Expandable retrieval device

Abstract
A device for retrieving an intravascular device from a body lumen is disclosed. A retrieval device in accordance with an exemplary embodiment of the present invention includes a braided member coupled to an elongated shaft member. The braided member may include a number of filaments defining a radially expandable inner lumen configured to receive and encapsulate the intravascular device therein. An elastomeric jacket disposed about at least a portion of the braided member may encase the filaments.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of intravascular devices. More specifically, the present invention pertains to retrieval devices for embolic protection filters.


BACKGROUND OF THE INVENTION

Intravascular devices such as an embolic protection filters are typically placed in a vessel such as an artery or vein to filter emboli contained in the blood stream. Examples of procedures employing such filters include angioplasty, atherectomy, thrombectomy, and stenting. These procedures generally involve transluminally inserting and delivering within the artery or vein an elongated wire and filter to a location distal a lesion. Once placed, a therapeutic device such as an angioplasty catheter is advanced along the wire to the site of the lesion to perform a therapeutic procedure (e.g. percutaneous transluminal coronary angioplasty). A stent can also be advanced to the site of the lesion and engaged along the wall of the vessel to prevent restenosis from occurring within the vessel.


Retrieval of the embolic protection filter generally involves the use of a catheter or sheath having an inner lumen configured to collapse the filter and captured emboli therein. The ability of such retrieval devices to effectively trap the filter and its contents may depend in part on the size of the filter and filter wire, and the amount of emboli collected. The profile of the catheter or sheath may also affect the ability of the retrieval device to be delivered through the body.


SUMMARY OF THE INVENTION

The present invention pertains to retrieval devices for embolic protection filters. A retrieval device in accordance with an exemplary embodiment of the present invention includes an elongated shaft member having a proximal section, a distal section, and an inner lumen therethrough. A braided member coupled to the distal section of the elongated shaft member may be configured to receive and encapsulate an embolic protection filter therein. The braided member may include a number of filaments configured to radially expand when axially compressed. An elastomeric jacket disposed about at least a portion of the braided member may be used to encase the filaments. Methods of forming and using such devices are also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a retrieval device in accordance with an exemplary embodiment of the present invention;



FIG. 2 is a fragmentary cross-sectional view of a distal portion of the retrieval device of FIG. 1;



FIG. 3 is a perspective view of a braided member used in the construction of the retrieval device of FIG. 1;



FIG. 4 is a plan view of an embolic protection filter disposed within a vessel distal a lesion and placed stent;



FIG. 5 is another plan view of the vessel shown in FIG. 4, wherein a retrieval device is shown advanced along the filter wire;



FIG. 6 is another plan view of the vessel shown in FIG. 4, wherein the retrieval device has been further advanced along the filter wire to collapse the filter;



FIG. 7 is another plan view of the vessel shown in FIG. 4, wherein the filter is partially collapsed within the retrieval device;



FIG. 8 is another plan view of the vessel shown in FIG. 4, wherein the filter is fully encapsulated within the retrieval device; and



FIG. 9 is another plan view of the vessel shown in FIG. 4, wherein the retrieval device and encapsulated filter are withdrawn proximal the lesion and stent.





DETAILED DESCRIPTION OF THE INVENTION

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.



FIG. 1 is a perspective view of a retrieval device 10 in accordance with an exemplary embodiment of the present invention. Retrieval device 10 includes an elongated shaft member 12 having a proximal section 14, a distal section 16, and an inner lumen 18 therethrough. The elongated shaft member 12 may include a suitably stiff material having sufficient column strength and rigidity to withstand buckling as the retrieval device 10 is advanced over an intravascular device such as an embolic protection filter. The wall thickness of the elongated shaft member 12 may be generally uniform along the length of the retrieval device 10, or may vary to alter the flexibility or bending characteristics of the device 10, as desired. Materials suitable for forming the elongated shaft member 12 include polymers such as polyether block amide (PEBA), or metal-polymer blends such as stainless steel reinforced hypotube. Polyether block amide (PEBA) is commercially available from Atochem Polymers of Birdsboro, Pennsylvania under the trade name PEBAX.


