Expandable metal for anchoring posts

Information

  • Patent Grant
  • 11578498
  • Patent Number
    11,578,498
  • Date Filed
    Monday, April 12, 2021
    3 years ago
  • Date Issued
    Tuesday, February 14, 2023
    a year ago
Abstract
Apparatuses and methods for setting posts of columns in to the ground are provided. Expandable metals in response to hydrolysis that tend to fill in spaces and cavities, even over time, which is a useful feature when setting columns into the ground. A hydrolyzing fluid can be supplied, as necessary, to cause the hydrolysis of the expanding metal, or supplied by ground water. Upon hydrolysis, the expanding metal expands around the column to adhere and grip the column securely, while the metal may also expand outwardly to increase cross-sectional bulk lending to a more overall stabilization of a set column. The expandable metal may be provided as a solid sleeve drivable into the ground with a post, as an auger that can be used to turn a column into the ground or, as a rod that can be driven through the interior of a column into the ground.
Description

The present disclosure relates generally to apparatus, compositions and methods for anchoring columns or posts in the ground, among other features.


BACKGROUND

Posts and columns when set into the ground frequently employ cement or a mortar to support the posts or columns. Over time, the cement or mortar may crack or degrade losing its supporting and anchoring capacity. If the posts or column comprise wood, the cracked cement or mortar accelerates the rotting of the wood. If the posts or column comprise a metal, the cracked cement or mortar accelerates the oxidation of the metal.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the detailed description, serve to explain the principles of the disclosure. No attempt is made to show structural details of the disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced. In the drawings:



FIG. 1 is a cross-sectional view of a column anchored in the ground using an expandable metal sleeve for setting the column, configured according to principles of the disclosure;



FIG. 2 is a cross-sectional view of a column being anchored with an auger made from an expandable metal, configured according to principles of the disclosure; and



FIG. 3 is a cross-sectional view of a hollow column being anchored by driving a column into the ground and then installing one or more expanding metal rods through the core of the hollow column, configured according to principles of the disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

The disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the embodiments of the disclosure. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the disclosure. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.


The terms including, comprising and variations thereof, as used in this disclosure, mean including, but not limited to, unless expressly specified otherwise.


The terms “a”, “an”, and “the”, as used in this disclosure, means “one or more”, unless expressly specified otherwise. The terms column and post are synonymous herein. The term “about” refers to +/−10% of a dimension specified, unless context specifies otherwise.


OVERVIEW

In embodiments, preformed devices comprising expandable metals are described herein for setting columns into the ground. In an embodiment, a granular expandable composition is described. Expandable metals comprise one or more metals that expand in response to hydrolysis. The resulting hydrolyzed expanded metal is strong and tends to fill in spaces and cavities, even over time, which is a useful feature when setting columns into the ground. The hydrolysis can be accomplished by water ordinarily found in the ground in most locations for setting a column. Alternatively, a hydrolyzing fluid can be supplied, as necessary, to cause the hydrolysis of the expanding metal. Upon hydrolysis, the expanding metal expands around the column to adhere and grip the column securely, while the expandable metal may also expand outwardly in the ground to increase cross-sectional bulk lending to a more overall stabilization of a set column. If subject to stress that may create a fault, such as a crack, the hydrolyzed expanding metal tends to heal itself, if necessary, over time. The columns herein may be installed vertically or at an angle to the surface of the ground including horizontal installation such as, e.g., setting a column in a vertical orientated earthen wall or cliff.



FIG. 1 is a diagram of a column 105 anchored in the ground 111 using an expandable metal sleeve 121 for setting the column 105. The column 105 may comprise a rod, post, pillar or the like. The column 105 be solid or may be hollow and may comprise metal, wood, stone, composites, plastic or similar materials. The column 105 may have any outer shape and circumference, such as round, circular oval, square or the like. The column 105 may be hollow and have an inner circumference about an interior surface.


The expandable metal sleeve 121 may be preformed, and may be sized and shaped according to intended applications. That is, the bigger the column 105 to be supported, the expandable metal sleeve 121 may be sized accordingly. The expandable metal sleeve 121 may be preformed by casting, milling or other construction processes. The expandable metal sleeve 121 may have an internal cavity 116 formed by an inner surface of a wall 119 and the expandable metal sleeve 121 configured to accept a column 105 of a particular width or diameter d. The shape of the internal cavity 116 would match the shape of the outer perimeter or outer surface of the column. The expandable metal sleeve 121 may be preformed to have an overall height h. The overall height h may be selected in accordance with the anticipated overall height of the column, or other application requirement, to provide a sufficient stabilization capability. Therefore, different sized expandable metal sleeves 121 may have different sized diameters or width of internal cavities 116 for accepting a particular sized column with a similar diameter or width. Moreover, different sized expandable metal sleeves 121 may have different sized overall height h. The expandable metal sleeve 121 may be formed with a point 117 at the lower end for penetrating the ground 111.


