A variety of packers are used in wellbores to isolate specific wellbore regions. A packer is delivered downhole on a tubing string and a packer sealing element is expanded against the surrounding wellbore wall to isolate a region of the wellbore. Often, two or more packers can be used to isolate several regions in a variety of well related applications, including production applications, service applications and testing applications.
Some packers are constructed as inflatable packers that can be selectively inflated to form a seal in a wellbore. Inflatable packers generally are constructed on cylindrical mandrels by forming an inflatable bladder over a corresponding cylindrical mandrel to create a cylindrical bladder. The bladder is connected to metallic extremities and can be surrounded by additional layers. Inflation of the bladder causes expansion of the inflatable packer. However, the cylindrical, inflatable bladder either has a limited expansion ratio or requires use of materials that enable a greater expansion ratio. Materials that allow the greater expansion ratio can be susceptible to high temperatures, aggressive downhole fluids, and other factors that detrimentally affect the function and longevity of the packer.
In general, the application is directed to methods for operating an expandable packer. In one embodiment, a method includes deploying a packer into a wellbore, the packer having an expandable bladder with a radially enlargeable midsection disposed between a first bladder end and a second bladder end. The method further includes expanding the packer in the wellbore such that an expanded diameter of the midsection of the bladder is greater than a diameter of the first bladder end and the second bladder end. The method also includes retracting the packer to a diameter less than the expanded diameter by applying an axial force along the packer with an auto retract mechanism.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a system and method involving the creation of packers used to form seals within a wellbore. For example, many types of well production and treatment applications include isolating a specific region or regions along a wellbore. The isolated regions can be created by expanding one or more packers within the wellbore to separate regions along the wellbore with respect to each other.
In one embodiment, an expandable packer is formed with an expandable bladder that is created in a partially expanded configuration. In other words, the expandable bladder comprises a section of the bladder that extends in a radially outward direction when the expandable bladder is in a relaxed state. The system and methodology enable construction of a packer with a lower expansion ratio while still enabling expansion of the packer to the full diameters needed to form desired seals within the wellbore. The ability to construct a packer with lower expansion ratios ensures better packer performance, reduces the potential for wear and damage, and may allow the use of a greater variety of bladder materials and other packer component materials. The packer can be manufactured with a relatively large inner bladder diameter relative to the axial ends/extremities of the packer. The large diameter reduces bladder material elongation when the packer is expanded, e.g. inflated, thus reducing limitations otherwise caused by the diameter of the axial ends/extremities of the packer.
Referring generally to
In
Referring generally to
In the example illustrated, radially enlarged section 40 comprises a midsection bounded by bladder ends 42 that have a reduced diameter relative to radially enlarged section 40. Bladder ends 42 are designed to engage packer extremities 30 by, for example, being formed over the thin sections 36 of packer extremities 30. Depending on the material used to form expandable bladder 38, the formation process can vary. By way of example, expandable bladder 38 may be molded over manufacturing mandrel 22, radially expanded section 24, and thin sections 36; however other formation techniques can be used to create the expandable bladder 38, such as injection molding, compression molding and/or curing among other techniques. In some embodiments, materials used to form expandable bladder 38 include elastomeric materials, such as a variety of synthetic rubber materials and other rubber materials or mixtures of materials. In other embodiments, materials used to form expandable bladder 38 include an oil resistant rubber, such as NBR (Nitrile Butadiene Rubber), HNBR (Hydrogenated Nitrile Butadiene Rubber) and/or FKM (Fluoroelastomers). In a specific high performance desired application, the expandable bladder 38 is constructed of a high acrylonytrile HNBR rubber, such as an HNBR rubber having a percentage of acrylonytrile in the range of approximately 21 to approximately 49%. The use of manufacturing mandrel 22 and radially expanded section 24 enables creation of a radially enlarged section, e.g. section 40, that remains in its radially enlarged configuration when the bladder is in a relaxed, non-stressed state. As a result, when the packer 46 is inflated to a given diameter, the expansion ratio of inner, expandable bladder 38 is significantly reduced. The reduced expansion ratio can significantly enhance the performance of packer 46 by enabling selection of bladder materials more resistant to high temperatures, aggressive fluids, or other subterranean, well-related factors.
After forming expandable bladder 38 over manufacturing mandrel 22 and radially expanded section 24, a mechanical structure 44 may be mounted around the expandable bladder 38 to create an expandable packer 46. Depending on the desired applications for expandable packer 46 and the environments in which packer 46 is to be utilized, the configuration and materials of mechanical structure 44 can vary. For example, mechanical structure 44 may comprise individual or multiple layers. In some applications, mechanical structure 44 may comprise cables, slats, or other structures designed to enhance packer longevity and the formation of seals at desired wellbore locations. Additional layers also can be incorporated within mechanical structure 44 or along the exterior of mechanical structure 44. For example, mechanical structure 44 may include or be combined with an outer layer of seal material, such as a rubber material.
After constructing packer 46 over manufacturing mandrel 22 and radially expanded section 24, manufacturing mandrel 22 can be removed, as illustrated in
If radially expanded section 24 is formed with rigid, solid segments 28, the individual pieces of the radially expanded section 24 can be separated, as illustrated in
Referring generally to
Once the flared extensions 52 are moved into the overlapping configuration, the expandable bladder is formed over the flared extensions 52 to create the expandable bladder 38 with radially enlarged section 40, as illustrated in
In the example illustrated, radially enlarged section 40 again comprises a midsection bounded by bladder ends 42 that have a reduced diameter relative to radially enlarged section 40. However, the radially enlarged section 40 could be positioned at other locations along the bladder 38, such as closer to or at one of the bladder ends. Bladder ends 42 are designed to engage packer extremities 30 by, for example, being formed over the thin sections 36 of packer extremities 30. The thin sections 36 can be positioned and constructed to serve as a link or connection between flared sections 52 and the corresponding thick sections 34 of packer extremities 30. As described above, a variety of expandable materials, for example elastomeric materials, such as rubber materials, synthetic rubbers and/or oil resistant rubbers, can be used to construct expandable bladder 38.