The proximal section 14 of the elongated shaft member 12 may be provided with a hub 20 having a handle 22 and a number of gripping fins 24 that allow the user to grip the proximal section 14 and manipulate the retrieval device 10 both axially and rotationally within the body. In certain embodiments, a vacuum source 26 coupled to the hub 20 and in fluid communication with the inner lumen 18 may be used to provide suction at the distal end 28 of the retrieval device 10. In use, the vacuum source 26 may be used to aspirate the embolic protection filter and any loose emboli into the retrieval device 10. Such suction force can be used in lieu of, or in addition to, manually manipulating the retrieval device 10 within the body to retrieve the intravascular device.


The distal section 16 of the elongated shaft member 12 may be flared slightly, forming a retrieval lumen 30 configured to expand and encapsulate the intravascular device therein. A braided member 32 (FIG. 2) coupled to or formed integrally with the distal section 16 may be utilized to impart flexibility to the distal portion of the retrieval device 10 while maintaining the axial stiffness and rigidity characteristics generally exhibited by the remainder of the elongated shaft member 12.



FIG. 2 is a fragmentary cross-sectional view of a distal portion of the retrieval device 10 of FIG. 1. Braided member 32 may include a number of filaments 34, 36 encased within an elastomeric jacket 38 that can be configured to lie adjacent and flush with the distal section 16 of the elongated shaft member 12. As shown in FIG. 2, at least a portion of the braided member 32 may be encased within a wall of the flared distal section 16 of the elongated shaft member 12. Elastomeric jacket 38 may have a thickness generally equivalent to that of the flared distal section 16 of the elongated shaft member 12. The filaments 34, 36 may be arranged generally in two sets of parallel helices wound in opposite directions about a common longitudinal axis 40, thus forming an inner lumen 42 of the braided member 32. The filaments 34, 36 may intersect each other in an overlapping pattern at a number of interstices 44. The interstices 44 are configured to permit the two sets of filaments 34, 36 to move with respect to each other, allowing the braided member 32 to radially expand and axially shorten when subjected to a compressive force, and conversely, radially shrink and axially elongate when subjected to a tensile force. The braid angle θ (i.e. the angle between two filaments in the longitudinal or axial direction) may be varied to alter the amount of radial expansion and axial elongation of the braided member 32, as desired. The ends 46, 48 of each of the two sets of filaments 34, 36 may be constrained to prevent the filaments 34, 36 from fraying or unraveling.


The shape, thickness, or other characteristics of the braided member 32 may also vary to alter the characteristics of the retrieval device 10. In the exemplary embodiment depicted in FIG. 1, the filaments 34,36 forming the braided member 32 are each made from multi-filar threads woven together to form filaments having a generally round shape. Other filament configurations may be employed, however, such as round wire, flat ribbon, threads, fibers, mono-filament, multi-filament, or combinations thereof. The thickness of the filaments 34,36 may vary in dimension to impart a greater or lesser amount of resistance to radial expansion to the braided member 32 as the intravascular device is loaded into the retrieval device 10. In general, the larger the size of filaments employed, the greater the resistance to radial expansion that results.


The expandability of the retrieval device 10 may also be due in part to the material composition of the braided member 32. The braided member 32 may comprise any number of suitable materials, including polymers, metals, metal alloys, metal-polymer composites, or metal-metal composites. Elastomeric materials may also be employed to impart a desired amount of flexibility to the braided member 32. Examples of suitable polymeric materials include, but are not limited to, polyethylene terapthalate (PET), polytetraflouroethylene (PTFE), polyurethane (Nylon) fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene (ETFE), polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, polyester, polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), silicones, polyethylene (PE), polyether-ether ketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysulfone, perfluoro(propyl vinyl ether) (PFA), or other suitable materials, mixtures, combinations or copolymers thereof. Examples of suitable metals or metal alloys may include stainless steel, platinum, tungsten alloy and nickel-titanium alloy.


