The present invention relates to an expandable reverse shoulder trial for reverse shoulder athroplasty (RSA), and in particular it relates to such a trial including an insert that rotatably engages a humeral cup.
The successful outcome of RSA depends greatly on proper soft tissue tension. Since the rotator cuff is either absent or severely compromised and irreparable, the stability of the shoulder joint comes from significant deltoid tension holding the ball and socket joint together.
Existing reverse shoulder systems require a surgeon to pick a trial liner and reduce the shoulder joint with that liner assembled into a humeral cup. If the correct liner is chosen, the soft tissue tension is significant, requiring the surgeon to apply extreme force to the humerus and surrounding soft tissues to reduce the joint. If no additional damage is done during this reduction process, the joint must then be dislocated to allow the surgeon to implant a joint replacement prosthesis.
Dislocation can often be more difficult than reduction and RSA patients often have compromised bone stock and/or soft tissue. The extreme force required to dislocate the joint again may put the patient at risk for other injury and soft tissue trauma. Furthermore, current systems require the surgeon to use a trial and error approach in establishing proper soft tissue tension. This often takes several attempts before adequate stability is achieved.
There currently exists a need for an adjustable trial including an insert that rotatably engages a humeral cup. The insert may first be inserted into the humeral cup and then rotated into a fully collapsed or neutral position. Such a device may allow a surgeon to easily reduce the shoulder joint. Preferably, the insert may then be advanced to a position where optimal deltoid tension is achieved. At this position, the insert and humeral cup are preferably calibrated such that the surgeon may determine a liner thickness corresponding to a dialed position of the insert with respect to the humeral cup. The terms “dialed position” or “dial in” indicate the distance between a proximal end of the insert and a proximal end of the humeral cup. This distance or liner thickness is measured by indications on the insert, such as calibration marks and/or attachment locations in reference to a marker on the humeral cup. This will be further explained in the detailed description.
The surgeon may also perform range of motion (“ROM”) and joint stability analyses during calibration of the trial. Preferably, the surgeon may then easily collapse the trial back to the neutral position and simply dislocate the joint. Further, the trial may also be preferably expanded prior to joint reduction and collapsed prior to joint dislocation repeatedly, depending on surgeon preference. Once the trial has been optimized, a surgeon preferably records the dialed position of the expanded trial. This measurement should preferably be the liner thickness. If this measurement does not correspond to the size of a particular liner in the system, the surgeon may select a next larger sized liner. At this time, the surgeon may remove the trial and then implant a prosthesis including a humeral cup and the selected liner.
The present invention greatly eases the reduction and dislocation of a shoulder joint during trialing because the surgeon may custom fit a trial to a patient after the joint has been reduced. This will greatly decrease the patient's exposure to intraoperative soft or hard tissue injuries related to extreme forces required to reduce and dislocate the joint. Moreover, the preferred one-step trialing approach of the present invention will also decrease surgical time, which is healthier for the patient and more efficient for the surgeon and hospital. Preferably, the expandable trial also decreases the size and cost of the overall instrument set, since only one trial per glenosphere diameter is generally required.
A main distinguishing characteristic of the adjustable trial from prior art devices is the fact that an insert may be first inserted into a humeral cup and then rotated into a collapsed or neutral position. This preferably allows the surgeon to easily reduce the joint. The trial, including the insert and humeral cup may then be expanded into a second position wherein optimal deltoid tension is preferably achieved. Here, the trial is calibrated such that the surgeon can determine which liner thickness corresponds to the dialed position on the trial.
Following ROM and joint stability analysis, the surgeon can easily collapse the trial back to the neutral position and simply dislocate the joint. The trial may also be expanded prior to joint reduction and collapsed prior to joint dislocation repeatedly, depending on surgeon preference.
The purpose of the present invention is to allow the surgeon to reduce the reverse shoulder trial and surrounding soft tissues into a relaxed state and/or dislocate a reduced shoulder joint while in a relaxed state. This will greatly ease the reduction of the joint. Once reduced, the surgeon may then “dial in” the appropriate liner thickness to achieve proper soft tissue tension. The trial is preferably designed to expand in discreet increments which correspond to liner prostheses that are available in multiple thicknesses. After a liner prosthesis is selected, it is then implanted with a humeral cup prosthesis.
An example of a surgical technique for the expandable reverse shoulder trial of the present invention is as follows:
Step 1: Resect the proximal humerus at a height determined by a typical humeral resection guide and surgical technique. At this point the surgeon may move to glenoid preparation (step 5) or continue with humerus preparation.
Step 2: Prepare the humerus distally in a standard fashion first using intramedullary reamers of increasing size according to surgeon preference.
Step 3: Prepare the proximal humerus using broaches of increasing size. Preferably, starting with a broach that is smaller than the final prosthesis based on preoperative templating.
Step 4: Perform calcar planing to prepare the proximal humerus to ensure proper seating of a humeral cup into the humeral stem and/or perform proximal reaming to create a seat for the cup. A trial humeral cup may also be inserted to assess seating and interference. The cup trial should be removed prior to preparing the glenoid surface.