In use, the preformed expandable metal sleeve 121 may be set into the ground 111 at the surface 110 and partially driven into the ground 111. The column 105 may be inserted into, or coupled with, the expandable metal sleeve 121 and both column 105 and expandable metal sleeve 121 may be driven into the ground 111 to a desired depth. Alternatively, the column 105 may be inserted into the expandable metal sleeve 121 at the surface 110 and both the column 105 and the expandable metal sleeve 121 may be driven together into the ground to a desired depth. A hydrolyzing fluid, such as water, may be applied from the surface to the expandable metal sleeve 121 in the ground 111 to initiate hydrolysis, or water from the ground itself may cause the hydrolysis. Once the expanding metal has expanded due to hydrolysis, the column is firmly set into the ground with the expandable metal sleeve 121 solidly binding to the column 105. The column 105 may be a solid column, or may be a hollow column, and also may have any shape such as round, circular, oval, square, or the like.


In an embodiment, granular expandable metal 118 may be used and poured down the column 105 for added strength at the base of the column 105, but is not required. Granular expandable metal may hydrolyze and bond with the preformed expanding metal 121 at the base of the column 105. In embodiments, the granular expandable metal 118 may be used alone in lieu of the preformed expanding metal 121 to set the column 105 into the ground 111, but would require a hole to be dug beforehand, as is analogously done when using cement. Granular expanding metal may be hydrolyzed by ground water or as otherwise supplied from the surface.



FIG. 2 is a diagram of a column 115 being anchored with an auger 120 made from an expandable metal. The column 115 be solid or may be hollow and may comprise metal, wood, stone, composites, plastic or similar materials. The column 115 may have an outer circumference about an outer surface and may have any outer shape, such as round, circular, oval, square or the like. The column 115 may be have an inner circumference about an interior surface, and also may have any shape such as round, oval, square, or the like.


The auger 120 may be preformed and may comprise a blade 125 that may be a continuous spiral about, connected with, and extending laterally from a wall 135, and may have an end tip 136. The wall 135 of auger 120 forms a hollow compartment 134 for receiving a column 115 therewithin. The compartment 134 has an inner circumference and is shaped to accept a column 115 having a particular outer circumference and shape. Therefore, there may be different sized augers 120 having different sized or shaped compartments 134, and/or different sized overall blade 125 in a circumferential dimension, and different sized height of the auger 120. A more common shape of the compartment 134 may be a circular compartment for accepting circular columns 115. But, other shapes may be employed, such as a square, oval, rectangle, or the like to match expected shapes of columns for an application. The column 115 may be a solid or hollow column and may be inserted into, or coupled with, the auger 120, such as by sliding the column 115 into the auger 120. The outer circumference of the column 115 slideably couples with the inner circumference of the wall 135. A retaining mechanism 137, such as, e.g., a bolt, may be used to hold the column within the auger 120 so that a rotation force 130 can be imparted to the column 115 and the auger 120 for driving or turning the column 115 and auger 120 into the ground 111 from the surface 110.


The blade 125 of the auger 120 may be a continuous blade or may be a discontinuous blade. That is, the blade does not have to be continuously spiraled about the wall 135, but may have breaks or interruptions. The blade 125 may also have serrations on its edge to help bite into the ground 111. The blade 125 and wall 135 may comprise an expandable metal. Once set into the ground 111, the combination of column 115 and auger 120 become bonded together once the expandable metal of the wall 135 hydrolyzes. Moreover, the expandable metal of the auger 120 also expands outwardly into the ground 111 increasing support strength even more. The expandable metal of the auger 120 also tends to heal itself over time if any damage or stress fractures develop. Hydrolyzing fluid may be supplied from the surface 110 or, water in the ground 111 may provide the hydrolyzing fluid as water, which can come from rain.


In an embodiment, the column 115 may be pre-bonded to the auger 120 before installation by inserting the column 115 into the auger 120 and hydrolyzing the expandable metal so that the column 115 and auger 120 are bonded together. This embodiment may not require a securing mechanism 137 to hold the column 115 and auger 120 together for rotation 130.


In an embodiment, the metallic material used can be a metal alloy. The metal alloy can be an alloy of the base metal with other elements in order to either adjust the strength of the metal alloy, to adjust the reaction time of the metal alloy, or to adjust the strength of the resulting metal hydroxide byproduct, among other adjustments. The metal alloy can be alloyed with elements that enhance the strength of the metal such as, but not limited to, Al-Aluminum, Zn-Zinc, Mn-Manganese, Zr-Zirconium, Y-Yttrium, Nd-Neodymium, Gd-Gadolinium, Ag-Silver, Ca-Calcium, Sn-Tin, and Re-Rhenium, Cu-Copper. In some embodiments, the alloy can be alloyed with a dopant that promotes corrosion, such as Ni-Nickel, Fe-Iron, Cu-Copper, Co-Cobalt, Ir-Iridium, Au-Gold, C-Carbon, gallium, indium, mercury, bismuth, tin, and Pd-Palladium. The metal alloy can be constructed in a solid solution process where the elements are combined with molten metal or metal alloy. Alternatively, the metal alloy could be constructed with a powder metallurgy process. The expandable metal sleeve 121 can be cast, forged, extruded, or a combination thereof.