In certain embodiments, the filaments 34,36 may each be formed from a composite material configured to impart a desired characteristic to the braided member 32. For example, one or more stainless steel and nickel-titanium alloy wires can be wound together to form filaments having a desired characteristic such as superelasticity. Alternatively, in those embodiments employing wire or flat ribbon, for example, a composite material formed by a drawing, cladding or other suitable process may used to form filaments having a desired characteristic.


The filaments 34,36 may include a radiopaque metal such as gold, palladium, platinum, tantalum, and tungsten alloy, or may include a polymeric material loaded with a radiopaque agent such as barium sulfate (BaSO4) or bismuth subcarbonate ((BiO)2CO3). Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopic monitor or other imaging device. When a radiopaque die is injected into the vessel at issue, the relatively bright image produced on the monitor can be used to determine the location of the retrieval device within the body.



FIG. 3 is a perspective view of the braided member 32 used in the construction of the retrieval device 10 of FIG. 1. As can be seen in FIG. 3, an elastomeric jacket 38 may be placed about a distal section 50 of the braided member 32. The proximal section 52 of the braided member 32 may, in turn, be exposed to facilitate bonding of braided member 32 to the distal section 16 of the elongated shaft member 12.


In use, the elastomeric jacket 38 constrains and compresses the filaments 34,36 radially such that the braided member 32 assumes a generally low profile for delivery through the body. In addition, the elastomeric jacket 38 protects against the intrusion of other objects between the interstices 44 of the filaments 34,36. In some embodiments, the elastomeric jacket 38 may be loaded with a radiopaque additive (e.g. barium sulfate or bismuth subcarbonate) to further enhance the visibility of the braided member 32 under a fluoroscope.


The elastomeric jacket 38 may be formed of silicon, C-flex, urethane or other suitable material having sufficient elasticity to permit the braided member 32 to radially expand while maintaining axial stiffness and rigidity. To form the elastomeric jacket 38, an uncured elastomeric material may be placed in either liquid or thixotropic form over the distal section 50 of the braided member 32. The braided member 32 is then placed in a mold while the elastomeric material is allowed to cure and assume its final solid form. In another exemplary embodiment, the elastomeric jacket 38 may be formed by an extrusion process wherein the elastomeric material is extruded or poured over the distal section 50 of the braided member 32, and then allowed to cool to its final solid form. In yet another alternative embodiment, an injection-mold process such as insert molding may be employed to bond the elastomeric jacket 38 to the braided member 32.


The braided member 32 may be formed from a separate member that is attached to the distal section 16 of the elongated shaft member 12, or may be formed integral with the elongated shaft member 12. The braided member 32 can be attached to the elongated shaft member 12 using any number of suitable bonding techniques such as adhesion, laser welding, rf welding, soldering, or crimping. In one exemplary bonding technique, a thin piece of heat-shrinking tube can be placed about the distal section 16 of elongated shaft member 12 and the braided member 32, and then heated until the two members 12,32 meld together. The heat-shrink tube can then be removed from the retrieval device 10.


Referring now to FIGS. 4-9, an exemplary method of retrieving an intravascular device in accordance with the present invention will now be discussed with respect to retrieval device 10 described herein. In a first position depicted in FIG. 4, an embolic protection filter 54 attached to a filter wire 56 is shown positioned within a vessel V distal a lesion L. A previously placed stent 58 is also shown advanced along the filter wire 56 and positioned across the site of the lesion L to prevent restenosis from occurring subsequent to a therapeutic procedure such as an angioplasty or atherectomy. As can be seen in FIG. 4, the embolic protection filter 54 may include a filter mesh or membrane 60 operatively coupled to a proximal support hoop 62, which is biased to expand the filter mesh or membrane 60 within the vessel V. Throughout the course of treatment, embolic debris E dislodged from the vessel wall enters the embolic protection filter 54 through the proximal support hoop 62, where it is collected and stored within the filter mesh or membrane 60.


At the conclusion of the therapeutic procedure, the retrieval device 10 can be advanced along the filter wire 56 across the site of the lesion L, as shown in FIG. 5. During delivery, the retrieval device 10 assumes a relatively low profile, allowing the device to be advanced through the stent 58 with minimal interference.


