1
20180363409 Frazier Dec 2018 A1
20190016951 Sherman et al. Jan 2019 A1
20190032435 Kochanek et al. Jan 2019 A1
20190039126 Sherman Feb 2019 A1
20190078414 Frazier Mar 2019 A1
20190128092 Mueller et al. May 2019 A1
20190136666 Kent May 2019 A1
20190178054 Bruce Jun 2019 A1
20190186228 Beckett et al. Jun 2019 A1
20190225861 Reddy Jul 2019 A1
20190249510 Deng et al. Aug 2019 A1
20190264538 Bowersock et al. Aug 2019 A1
20190316025 Sherman Oct 2019 A1
20190383115 Lees Dec 2019 A1
20200032574 Fripp et al. Jan 2020 A1
20200056435 Sherman Feb 2020 A1
20200072019 Onti et al. Mar 2020 A1
20200080401 Sherman Mar 2020 A1
20200080402 Lang et al. Mar 2020 A1
20200240235 Fripp et al. Jul 2020 A1
20200308945 Surjaatmadja et al. Oct 2020 A1
20200325749 Fripp et al. Oct 2020 A1
20200362224 Wellhoefer Nov 2020 A1
20200370391 Fripp et al. Nov 2020 A1
20210017835 Pelto et al. Jan 2021 A1
20210040810 Evers Feb 2021 A1
20210123310 Fripp et al. Apr 2021 A1
20210123319 Greci Apr 2021 A1
20210172286 Barlow Jun 2021 A1
20210187604 Sherman et al. Jun 2021 A1
20210270093 Fripp Sep 2021 A1
20210270103 Greci et al. Sep 2021 A1
20210332673 Fripp Oct 2021 A1
20210348478 Novelen et al. Nov 2021 A1
20210363849 Al Yahya Nov 2021 A1
20220106847 Dahl Apr 2022 A1
20220186575 Fripp Jun 2022 A1
20220205336 Asthana Jun 2022 A1
20220372837 Holderman et al. Nov 2022 A1
Foreign Referenced Citations (66)
Number Date Country
2820742 Sep 2013 CA
203308412 Nov 2013 CN
205422632 Aug 2016 CN
107148444 Sep 2017 CN
108194756 Jun 2018 CN
107148444 Jan 2019 CN
108194756 Aug 2020 CN
15726 Sep 1980 EP
869257 Oct 1998 EP
940558 Sep 1999 EP
0940558 Jan 2005 EP
1757770 Feb 2007 EP
1910728 Apr 2008 EP
1910728 Sep 2009 EP
2447466 May 2012 EP
2501890 Sep 2012 EP
2501890 Jul 2014 EP
2447466 Mar 2017 EP
3144018 Mar 2017 EP
3144018 May 2017 EP
3196402 Jul 2017 EP
3144018 Sep 2018 EP
2447466 Oct 2018 EP
2444060 May 2008 GB
2444060 Dec 2008 GB
2003090037 Mar 2003 JP
2003293354 Oct 2003 JP
2004169303 Jun 2004 JP
2015175449 Oct 2015 JP
20020014619 Feb 2002 KR
20080096576 Oct 2008 KR
0202900 Jan 2002 WO
0202900 May 2002 WO
0202900 Dec 2003 WO
2005022012 Mar 2005 WO
2006045794 May 2006 WO
2007047089 Apr 2007 WO
2012094322 Jul 2012 WO
2012125660 Sep 2012 WO
2012094322 Oct 2012 WO
2012125660 Feb 2013 WO
2014028149 Feb 2014 WO
2014182301 Nov 2014 WO
2014193042 Dec 2014 WO
2015057338 Apr 2015 WO
2015069886 May 2015 WO
2015069886 Sep 2015 WO
2015183277 Dec 2015 WO
2016000068 Jan 2016 WO
2016171666 Oct 2016 WO
2017100417 Jun 2017 WO
2018055382 Mar 2018 WO
2019094044 May 2019 WO
2019122857 Jun 2019 WO
2019147285 Aug 2019 WO
2019151870 Aug 2019 WO
2019164499 Aug 2019 WO
2020005252 Jan 2020 WO
2020141203 Jul 2020 WO
2019164499 Aug 2020 WO
2020167288 Aug 2020 WO
2020204940 Oct 2020 WO
2021034325 Feb 2021 WO
2021086317 May 2021 WO
2021096519 May 2021 WO
2021126279 Jun 2021 WO
Non-Patent Literature Citations (2)
Entry
Fripp, Michael, and Zachary Walton. “Degradable Metal for Use in a Fully Dissolvable Frac Plug.” Paper presented at the Offshore Technology Conference, Houston, Texas, USA, May 2016. doi: https://doi.org/10.4043/27187-MS (Year: 2016).
Fripp, et al. “Novel Expanding Metal Alloy for Non-Elastomeric Sealing and Anchoring.” Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, Oct. 2022. doi: https://doi.org/10.2118/210273-MS (Year: 2022).
Related Publications (1)
Number Date Country
20220049574 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
63065248 Aug 2020 US