The expanding metal rods 325, 330 may be pre-sized to approximate the inner diameter and shape of the core 335, but with sufficient tolerance to still slide through the core 335. Therefore, there may be different sized expanding metal rods 325, 330 of different diameters for insertion into a column 315 of a particular sized core 325.


One or more of expanding metal rods 325, 330 may be driven past the bottom end 340 of the column 315 so that the expanding metal rods hydrolyze and expand to provide a strong base, as well as reinforce the inner diameter of the column 315 near the bottom end 340. This will also keep the column 315 dry to prevent rust or rot. Moisture present typically will be absorbed by the expanding metal rods 325, 330. Moreover, the base formed by the expanding metal rods 325, 330 is less likely to crack, and if it does crack will tend to heal itself. The column 315 may be hollow and have an inner circumference about an interior surface, and also may have any shape such as round, oval, square, or the like.


The expandable metal described in relation to FIGS. 1-3 may be granulated, or the expandable metal may be machined as a preformed device to any specific size/shape, extruded, formed, cast or other conventional ways to produce the desired shape of an expandable metal sleeve 121, auger 120, or expanding metal rods 325, 330. The expandable metal may have a thickness that supplies a desired strength before and after hydrolysis. For example, the overall width D of expandable metal sleeve 121 may be selected from a range of about 2″ to about 16″, but can be more or less, and may depend on the column 105 size to be used. The thickness of expandable metal of the blades 125 may be selected from a range of about 0.25″ to about 1.0″, but can be more or less. The diameter of the expanding metal rods 325, 330 may be selected from a range of about 1.0″ to about 8.0″, but can be more or less, and may depend on column size to be used.


In general, and in relation to the previously described uses of the expandable metal of FIGS. 1-3, the hydrolysis of any metal can create a metal hydroxide. The formative properties of alkaline earth metals (Mg-Magnesium, Ca-Calcium, etc.) and transition metals (Zn-Zinc, Al-Aluminum, etc.) under hydrolysis reactions demonstrate structural characteristics that are favorable for use with the present disclosure. Hydration results in an increase in size from the hydration reaction and results in a metal hydroxide that can precipitate from the fluid.


The hydration reactions for magnesium is:

Mg+2H2O→Mg(OH)2+H2,

where Mg(OH)2 is also known as brucite. Another hydration reaction uses aluminum hydrolysis. The reaction forms a material known as Gibbsite, bayerite, and norstrandite, depending on form. The hydration reaction for aluminum is:

Al+3H2O→Al(OH)3+ 3/2H2.


Another hydration reactions uses calcium hydrolysis. The hydration reaction for calcium is:

Ca+2H2O→Ca(OH)2+H2,

Where Ca(OH)2 is known as portlandite and is a common hydrolysis product of Portland cement. Magnesium hydroxide and calcium hydroxide are considered to be relatively insoluble in water. Aluminum hydroxide can be considered an amphoteric hydroxide, which has solubility in strong acids or in strong bases.


In an embodiment, the metallic material used can be a metal alloy. The metal alloy can be an alloy of the base metal with other elements in order to either adjust the strength of the metal alloy, to adjust the reaction time of the metal alloy, or to adjust the strength of the resulting metal hydroxide byproduct, among other adjustments. The metal alloy can be alloyed with elements that enhance the strength of the metal such as, but not limited to, Al-Aluminum, Zn-Zinc, Mn-Manganese, Zr-Zirconium, Y-Yttrium, Nd-Neodymium, Gd-Gadolinium, Ag-Silver, Ca-Calcium, Sn-Tin, and Re-Rhenium, Cu-Copper. In some embodiments, the alloy can be alloyed with a dopant that promotes corrosion, such as Ni-Nickel, Fe-Iron, Cu-Copper, Co-Cobalt, Ir-Iridium, Au-Gold, C-Carbon, gallium, indium, mercury, bismuth, tin, and Pd-Palladium. The metal alloy can be constructed in a solid solution process where the elements are combined with molten metal or metal alloy. Alternatively, the metal alloy could be constructed with a powder metallurgy process. The expandable metal sleeves 160a, 160b can be cast, forged, extruded, or a combination thereof.