Continued advancement of the retrieval device 10 over the filter wire 56 causes the embolic protection filter 54 to begin to collapse within the braided member 32, as shown in FIG. 6. As the embolic protection filter 54 is further forced therein, the braided member 32 compresses axially and expands radially, as shown in FIG. 7. A suction force may also be applied to the distal end 28 of the retrieval device 10 to aspirate the embolic protection filter 54 and its contents therein. The embolic protection filter 54 and captured emboli E can then be completely encapsulated within the retrieval device 10, as shown in FIG. 8. Subsequently, the retrieval device 10, embolic protection filter 54, and captured emboli E can then be removed from the vessel V along with the filter wire 56, as shown in FIG. 9.


While FIGS. 4-9 illustrate the removal of an embolic protection filter from the body, it is contemplated that any number of other intravascular devices may be retrieved and/or delivered with the present invention. Examples of other intravascular devices may include stents, clot pullers, vena cava filters, atheterectomy devices, angioplasty devices, or the like.


Having thus described the several embodiments of the present invention, those of skill in the art will readily appreciate that other embodiments may be made and used which fall within the scope of the claims attached hereto. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size and arrangement of parts without exceeding the scope of the invention as described in the appended claims.

Claims
  • 1. A method of forming a medical device for retrieving an intravascular device from a body lumen, comprising; providing a braided member, including a plurality of filaments, adapted to radially expand and axially shorten when subjected to a tensile force, said braided member having a proximal end, a proximal portion, a distal end, a distal section adjacent to the distal end, and a lumen between the proximal end and the distal end sized and configured to receive an intravascular device to be retrieved;extruding an elastomeric material over the distal section of the braided member;cooling the elastomeric material to produce an elastomer coated braided member; andattaching the elastomer coated braided member to an elongated shaft member having a flared distal section, wherein the proximal portion of the elastomer coated braided member extends proximally of a distal end of the elongated shaft member and is coupled to the flared distal section of the elongated shaft member, and the distal portion of the elastomer coated braided member extends distally of the distal end of the elongated shaft member,further wherein at least a portion of the proximal portion is encased within a wall of the flared distal section of the elongated shaft member.
  • 2. The method of claim 1, wherein attaching the elastomer coated braided member to an elongated shaft member having a flared distal section includes welding the elastomer coated braided member to the elongated shaft member having a flared distal section.
  • 3. The method of claim 1, wherein attaching the elastomer coated braided member to an elongated shaft member having a flared distal section includes placing a heat shrink tube about the distal section of the elongated shaft member and the elastomer coated braided member; heating the distal section of the elongated shaft member and the elastomer coated braided member until they are melded together; andremoving the heat shrink tube.
  • 4. The method of claim 1, wherein attaching the elastomer coated braided member to an elongated shaft member having a flared distal section includes adhering the elastomer coated braided member to the elongated shaft member having a flared distal section.
  • 5. The method of claim 1, wherein the extruding step and the attaching step are combined such that at least part of the proximal portion of the braided member is integrally formed with the elongated shaft member.
  • 6. The method of claim 1, wherein the elastomer of the elastomer coated braided member has a thickness generally equivalent to that of the flared distal section of the elongated shaft member.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 10/677,716, filed on Oct. 2, 2003, now U.S. Pat. No. 7,998,163, which claims benefit to provisional U.S. Patent Application No. 60/415,396, filed on Oct. 2, 2002.