After forming expandable bladder 38 over manufacturing mandrel 22 and radially flared sections 52, the mechanical structure 44 is mounted around the expandable bladder 38 to create expandable packer 46, as illustrated in
Referring generally to
By way of example, the auto retract mechanism 56 may comprise a piston actuator or a spring connected to packer extremity 30 and oriented to bias (or to enable actuation of) the expandable bladder 38 to its full lineal length, as illustrated in
In some applications, the auto retract mechanism system can be designed so its external diameter allows it to fit within the inner diameter of the expandable bladder 38 after manufacturing. In this design, the auto retract mechanism is set during manufacturing and the overall packer assembly is simplified. When the packer 46 is forced to deflate by using the auto retract mechanism 56 to pull the packer in an axial direction, the expandable bladder is not deflated below its manufacturing diameter. In some embodiments, an anti-extrusion member can be positioned to cooperate with the auto retract mechanism 56 to prevent damage during packer deflation if the inner pressure within the packer is lowered below hydrostatic pressure.
Regardless of whether the auto retract mechanism 56 is incorporated into the packer design, the expandable bladder 38 and overall packer 46 can be selectively expanded, e.g. inflated, into sealing engagement with a surrounding surface, such as wellbore wall surface 48, as illustrated in
In operation, the packer 46 can be mounted on the well tool 58, e.g. a tool string, for movement downhole to a desired well location before being set against a wellbore surface 48. The packer 46 can be mounted to well tool 58 by fixing one of the packer extremities 30, e.g. the upper extremity, with respect to the well tool which prevents the fixed packer extremity from moving during translation of the packer. The bottom packer extremity 30 is able to slide along the well tool 58 to allow axial shortening of the packer when the packer 46 is radially expanded. In some applications, auto retract mechanism 56 can be added to the packer and connected, for example, to the bottom extremity 30 of the packer 46 to enable forced deflation of the packer by applying a pulling force. If the auto retract mechanism is utilized, the stroke of the mechanism is selected to enable full inflation of packer 46.
Expandable packer 46 can be constructed in a variety of configurations for use in many environments and applications. For example, the packer 46 can be constructed in different diameters and lengths with many types of expandable bladders, mechanical structures, and other layers able to facilitate actuation of the packer and sealing of the packer at a desired wellbore location. Furthermore, the radially enlarged section 40 of expandable bladder 38 can be formed with different ratios relative to the diameter of one or more bladder ends 42. In some applications, the radially enlarged section 40 can be selected so the overall diameter of the packer at the radially enlarged section is relatively close to the diameter of the packer when fully inflated. Accordingly, the expansion ratio of the expandable bladder 38 can be reduced to various selected ratios depending on the desired packer applications and on the materials used in constructing bladder 38. By way of example, the radially enlarged section 40 can be selected so the material of expandable bladder 38 experiences half, or less than half, the expansion ratio otherwise required if radially enlarged section 40 is not incorporated into bladder 38. The various packer components and layers also can be constructed from a variety of materials and combinations of materials suitable for a given downhole application.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Such modifications are intended to be included within the scope of this invention as defined in the claims.
This application is a divisional application of and claims priority to U.S. patent application Ser. No. 13/209,548, entitled “EXPANDABLE PACKER CONSTRUCTION,” filed Aug. 15, 2011, which is a continuation of U.S. patent application Ser. No. 12/203,376, now U.S. Pat. No. 8,020,294, entitled “METHOD OF CONSTRUCTING AN EXPANDABLE PACKER,” filed Sep. 3, 2008, the entire disclosures of all of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2830540 | Vincent | Apr 1958 | A |
2841422 | Badger | Jul 1958 | A |
2942666 | Boer | Jun 1960 | A |
2942667 | Blood et al. | Jun 1960 | A |
3456723 | Current | Jul 1969 | A |
4268043 | Forssell | May 1981 | A |
4862967 | Harris | Sep 1989 | A |
6581682 | Parent et al. | Jun 2003 | B1 |
7320367 | Brezinski et al. | Jan 2008 | B2 |
7357189 | Aldaz et al. | Apr 2008 | B2 |
7363970 | Corre et al. | Apr 2008 | B2 |
7392851 | Brennan et al. | Jul 2008 | B2 |
7431098 | Ohmer et al. | Oct 2008 | B2 |
7458252 | Freemark et al. | Dec 2008 | B2 |
7458419 | Nold, III et al. | Dec 2008 | B2 |
7458420 | Rioufol et al. | Dec 2008 | B2 |
7461695 | Boney et al. | Dec 2008 | B2 |
8020294 | Pessin et al. | Sep 2011 | B2 |
9175776 | Pessin et al. | Nov 2015 | B2 |
20040026092 | Divis | Feb 2004 | A1 |
20040055758 | Brezinski et al. | Mar 2004 | A1 |
20050217869 | Doane et al. | Oct 2005 | A1 |
20070114017 | Brezinski et al. | May 2007 | A1 |
Entry |
---|
French Search Report regarding corresponding application No. FR 0955955, dated Apr. 24, 2014, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160047200 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13209548 | Aug 2011 | US |
Child | 14923262 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12203376 | Sep 2008 | US |
Child | 13209548 | US |