Optionally, non-expanding components may be added to the starting expanding metal materials. For example, ceramic, elastomer, glass, or non-reacting metal components can be embedded in the expanding metal or coated on the surface of the expanding metal. Alternatively, the starting metal may be the metal oxide. For example, calcium oxide (CaO) with water will produce calcium hydroxide in an energetic reaction. Due to the higher density of calcium oxide, this can have a 260% volumetric expansion where converting 1 mole of CaO goes from 9.5 cc to 34.4 cc of volume. In one variation, the expanding metal is formed in a serpentinite reaction, a hydration and metamorphic reaction. In one variation, the resultant material resembles a mafic material. Additional ions can be added to the reaction, including silicate, sulfate, aluminate, and phosphate. The metal can be alloyed to increase the reactivity or to control the formation of oxides.


The expandable metal can be configured as a preformed device in many different fashions, as long as an adequate volume of material is available for fully expanding to provide column support. Additionally, a coating may be applied to one or more portions of the expandable metal to delay the expanding reactions.


The use of the expandable metals as described herein does not require any use of cement or mortar to set columns, pilings, posts, vertical structures or the like. The use of the expandable metals as described herein provides a long term solution for self-healing cracks or defects that might arise from use, and may be left in the ground permanently.


The following paragraphs include an alternate description of certain aspects of the disclosure.


Clause 1: An apparatus for setting a column into the ground, comprising a preformed device comprising an expandable metal that expands in response to hydrolysis, the preformed device having at least one circumference, wherein the at least one circumference of the preformed device is sized to couple with a surface of a column having a circumference of about the same dimension as the at least one circumference of the preformed device for setting the column into the ground.


Clause 2: The apparatus of clause 1, wherein the at least one circumference is formed by a surface of an inner wall of the preformed device, and the surface of the column comprises an outer surface of the column.


Clause 3: The apparatus of clauses 1 or 2, wherein the preformed device comprises a sleeve with a cavity formed therewithin, the cavity having an inner surface, the circumference of the inner surface being the at least one circumference.


Clause 4: The apparatus of clauses 1 or 2, wherein the preformed device comprises an auger.


Clause 5: The apparatus of clause 4, wherein the auger comprises a spiral blade configured about a wall, the wall also forming a hollow compartment for receiving the column therewithin, an inner circumference of the wall being the at least one circumference, wherein the spiral blade and the wall comprises expandable metal.


Clause 6: The apparatus of clauses 4 or 5, further comprising a retaining mechanism configured to secure the auger to the column during rotation of the auger.


Clause 7: The apparatus of clause 1, wherein the at least one circumference is formed by an outer surface of the preformed device and the surface of the column comprises and inner surface of the column.


Clause 8: The apparatus of clause 7, wherein the preformed device is insertable into a core of the column formed by the inner surface.


Clause 9: The apparatus of clause 8, wherein the preformed device comprises an expanding metal rod that expands in response to hydrolysis and is drivable through the column for setting the column into the ground.


Clause 10: The apparatus of any one of clauses 1-9, wherein the at least one circumference of the preformed device is circular.


Clause 11: An apparatus for setting a column into the ground, comprising: a preformed device comprising an expandable metal that expands in response to hydrolysis, the preformed device having a circumference sized and shaped to match a circumference of a column for setting the column into the ground.


Clause 12: The apparatus of clause 11, wherein the preformed device comprises a sleeve having a wall with an internal circumference for receiving the column therewithin.


Clause 13: The apparatus of clause 12, wherein the sleeve is configured to be driven into the ground by the column, and the sleeve is configured to be hydrolyzed while in the ground.


Clause 14: The apparatus of clause 11, wherein the preformed device comprises an auger with blades, the auger configured to receive the column therewithin for setting the column in the ground, the auger and blades hydrolysable in the ground.


Clause 15: The apparatus of clause 11, wherein the preformed device comprises an expanding metal rod that is drivable through the column for setting the column into the ground, and expanding metal rod is hydrolyzable in the ground.


Clause 16: A method comprising: providing at least one preformed device comprising an expandable metal that expands in response to hydrolysis, the at least one preformed device having at least one circumference, wherein the at least one circumference of the at least one preformed device is sized to couple with a surface of a column having a circumference of about the same dimension as the at least one circumference of the preformed device; and setting the column into the ground using the preformed device.


Clause 17: The method of clause 16, wherein in the providing step, the preformed device comprises a sleeve having a wall with an internal circumference for receiving the column therewithin, and the sleeve is configured to be driven into the ground by the column, and the sleeve is configured to be hydrolyzed while in the ground.


Clause 18: The method of clause 16, wherein in the providing step, the preformed device comprises an auger with blades, the auger configured to receive the column therewithin for setting the column in the ground, the auger and blades hydrolyzable in the ground.


Clause 19: The apparatus of clause 16 wherein in the providing step, the preformed device comprises an expanding metal rod that is drivable through the column for setting the column into the ground, and hydrolyzes in the ground.