US Referenced Citations (256)
Number Name Date Kind
3472230 Fogarty Oct 1969 A
3585707 Stevens Jun 1971 A
3592186 Oster Jul 1971 A
3683904 Forster Aug 1972 A
3889657 Baumgarten Jun 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4425908 Simon Jan 1984 A
4447227 Kotsanis May 1984 A
4580568 Gianturco Apr 1986 A
4590938 Segura et al. May 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4631052 Kensey Dec 1986 A
4643184 Mobin-Uddin Feb 1987 A
4650466 Luther Mar 1987 A
4662885 DiPisa, Jr. May 1987 A
4705517 DiPisa, Jr. Nov 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4728319 Masch Mar 1988 A
4733665 Palmaz Mar 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4794928 Kletschka Jan 1989 A
4794931 Yock Jan 1989 A
4800882 Gianturco Jan 1989 A
4807626 McGirr Feb 1989 A
4842579 Shiber Jun 1989 A
4857045 Rydell Aug 1989 A
4857046 Stevens et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4873978 Ginsburg Oct 1989 A
4886061 Fischell et al. Dec 1989 A
4898575 Fischell et al. Feb 1990 A
4907336 Gianturco Mar 1990 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4926858 Gifford, III et al. May 1990 A
4950277 Farr Aug 1990 A
4955895 Sugiyama et al. Sep 1990 A
4957482 Shiber Sep 1990 A
4969891 Gewertz Nov 1990 A
4979951 Simpson Dec 1990 A
4986807 Farr Jan 1991 A
4998539 Delsanti Mar 1991 A
5002560 Machold et al. Mar 1991 A
RE33569 Gifford, III et al. Apr 1991 E
5007896 Shiber Apr 1991 A
5007917 Evans Apr 1991 A
5011488 Ginsburg Apr 1991 A
5019088 Farr May 1991 A
5041126 Gianturco Aug 1991 A
5053008 Bajaj Oct 1991 A
5053044 Mueller et al. Oct 1991 A
5071407 Termin et al. Dec 1991 A
5071425 Gifford, III et al. Dec 1991 A
5085662 Willard Feb 1992 A
5087265 Summers Feb 1992 A
5100423 Fearnot Mar 1992 A
5100424 Jang et al. Mar 1992 A
5100425 Fischell et al. Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5104399 Lazarus Apr 1992 A
5108419 Reger et al. Apr 1992 A
5133733 Rasmussen et al. Jul 1992 A
5135531 Shiber Aug 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5152777 Goldberg et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5171233 Amplatz et al. Dec 1992 A
5190546 Jervis Mar 1993 A
5195955 Don Michael Mar 1993 A
5221261 Termin et al. Jun 1993 A
5224953 Morgentaler Jul 1993 A
5306286 Stack et al. Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5318576 Plassche, Jr. et al. Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5330484 Gunther et al. Jul 1994 A
5330500 Song Jul 1994 A
5350398 Pavcnik et al. Sep 1994 A
5354310 Garnic et al. Oct 1994 A
5356423 Tihon et al. Oct 1994 A
5366464 Belknap Nov 1994 A
5366473 Winston et al. Nov 1994 A
5370657 Irie Dec 1994 A
5370683 Fontaine Dec 1994 A
5376100 Lefebvre Dec 1994 A
5383887 Nadal Jan 1995 A
5383892 Cardon et al. Jan 1995 A
5383926 Lock et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5395349 Quiachon et al. Mar 1995 A
5397345 Lazarus Mar 1995 A
5405377 Cragg Apr 1995 A
5409454 Fischell et al. Apr 1995 A
5415630 Gory et al. May 1995 A
5419774 Willard et al. May 1995 A
5421832 Lefebvre Jun 1995 A
5423742 Theron Jun 1995 A
5423885 Williams Jun 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5443498 Fontaine Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5456667 Ham et al. Oct 1995 A
5462529 Simpson et al. Oct 1995 A
5476104 Sheahon Dec 1995 A
5484418 Quiachon et al. Jan 1996 A
5507767 Maeda et al. Apr 1996 A
5512044 Duer Apr 1996 A
5527354 Fontaine et al. Jun 1996 A
5536242 Willard et al. Jul 1996 A
5540707 Ressemann et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5562724 Vowerk et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569275 Kotula et al. Oct 1996 A
5584821 Hobbs et al. Dec 1996 A
5630822 Hermann et al. May 1997 A
