In downhole wellbore environments, well casing can be damaged, e.g. during well development and during production due to corrosion and erosion or perforations in a well casing that were perforated in a wrong location or perforations in well location that is no longer needed or desirable for production. As such, there is a need to patch damaged well casing in downhole well environments. Casing patches are commonly used in the well services industry to repair damaged casing. Casing patches currently in use utilize blank pipes, i.e. or deformable metal pipes or plastic pipes, which requires sophisticated expansion techniques, and elastomers to achieve a seal. However, to create a case patch using the aforementioned materials is expensive and requires the downhole casing to be in good condition, which obviously defeats the purpose of needing a casing patch and, therefore, limits the application of these materials. Furthermore, due to the inadequacies of the aforementioned materials and conditions in downhole well environments the seal is unreliable, temporary, and can significantly reduce the Internal Diameter (ID) of production tubing.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts, which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative and do not delimit the scope of the present disclosure. In the interest of clarity, not all features of an actual implementation may be described in the present disclosure. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Presented herein is a disclosure of a simpler, more reliable, less expensive, effective system, method, and apparatus for repairing damaged well casing in a downhole environment. Specifically, a metal sealant, expandable in response to chemical reaction, presented herein replaces traditional methods, such as elastomers and deformable metal, to repair damaged well casing. A casing patch can be created by placing a metal sealant over a tubular, i.e. mandrel, and ran downhole. Once in a desired location, the casing patch can be anchored by a means of weighting and/or a means of expansion, e.g. using splits and/or a packer. Once anchored, fluid can be pumped downhole causing the metal sealant to chemically react, to expand, and to create a pressure tight seal against the casing in the well. The seal acts as a pressure barrier as well as provides additional anchoring force for the tubular.
Referring now to
Referring now to
In should be understood that the base 32 may not be necessary in all applications. In another option, the base 32 can be constructed from a degradable material, such as a degradable metal or a degradable polymer. The degradable material reacts at a slower rate than the expanding metal so that the metal expands and creates the seal before the degradable material degrades and loses structural support. For example, the expanding metal can form its seal at 2× the rate to 100× the rate that the degradable material takes to degrade. Once the expanded metal has formed its seal, then the degradable supporting materials can degrade and allow for a greater flow area.
Referring now to
As previously stated, the predetermined amount of force can be defined as an amount of force necessary to expand the casing patch 24, i.e. the first section, so that an outer diameter of the casing patch 24 is equal to or approximately equal to the ID of the well casing 18. The predetermined thickness of the metal sealant 30 can be determined by the diameter of the metal sealant 30 after expanding and hardening and the ID of the well casing 18. The metal sealant 30 should be designed in such away that is affective at creating a seal without causing additional damage to the well casing 18. Obviously, the dimensions of the tool, the predetermined amount of force, and the predetermined thickness are determined based on the ID of the well casing.
Referring now to
The compounds and reactions of the metal sealant can be defined by the following equation: Metal+water->Metal hydroxide+H2 gas.
The metal hydroxide forms a hard cement-like barrier. The metal can be any metal that forms this reaction but is preferably magnesium, aluminum, calcium, or alloys that contain those metals. The chemical reactions for these preferred metals are defined by the following equations:
Mg+2H2O->Mg(OH)2+H2 Eq. (1)
Al+3H2O->Al(OH)3+3/2H2 Eq. (2)
Ca+H2O->Ca(OH)2 Eq. (3)
Equation 1 is a hydration reaction that uses magnesium metal, where Mg(OH)2 is a hard cement-like barrier. Equation 2 is a hydration reaction that uses aluminum metal. Equation 3 is a hydration reaction that uses calcium metal, where Ca(OH)2 is known as portlandite. The hydrated metals are considered to be relatively insoluble in water. The water-based chemical reaction of any metal can create a metal hydroxide. The metals described above are alkaline earth metal (Mg and Ca) or a transition metal (Al) used in the hydrolysis reaction. However, other alkaline or transition metals can be used.
In an embodiment, the material used in the hydrolysis reaction is a magnesium alloy. The alloy elements to the magnesium can be at least one selected from the group comprising Al, Zn, Mn, Zr, Y, Nd, Gd, Ag, Ca, Sn, and RE. In some embodiments, the alloy is further alloyed with a dopant, such as Ni, Fe, Cu, Co, Ir, Au, and Pd, that accelerates the chemical reaction. In some embodiments, the alloy is alloyed with a dopant, such as Ga, Mg, that inhibits the formation of a passivation film that could limit the reaction. The metal alloy can be constructed in a solid solution process where the elements are combined with the molten metal or metal alloy. Alternatively, the metal alloy could be constructed with a powder metallurgy process. The metal can be heat treated with a precipitation process or a tempering process in order to change the size and distribution of the metal grains.