Clause 20: The apparatus of clause 16, wherein in the providing step, the at least one circumference of the at least one preformed device is circular.


While the disclosure has been described in terms of exemplary embodiments, those skilled in the art will recognize that the disclosure can be practiced with modifications in the spirit and scope of the appended claim, drawings and attachment. The examples provided herein are merely illustrative and are not meant to be an exhaustive list of all possible designs, embodiments, applications or modifications of the disclosure.

Claims
  • 1. An apparatus for setting a column into the ground, comprising: a column;a preformed device comprising an expandable metal that expands in response to hydrolysis, the preformed device having at least one circumference, wherein the at least one circumference of the preformed device is sized to couple with a surface of the column having a circumference of about the same dimension as the at least one circumference of the preformed device for setting the column into the ground; andgranular expandable metal configured to be placed within an interior of the column.
  • 2. The apparatus of claim 1, wherein the at least one circumference is formed by a surface of an inner wall of the preformed device, and the surface of the column comprises an outer surface of the column.
  • 3. The apparatus of claim 1, wherein the preformed device comprises a sleeve with a cavity formed therewithin, the cavity having an inner surface, the circumference of the inner surface being the at least one circumference.
  • 4. The apparatus of claim 1, wherein the preformed device comprises a auger.
  • 5. The apparatus of claim 4, wherein the auger comprises a spiral blade configured about a wall, the wall also forming a hollow compartment for receiving the column therewithin, an inner circumference of the wall being the at least one circumference, wherein the spiral blade and the wall comprises expandable metal.
  • 6. The apparatus of claim 4, further comprising a retaining mechanism configured to secure the auger to the column during rotation of the auger.
  • 7. The apparatus of claim 1, wherein the at least one circumference is formed by an outer surface of the preformed device and the surface of the column comprises an inner surface of the column.
  • 8. The apparatus of claim 7, wherein the preformed device is insertable into a core of the column formed by the inner surface.
  • 9. The apparatus of claim 8, wherein the preformed device comprises an expanding metal rod that expands in response to hydrolysis and is drivable through the column for setting the column into the ground.
  • 10. The apparatus of claim 1, wherein the at least one circumference of the preformed device is circular.
  • 11. An apparatus for setting a column into the ground, comprising: a preformed device comprising an expandable metal that expands in response to hydrolysis, the preformed device having a circumference sized and shaped to match a circumference of a column for setting the column into the ground; andgranular expandable metal configured to be placed within an interior of the column.
  • 12. The apparatus of claim 11, wherein the preformed device comprises a sleeve having a wall with an internal circumference for receiving the column therewithin.
  • 13. The apparatus of claim 12, wherein the sleeve is configured to be driven into the ground by the column, and the sleeve is configured to be hydrolyzed while in the ground.
  • 14. The apparatus of claim 11, wherein the preformed device comprises an auger with blades, the auger configured to receive the column therewithin for setting the column in the ground, the auger and blades hydrolysable in the ground.
  • 15. The apparatus of claim 11, wherein the preformed device comprises an expanding metal rod that is drivable through the column for setting the column into the ground, and expanding metal rod is hydrolyzable in the ground.