5634897 Dance et al. Jun 1997 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5720764 Naderlinger Feb 1998 A
5728066 Daneshvar Mar 1998 A
5746758 Nordgren et al. May 1998 A
5749848 Jang et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5779716 Cano et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5792300 Inderbitzen et al. Aug 1998 A
5795322 Boudewijn Aug 1998 A
5797952 Klein Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800525 Bachinski Sep 1998 A
5807398 Shaknovich Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5817102 Johnson et al. Oct 1998 A
5827324 Cassell et al. Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833650 Imran Nov 1998 A
5836868 Ressemann et al. Nov 1998 A
5846260 Maahs Dec 1998 A
5848964 Samuels Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5893867 Bagaoisan et al. Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5902263 Patterson et al. May 1999 A
5906618 Larson, III May 1999 A
5908435 Samuels Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5925016 Chornenky et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5925063 Khosravi Jul 1999 A
5928203 Davey et al. Jul 1999 A
5928218 Gelbfish Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935139 Bates Aug 1999 A
5938645 Gordon Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5947995 Samuels Sep 1999 A
5951585 Cathcart et al. Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5964971 Lunn Oct 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5989210 Morris et al. Nov 1999 A
5989271 Bonnette et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013085 Howard Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6086605 Barbut et al. Jul 2000 A
6117154 Barbut et al. Sep 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6152946 Broome et al. Nov 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6224620 Maahs May 2001 B1
6231544 Tsugita et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241738 Dereume Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280413 Clark et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6309399 Barbut et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6364895 Greenhalgh Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383205 Samson et al. May 2002 B1
6432122 Gilson et al. Aug 2002 B1
6500203 Thompson et al. Dec 2002 B1
6500285 Pepin et al. Dec 2002 B2
6540712 Parodi et al. Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6623506 McGuckin, Jr. et al. Sep 2003 B2
7658747 Forde et al. Feb 2010 B2
7758624 Dorn et al. Jul 2010 B2
20010051810 Dubrul et al. Dec 2001 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030004537 Boyle et al. Jan 2003 A1
20030040702 Wang Feb 2003 A1
Foreign Referenced Citations (71)
Number Date Country
2821048 Jul 1980 DE
3417738 Nov 1985 DE
4030998 Oct 1990 DE
0200688 Nov 1986 EP
0293605 Dec 1988 EP
0411118 Feb 1991 EP
0427429 May 1991 EP
0437121 Jul 1991 EP
0472334 Feb 1992 EP
0472368 Feb 1992 EP
0533511 Mar 1993 EP
0655228 Nov 1994 EP
0686379 Jun 1995 EP
0696447 Feb 1996 EP
0737450 Oct 1996 EP
0743046 Nov 1996 EP
0759287 Feb 1997 EP
0771549 May 1997 EP
0784998 Jul 1997 EP
0852132 Jul 1998 EP
0934729 Aug 1999 EP
2580504 Oct 1986 FR
2643250 Aug 1990 FR
2768326 Mar 1999 FR
2020557 May 1979 GB
2020557 Jan 1983 GB
8187294 Jul 1996 JP
764684 Sep 1980 SU
8809683 Dec 1988 WO
9203097 Mar 1992 WO
9414389 Jul 1994 WO
9424946 Nov 1994 WO
9601591 Jan 1996 WO
9604875 Feb 1996 WO
9610375 Apr 1996 WO
9619941 Jul 1996 WO
9633677 Oct 1996 WO
9717100 May 1997 WO
9727808 Aug 1997 WO
9742879 Nov 1997 WO
9802084 Jan 1998 WO
9802112 Jan 1998 WO
9802332 Jun 1998 WO
9833443 Aug 1998 WO
9834673 Aug 1998 WO
9836786 Aug 1998 WO
9838920 Sep 1998 WO
9838929 Sep 1998 WO
9839046 Sep 1998 WO