In some embodiments, the starting metal can be a metal oxide. For example, calcium oxide (CaO) with water produces calcium hydroxide in an energetic reaction. Due to the higher density of calcium oxide, this can have a 260% volumetric expansion where converting 1 mole of CaO goes from 9.5 cc to 34.4 cc of volume. In one variation, the metal sealant is formed in a serpentine reaction. Additional ions can be added to the reaction, including silicate, sulfate, aluminate, phosphate. The metal can be alloyed to increase the reactivity or to control the formation of oxides.
Referring now to
The above-disclosed embodiments have been presented for purposes of illustration and to enable one of ordinary skill in the art to practice the disclosure, but the disclosure is not intended to be exhaustive or limited to the forms disclosed. Many insubstantial modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The scope of the claims is intended to broadly cover the disclosed embodiments and any such modification. Further, the following clauses represent additional embodiments of the disclosure and should be considered within the scope of the disclosure:
Clause 1, a metal patch for patching a downhole well casing, the metal patch comprising: a metal sealant having a shape congruent with a section of the downhole well casing and transition-able from a first state to a second state in response to a chemical reaction with water; wherein the metal sealant in response to the chemical reaction with water expands;
Clause 2, the metal patch of clause 1 wherein the metal sealant is one of an alkaline earth metal and a transition metal;
Clause 3, the metal patch of clause 1 wherein the metal sealant is a compound of magnesium or aluminum and at least one alloying element, wherein the at least one alloying element is selected from a group consisting of Al, Zn, Mn, Zr, Y, Nd, Gd, Ag, Ca, Sn, and RE;
Clause 4, the metal patch of clause 3 wherein the metal sealant is alloyed with a dopant that promotes corrosion;
Clause 5, the metal patch of clause 3 wherein the at least one alloying element is an element that inhibits passivation;
Clause 6, the metal patch of clause 1 wherein the first state is one of: Mg+2H2O; Al+3H2O; and Ca+H2O;
Clause 7, the metal patch of clause 1 wherein the second state contains a solid that consists of one of: Mg(OH)2; Al(OH)3; and Ca(OH)2;
Clause 8, a method of using a metal patch for patching a well casing downhole in a wellbore environment, the method comprising: assembling a metal sealant with a base, wherein the metal sealant and the base have a diameter smaller than the diameter of a section of the well casing; coupling the assembled metal sealant and base to the well casing using a downhole running tool and expandable device; and wherein the metal sealant is transition-able from a first state to a second state in response to chemical reaction with a water-based fuid; wherein the metal sealant in response to chemical reaction with water expands and hardens;
Clause 9, the method of clause 8 wherein the metal sealant is one of an alkaline earth metal, a transition metal, and a metal oxide;
Clause 10, the method of clause 8 wherein the metal sealant is a compound of magnesium and at least one alloy, wherein the at least one alloy is selected from a group consisting of Al, Zn, Mn, Zr, Y, Nd, Gd, Ag, Ca, Sn, and RE;
Clause 11, the method of clause 10 wherein the at least one alloy is alloyed with a dopant that promotes corrosion;
Clause 12, the method of clause 10 wherein the at least one alloy is alloyed with a dopant that inhibits passivation;
Clause 13, The method of clause 9 wherein the first state is one of: Mg+2H2O; Al+3H2O; and Ca+H2O and wherein the second state is one of: Mg(OH)2+H2; Al(OH)3+3/2 H2; and Ca(OH)2;
Clause 14, a system for patching a downhole well casing, the system comprising: a base having a shape congruent with a section of the well casing; a metal sealant couple-able with the base and having a shape congruent with a section of the downhole well casing and transition-able from a first state to a second state in response to hydrolysis; and wherein the metal sealant in response to hydrolysis expands and hardens;
Clause 15, the system of clause 14 wherein the metal sealant is one of an alkaline earth metal, a transition metal, and a metal oxide;
Clause 16, the system of clause 14 wherein the metal sealant is a compound of magnesium and at least one alloy, wherein the at least one alloy is selected from a group consisting of Al, Zn, Mn, Zr, Y, Nd, Gd, Ag, Ca, Sn, and RE;
Clause 17, the system of clause 16 wherein the at least one alloy is alloyed with a dopant that promotes corrosion;
Clause 18, the system of clause 16 wherein the at least one alloy is alloyed with a dopant that inhibits passivation;
Clause 19, the system of clause 14 wherein the first state is one of: Mg+2H2O; Al+3H2O; and Ca+H2O; and
Clause 20, the system of clause 14 wherein the second state is one of: Mg(OH)2+H2; Al(OH)3+3/2 H2; and Ca(OH)2.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/047529 | 8/21/2019 | WO |