  • 16. A method comprising: providing at least one preformed device comprising an expandable metal that expands in response to hydrolysis, the at least one preformed device having at least one circumference, wherein the at least one circumference of the at least one preformed device is sized to couple with a surface of a column having a circumference of about the same dimension as the at least one circumference of the preformed device;setting the column into the ground using the preformed device; andpouring granular expandable metal within an interior of the column.
  • 17. The method of claim 16, wherein in the providing step, the preformed device comprises a sleeve having a wall with an internal circumference for receiving the column therewithin, and the sleeve is configured to be driven into the ground by the column, and the sleeve is configured to be hydrolyzed while in the ground.
  • 18. The method of claim 16, wherein in the providing step, the preformed device comprises an auger with blades, the auger configured to receive the column therewithin for setting the column in the ground, the auger and blades hydrolyzable in the ground.
  • 19. The method of claim 16 wherein in the providing step, the preformed device comprises an expanding metal rod that is drivable through the column for setting the column into the ground, and hydrolyzes in the ground.
  • 20. The method of claim 16, wherein in the providing step, the at least one circumference of the at least one preformed device is circular.
US Referenced Citations (173)
Number Name Date Kind
1982569 Byrdartherj Nov 1934 A
3046601 Hubbert et al. Jul 1962 A
3385367 Kollsman May 1968 A
4445694 Flaherty May 1984 A
4612985 Rubbo et al. Sep 1986 A
4846278 Robbins Jul 1989 A
5139235 Kilmer Aug 1992 A
5163321 Perales Nov 1992 A
5803177 Hriscu et al. Sep 1998 A
6098717 Bailey et al. Aug 2000 A
6321861 Leichter Nov 2001 B1
6367845 Otten et al. Apr 2002 B1
6443881 Finger et al. Sep 2002 B1
6581682 Parent et al. Jun 2003 B1
6640893 Rummel et al. Nov 2003 B1
6695061 Fripp et al. Feb 2004 B2
7007910 Krinner Mar 2006 B1
7040404 Brothers et al. May 2006 B2
7387158 Murray et al. Jun 2008 B2
7431082 Holt et al. Oct 2008 B2
7543639 Emerson Jun 2009 B2
7562704 Wood et al. Jul 2009 B2
7578347 Bosma et al. Aug 2009 B2
7591319 Xu Sep 2009 B2
7909110 Sharma et al. Mar 2011 B2
7931079 Nicholson Apr 2011 B2
7984762 Renshaw et al. Jul 2011 B2
8083000 Nutley et al. Dec 2011 B2
8235075 Saltel Aug 2012 B2
8240377 Kulakofsky et al. Aug 2012 B2
8434571 Kannan et al. May 2013 B2
8490707 Robisson et al. Jul 2013 B2
8499843 Patel et al. Aug 2013 B2
8776899 Fripp et al. Jul 2014 B2
9033046 Andrew et al. May 2015 B2
9091133 Stewart et al. Jul 2015 B2
9133683 Dyer et al. Sep 2015 B2
9404030 Mazyar et al. Aug 2016 B2
9518453 Dilber et al. Dec 2016 B2
9605508 Xu Mar 2017 B2
9624752 Resink Apr 2017 B2
9725979 Mazyar et al. Aug 2017 B2
9745451 Zhao et al. Aug 2017 B2
9856710 Zhu et al. Jan 2018 B2
9869152 Gamstedt et al. Jan 2018 B2
9976380 Davis et al. May 2018 B2
10119011 Zhao et al. Nov 2018 B2
10364636 Davis et al. Jul 2019 B2
10428624 Vasques Oct 2019 B2
10704362 Themig et al. Jul 2020 B2
10851615 Watson et al. Dec 2020 B2
10961804 Fripp et al. Mar 2021 B1
20020125008 Wetzel et al. Sep 2002 A1
20030150614 Brown et al. Aug 2003 A1
20030159829 Fripp et al. Aug 2003 A1
20040118572 Whanger et al. Jun 2004 A1
20040149418 Bosma et al. Aug 2004 A1
20040244994 Jackson Dec 2004 A1
20050039927 Wetzel et al. Feb 2005 A1
20050092485 Brezinski et al. May 2005 A1
20050171248 Li et al. Aug 2005 A1
20050199401 Patel et al. Sep 2005 A1
20050257961 Snell et al. Nov 2005 A1
20060175065 Ross Aug 2006 A1
20070089911 Moyes Apr 2007 A1
20070095532 Head et al. May 2007 A1
20070125532 Murray et al. Jun 2007 A1
20070200299 Kunz Aug 2007 A1
20070257405 Freyer Nov 2007 A1
20080066931 Xu Mar 2008 A1
20080142214 Keller Jun 2008 A1
20080149351 Marya et al. Jun 2008 A1
20080185150 Brown Aug 2008 A1
20080185158 Chalker et al. Aug 2008 A1
20080220991 Slay et al. Sep 2008 A1
20090020286 Johnson Jan 2009 A1
20090120640 Kulakofsky et al. May 2009 A1
20090130938 Xu et al. May 2009 A1
20090173505 Patel et al. Jul 2009 A1
20090179383 Koloy et al. Jul 2009 A1
20090188569 Saltel Jul 2009 A1
20090242189 Vaidya et al. Oct 2009 A1
20090242214 Foster et al. Oct 2009 A1