9839053 Sep 1998 WO
9846297 Oct 1998 WO
9847447 Oct 1998 WO
9849952 Nov 1998 WO
9850103 Nov 1998 WO
9851237 Nov 1998 WO
9855175 Dec 1998 WO
9909895 Mar 1999 WO
9922673 May 1999 WO
9923976 May 1999 WO
9925252 May 1999 WO
9930766 Jun 1999 WO
9940964 Aug 1999 WO
9942059 Aug 1999 WO
9944510 Sep 1999 WO
9944542 Sep 1999 WO
9955236 Nov 1999 WO
9958068 Nov 1999 WO
0007655 Feb 2000 WO
0009054 Feb 2000 WO
0016705 Mar 2000 WO
0049970 Aug 2000 WO
Non-Patent Literature Citations (21)
Entry
“Atherosclerotic Disease of the Aortic Arch as a Risk Factor of Recurrent Ischemic Stroke,” The New England Journal of Medicine, pp. 1216-1221 (May 1996).
“Endovascular Grafts, Stents Drive Interventional Radiology Growth,” Cardiovascular Device Update, 2(3):1-12 (Mar. 1996).
“Protruding Atheromas in the Thoracic Aortic and Systemic Embolization,” pp. 423-427 American College of Physicians (1991).
“Recognition and Embolic Potential of Intraaortic Atherosclerotic Debris,” American College of Cardiology (Jan. 1991).
Cragg, Andrew et al., “A New Percutaneous vena Cava Filger,” AJR, 141:601-604, (Sep. 1983).
Cragg, Andrew et al., “Nonsurgical Placement of Arterial Andoprosthesis: A New Technique Using Nitinol Wire,” AJR, pp. 261-263 (Apr. 1983).
Diethrich et al., “Percutaneous Techniques for Endoluminal Carotid Interventions,” J. Endovasc. Surg., 3:182-202 (1996).
Fadali, A. Moneim, “A filtering device for the prevention of particulate embolization during the course of cardiac surgery,” Surgery 64(3):634-639 (Sep. 1968).
Haissaguerre et al., “Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins,” The New England Journal of Medicine, 339(10):659-666 (Sep. 1988).
Jordan, Jr. et al., “Microemboli Detected by Transcranial Doppler Monitoring . . . ,” Cardiovascular Surgery, 7(1)33-38 (Jan. 1999).
Lesh, “Can Catheter Ablation Cure Atrial Fibrillation?” ACC CUrrent Journal Review, pp. 38-40 (Sep./Oct. 1997).
Lund et al., “Long-Term Patentcy of Ductus Arteriosus After Balloon Dilation: an Experimental Study,”Laboratory Investigation, 69(4):772-774 (Apr. 1984).
Marache et al., “Percutaneous Transluminal Venous Angioplasty . . . ,” American Heart Journal, 125(2 Pt 1):362-366 (Feb. 1993).
Mazur et al., “Directional Atherectomy with the Omnicath. TM.: A Unique New Catheter System,” Catheterization and Cardiovascular Diagnosis, 31:17-84 1994.
Moussa, MD, Issaam “Stents Don't Require Systemic Anticoagulation . . . But the Technique (and Results) Must be Optimal,” Journal of Invasive Cardiol., 8(E):3D-7E, 1996.
Nakanishi et al., “Catheter Intervention to Venous System Using Expandable Metallic Stents,” Rinsho Kyobu Geka, 14 (2): English Abstract Only (Apr. 1994).
Onal et al., “Primary Stenting for Complex Atherosclerotic Plaques in Aortic and Iliac Stenoses,” Cardiovascular & Interventional Radiology, 21(5):386-392 (1998).
Theron et al., “New Triple Coaxial Catheter System for Carotid Angioplasty with Cerebral Protection,” American Journal of Neuroradiology, 11:869-874 (1990).
Tunick et al., “Protruding atherosclerotic plaque in the aortic arch of patients with systemic embolization: A new finding seen by transesophageal echocardiography,” American Heart Journal 120(3):658-660 (Sep. 1990).
Waksman et al., “Distal Embolization is Common After Directional Atherectomy . . . ,” American Heart Journal, 129 (3):430-435 (1995).
Wholey, Mark H. et al., PTA and Stents in the Treatment of Extracranial Circulation, The Journal of Invasive Cardiology, 8(E):25E-30E (1996).
Related Publications (1)
Number Date Country
20110295307 A1 Dec 2011 US
Provisional Applications (1)
Number Date Country
60415396 Oct 2002 US
Continuations (1)
Number Date Country
Parent 10677716 Oct 2003 US
Child 13185084 US