Step 5: Target the center of the glenoid using the centering guide and drill a centering hole. Insert a guide-wire or guide pin into the centering hole and ream the glenoid face progressively until sub-chondral bone is thoroughly exposed.
Step 6: Place and attach a baseplate on the glenoid face in a desired location.
Step 7: Select an appropriate glenosphere trial and attach to the baseplate.
Step 8: Select an expanding trial including an insert having a recess diameter matching the glenosphere trial diameter. Ensure that the expanding trial is in the fully collapsed or neutral position and insert the trial assembly into a tapered bore in the humeral broach or stem. The joint may now be reduced into a laxed state. Deltoid and remaining cuff tension can then be dialed in by expanding the trial. Laxity, ROM and stability can now be evaluated with the trial components in place. Trialing can also be accomplished by repeatedly reducing the shoulder joint at a specific thickness which the surgeon has dialed in, evaluating the fit and function, collapsing the trial, and dislocating the shoulder.
Step 9: If different components (diameter etc.) are desired, substitutions may be made prior to implanting the prostheses. Once the trial has been optimized, the dialed thickness of the expanded trial is preferably recorded. This measurement preferably will be the thickness of the liner prosthesis.
Step 10: Remove the trial and implant the prostheses.
These steps are an exemplary method of the invention. It is to be understood that modifications can be made to these steps or some of these steps may not be performed without departing from the spirit and scope of the present invention.
As used herein, when referring to bones or other parts of the body, the term “proximal” means closer to the heart and the term “distal” means more distant from the heart. The term “inferior” means lower or bottom and the term “superior” means upper or top. The term “anterior” means towards the front part of the body or the face and the term “posterior” means towards the back of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body.
A first aspect of the present invention is an expandable shoulder trial having an insert including a proximal end and a distal end, the proximal end having a concave recess therein. Preferably, the distal end of the insert includes a shaft, the shaft having a helical groove disposed on at least a portion thereof. Preferably, the trial further includes a humeral cup having a proximal end including a recess therein, the recess defined by a circular wall for securing the insert shaft. A guide pin preferably protrudes from the circular wall into the recess, the guide pin adapted to engage the helical groove of the shaft of the insert. Preferably, the proximal end of the insert may be rotatably adjusted in a first axial direction toward the proximal end of the humeral cup to collapse the trial and alternatively in an opposite second axial direction away from the proximal end of the humeral cup to expand the trial.
In accordance with one embodiment of this first aspect of the present invention, the helical groove of the shaft preferably allows the insert when rotated to move in the first and second axial directions as the insert is rotated in only a first direction (i.e. clockwise or counter-clockwise direction). Preferably, the thickness and/or axial distance between the proximal end of humeral cup and the proximal end of the insert is adjusted by rotating the insert in either the first and or the second directions.
In accordance with yet another embodiment of this first aspect of the present invention, the proximal end of the insert preferably includes an outer face having a plurality of calibration marks arranged thereon.
In accordance with still yet another embodiment of this first aspect of the present invention, the outer face of the insert preferably includes a plurality of attachment locations adapted to engage an adjustment tool for rotating the insert.
In accordance with still yet another embodiment of this first aspect of the present invention, the proximal end of the humeral cup includes a front face having a marker arranged thereon. Preferably, the axial distance between the proximal end of humeral cup and the proximal end of the insert is indicated by the calibration marks on the insert in reference to the marker on the humeral cup.
The trial of the present invention may also be provided as an expandable shoulder trial including a humeral cup having an axis, the humeral cup including a recess defining a substantially circular wall about the axis, the circular wall having a guide portion extending outwardly therefrom. Preferably, the trial further includes an insert having a proximal end and a distal end, the proximal end of the insert having a concave recess disposed thereon, the distal end having a shaft extending therefrom towards the proximal end, the shaft of the insert preferably received in the recess of the cup. Preferably, the shaft includes a helical groove disposed on at least a portion thereof. Preferably, the guide portion is adapted to engage the helical groove of the shaft so that when the insert is rotatably adjusted the insert may move from a neutral position wherein the proximal end of the insert is substantially adjacent to the proximal end of the humeral cup, and into an expanded position wherein the proximal end of the insert is further away from the proximal end of the cup in the axial direction.
A second aspect of the present invention is an expandable shoulder trial including a humeral cup having a distal end portion coupled to a stem, the humeral cup further including a proximal end portion having a base and a circular wall defining a circular recess, the wall having a guide pin protruding therefrom. Preferably the trial further includes an insert having a proximal end portion and a distal end portion for insertion in the circular recess of the humeral cup, the distal end portion having a cam track extending toward the proximal end portion, the cam track adapted to receive the guide pin of the humeral cup. Preferably, the insert is rotatably adjustable along an axis in a first direction such that the distal end portion of the insert moves toward the base of the recess of the humeral cup.
In accordance with one embodiment of this second aspect of the present invention, the insert is rotatably adjustable along the axis in an opposite second direction wherein the distal end of the insert moves away from the base of the recess of the humeral cup.