20090272546 Nutley et al. Nov 2009 A1
20090277651 Kilgore Nov 2009 A1
20090277652 Nutley et al. Nov 2009 A1
20100038074 Patel Feb 2010 A1
20100139930 Patel et al. Jun 2010 A1
20100163252 Regnault De La Mothe et al. Jul 2010 A1
20100212891 Stewart et al. Aug 2010 A1
20100270031 Patel Oct 2010 A1
20100307770 Sponchia et al. Dec 2010 A1
20110073310 Clemens Mar 2011 A1
20110098202 James et al. Apr 2011 A1
20110174504 Wright et al. Jul 2011 A1
20110226374 Kalman Sep 2011 A1
20110252879 Madhavan et al. Oct 2011 A1
20110253393 Vaidya et al. Oct 2011 A1
20120006530 Crabb et al. Jan 2012 A1
20120055667 Ingram et al. Mar 2012 A1
20120073834 Lembcke Mar 2012 A1
20120132427 Renshaw et al. May 2012 A1
20120175134 Robisson et al. Jul 2012 A1
20120205092 Givens et al. Aug 2012 A1
20120272546 Tsai Nov 2012 A1
20120292013 Munshi et al. Nov 2012 A1
20120292023 Hinkie et al. Nov 2012 A1
20120318513 Mazyar et al. Dec 2012 A1
20130056196 Hench Mar 2013 A1
20130056227 Sponchia Mar 2013 A1
20130056228 Gruetzmann et al. Mar 2013 A1
20130146312 Gerrard et al. Jun 2013 A1
20130248179 Yeh et al. Sep 2013 A1
20140051612 Mazyar et al. Feb 2014 A1
20140054047 Zhou Feb 2014 A1
20140060815 Wang et al. Mar 2014 A1
20140102728 Gamstedt et al. Apr 2014 A1
20140231086 Jamison et al. Aug 2014 A1
20140238692 Watson Aug 2014 A1
20140251641 Marya et al. Sep 2014 A1
20140262351 Derby Sep 2014 A1
20140318780 Howard Oct 2014 A1
20140354443 Roberson et al. Dec 2014 A1
20140361497 Porta Dec 2014 A1
20150021044 Davis et al. Jan 2015 A1
20150060064 Lafferty et al. Mar 2015 A1
20150101813 Zhao et al. Apr 2015 A1
20150199401 Polehn et al. Jul 2015 A1
20150267501 Al-Gouhi Sep 2015 A1
20150275644 Chen et al. Oct 2015 A1
20150308214 Bilansky et al. Oct 2015 A1
20150344772 Droger et al. Dec 2015 A1
20150369027 Jones et al. Dec 2015 A1
20160032696 Caccialupi et al. Feb 2016 A1
20160137912 Sherman May 2016 A1
20160138359 Zhao et al. May 2016 A1
20160145965 Zhao et al. May 2016 A1
20160194933 O'Brien et al. Jul 2016 A1
20160201425 Walton et al. Jul 2016 A1
20160215604 Potapenko Jul 2016 A1
20160230495 Mazyar et al. Aug 2016 A1
20160319633 Cooper et al. Nov 2016 A1
20160376869 Rochen et al. Dec 2016 A1
20160376870 Roselier et al. Dec 2016 A1
20170122062 Freyer May 2017 A1
20170191343 Solhaug Jul 2017 A1
20170234103 Frazier Aug 2017 A1
20170335673 Burke et al. Nov 2017 A1
20180078998 Sherman Mar 2018 A1
20180085154 Kulper et al. Mar 2018 A1
20180087346 Rochen Mar 2018 A1
20180087350 Sherman Mar 2018 A1
20180266215 Fagley, IV et al. Sep 2018 A1
20180355691 Andersen Dec 2018 A1
20180355693 Al-Abduljabbar et al. Dec 2018 A1
20190017285 Kain Jan 2019 A1
20190055808 Krueger Feb 2019 A1
20190055839 Skillingstad et al. Feb 2019 A1
20190128074 Stokes et al. May 2019 A1
20190153852 Lallemand et al. May 2019 A1
20190203101 Dusterhoft et al. Jul 2019 A1
20190249509 Jakkula et al. Aug 2019 A1
20190360297 Heiman et al. Nov 2019 A1
20200240235 Fripp et al. Jul 2020 A1
20200325749 Fripp et al. Oct 2020 A1
20200370391 Fripp et al. Nov 2020 A1
20210017441 Fripp et al. Jan 2021 A1
20210079756 Ornelaz et al. Mar 2021 A1
20210140255 Greci et al. May 2021 A1
20210189817 Fripp et al. Jun 2021 A1
20210332659 Fripp et al. Oct 2021 A1
20210353037 Cote Nov 2021 A1
20220074221 Laimbeer Mar 2022 A1
Foreign Referenced Citations (46)
Number Date Country
2751473 Aug 2010 CA
2751473 Sep 2014 CA
3085547 Aug 2019 CA
1708631 Dec 2005 CN
102027189 Apr 2011 CN
104583530 Apr 2015 CN
105422146 Mar 2016 CN
106522923 Mar 2017 CN
107148444 Sep 2017 CN
107250321 Oct 2017 CN
107532466 Jan 2018 CN
2399000 Dec 2011 EP
2217790 Oct 2016 EP
2753791 Jun 2017 EP
3073549 May 2019 FR
2381278 Apr 2003 GB
2416796 Feb 2006 GB
2469723 Oct 2010 GB
2514195 Jun 2019 GB
2583232 Oct 2020 GB
2557397 Aug 2021 GB
2011008597 Sep 2011 MX
2424419 Jul 2011 RU
2588501 Jun 2016 RU
182236 Aug 2018 RU
0026501 May 2000 WO
2008079486 Jul 2008 WO
2010096417 Aug 2010 WO
2012090056 Jul 2012 WO
2014098885 Jun 2014 WO
2014110382 Jul 2014 WO
2014210283 Dec 2014 WO
2016171666 Oct 2016 WO
2018005740 Jan 2018 WO
2018057361 Mar 2018 WO
2018085102 May 2018 WO
2018147833 Aug 2018 WO
2019094044 May 2019 WO
2019147285 Aug 2019 WO
2019164492 Aug 2019 WO
2019164499 Aug 2019 WO
2020005252 Jan 2020 WO
2020018110 Jan 2020 WO
2020068037 Apr 2020 WO
2021021203 Feb 2021 WO
2021076141 Apr 2021 WO
Non-Patent Literature Citations (43)
Entry
International Search Report and Written Opinion dated Aug. 2, 2018, International PCT Application No. PCT/US2017/061307.
Search Report in FR Application No. 1859379, dated Oct. 15, 2019.
International Search Report and Written Opinion dated Nov. 19, 2018; International PCT Application No. PCT/US2018/019337.
Denmark Examination Report and Search Report dated Mar. 16, 2021, Denmark Application No. PA202070389.
International Search Report and Written Opinion dated Jul. 8, 2020, issued in related International Application No. PCT/US2019/056814.
International Search Report and Written Opinion for corresponding PCT International Application No. PCT/US2019/068497; dated Sep. 17, 2020.
International Search report and Written Opinion for corresponding International Patent Application No. PCT/US2019/062225, dated Aug. 11, 2020.
International Search report and Written Opinion issued in related PCT/US2019/068493 dated Sep. 15, 2020.
NEMISIS Annulus Swellable Packer, Weatherford, Swellable Products, 2009-2011.
International Search Report and Written Opinion date dated Nov. 22, 2019; International PCT Application No. PCT/US2019/019210.
International Search Report and Witten Opinion dated May 20, 2020, issued in related PCT/US2019/047529.
Tao, Solid expandable tubular patching technique for high-temperature and high-pressure casing damaged wells, Research Paper, Jun. 2015, pp. 408-413, Petroleum Exploration and Development, vol. 42, Issue 3.
Dutch Search Report issued in NL 2026726, dated Aug. 13, 2021.
International Search Report and Written Opinion in PCT/US2020/066193, dated Sep. 8, 2021.
Search Report and Written Opinion issued in NL2026329, dated Aug. 13, 2021.
Written Opinion and Search Report in SG Appln No. 11202000316S, dated Aug. 30, 2021.
Dutch Search Report in NL Appln No. 2026737, dated Aug. 13, 2021.
Examination Report in GCC Appln No. GC 2020-39914, dated Jul. 29, 2021.
Office Action in CA Appln No. 3,070,929, dated Jul. 9, 2021.
International Search Report & Written Opinion in PCT/US2019/042074 dated Apr. 10, 2020.
Search Report in NL Appln No. 2025837, dated Sep. 23, 2021.
Office Action in CA Application No. 3,070,929 dated Nov. 19, 2021.
International Search Report & Written Opinion in PCT/US2019/017538, dated Nov. 11, 2019.
Chinese Search Report dated Dec. 17, 2021; CN Application No. 2018800875885.
Examination Report in GB Appln No. 2010931.0 dated Jan. 18, 2022.
International Search Report & Written Opinion in PCT/US2020/065539, dated Aug. 30, 2021.
International Search Report & Written Opinion in PCT/US2019/058904, dated Jul. 23, 2020.
Netherlands Search Report in Application No. 2025954, dated Mar. 2, 2021.
International Search Report and Written Opinion in PCT/US2019/044542, dated Apr. 28, 2020.
Examination Report in GCC Application No. GC 2020-40201, dated Aug. 31, 2021.
French Search Report issued in FR Appln No. FR2006166, dated May 30, 2022.
International Search Report & Written Opinion in PCT/US2021/048628 dated May 19, 2022.
International Search Report & Written Opinion in PCT/US2021/027245 dated Jan. 10, 2022.
International Search Report and Written Opinion in PCT/US2021/032983, dated Feb. 10, 2022.
Netherlands Search Report in Application No. 2026573 dated Aug. 20, 2021.
Russian Office Action in RU Application No. 2021121198, dated Nov. 25, 2021.
GC Examination Report in GC Application No. 2019-38908, dated Nov. 4, 2020.
GC Examination Report in GC Application No. 2020-40475, dated Nov. 25, 2021.
MY Search Report in MY Application No. PI2020003430, dated May 26, 2022.
GB Examination Report in Application No. 2010931.0 dated Apr. 5, 2022.
DK Examination Report in Application No. PA 202070389, dated Oct. 20, 2021.
International Preliminary Report on Patentability in PCT/US2019/068493, dated Jun. 30, 2022.
International Preliminary Report on Patentability in PCT/US2019/068497, dated Jun. 30, 2022.
Related Publications (1)
Number Date Country
20220325552 A1 Oct 2022 US