In one aspect of a method of the present invention, the insert may be rotated in the first direction approximately 60° to reduce the distance between the proximal end of the humeral cup and the proximal end of the insert approximately 2 mm. Preferably, the insert includes an incremental stopping portion every 60° along the guide portion or cam-track of the shaft portion of the insert. As the insert is rotated in either a first or second direction the guide pin of the humeral cup may engage an incremental stopping portion of the insert. This may stop the insert from further rotation until a force great enough to overcome the friction between the guide pin and the incremental stopping portion is produced.
Generally, the present invention is an expandable reverse shoulder trial for RSA. In one aspect of the present invention, the trial is designed to take the place of a kit of trials and to provide the surgeon with greater intraoperative flexibility and ease of trialing during RSA. Prior art devices include trials of increasing thicknesses in “kit” form.
A more complete appreciation of the subject matter of the present invention and the various advantages thereof can be realized by reference to the following detailed description in which reference is made to the accompanying drawings in which:
c is a side view of the humeral cup according to
Referring to
In the preferred embodiment, proximal end 12 and distal end 14 of cup 10 are not coplanar. Between distal end surface 14 and proximal end surface 12 is a hemispherical outer surface 24. In an alternative embodiment, as shown in
As shown in
Preferably, distal end 14, 14′ of cup 10, 10′ includes a trunion 30, 30′ protruding distally therefrom. Trunion 30 is preferably configured to mate with a corresponding bore in a proximal end of a humeral stem 80 as shown for example in
Proximal end 12, 12′ of cup 10, 10′ preferably has a substantially flat proximal surface portion 32, 32′. Preferably, proximal surface portion 32, 32′ includes a central rounded edge 34, 34′ which blends with wall 16, 16′ and has a rounded edge 36, 36′ which blends with outer surface 24, 24′.
Preferably, surface 32, 32′ of humeral cup 10, 10′ includes a marker 38, 38′ arranged thereon. Marker 38, 38′ is preferably of any configuration that gives a user, such as a surgeon or other operating room personnel, a visual frame of reference for the position of an insert with respect to humeral cup 10, 10′.
Referring to
As shown in
Preferably, insert 40 may be rotatably adjusted about axis 22 by rotating in a first direction D1 as generally depicted on
As shown in
Preferably, adjustment tool 61 includes a handle portion 62 having a shaft 64 protruding therefrom, the shaft having a tip 66 protruding therefrom. Handle portion 62 may further include a knurled portion 68 for easy gripping. It is contemplated by the present invention that tool 61 may have many alternative configurations. Tool 61 is an exemplary instrument for easily rotating insert 40 along axis 22 in either the first and/or second directions D1, D2.
As stated above, calibration marks 54 of insert 40 may also be arranged on side faces 56, 58. Preferably, the axial distance between proximal end 12, 12′ of humeral cup 10, 10′ and surface 52 of proximal end portion 42 of insert 40 is measured by calibration marks 54 on any of surfaces 52, 56, and 58 of insert 40 in reference to marker 38, 38′ of humeral cup 10, 10′.
For example, marker 38, 38′ of humeral cup 10, 10′ may be lined up with one of the calibration marks 54 of insert 40. Preferably, insert 40 may then be rotated in direction D1 approximately 60° to reduce the distance between proximal end 12, 12′ of humeral cup 10, 10′ and proximal end surface 52 of insert 40 approximately 2 mm. Insert 40 may then be rotated another 60° in direction D1 until a second calibration mark 54 to the left of the calibration mark 54 is now instead lined up with marker 38, 38′ of humeral cup 10, 10′. In this case, the distance between proximal end 12, 12′ of humeral cup 10, 10′ and proximal end surface 52 of insert 40 would be further reduced approximately 2 mm for a total of 4 mm.
One skilled in the art would understand that the distance between calibration marks may be less than or greater than 60° apart. Preferably, calibration marks are between 30° and 120° apart. More preferably, calibration marks are between 30° and 60° apart. Further, one skilled in the art would understand that the pitch of groove 50 determines the distance that insert 40 collapses or expands between calibration marks. Preferably, the distance between proximal end 12, 12′ of humeral cup 10, 10′ and proximal end surface 52 of insert 40 may be reduced or expanded 0.5 mm to 4 mm between calibration marks 54. Further, an exact number of calibration marks 54 would not be needed to indicate a distance X that insert 40 may travel in moving from the fully collapsed or neutral position as shown for example in
In the preferred embodiment, insert 40 may collapse and/or expand between 0 and 12 mm. More preferably, insert 40 may collapse or expand 6 mm. It is contemplated in the present invention that more or less than six calibration marks 54 may be arranged on insert 40.
Preferably, as shown in
An alternative embodiment of insert 40 of the present invention is designated generally by reference numeral 40′ as shown in
As shown in
Referring to
Preferably, proximal surface 52′ includes a plurality of calibration marks 54′ arranged thereon. Preferably, proximal end portion 42′ of insert 40′ further includes a plurality of alternating convex and concave side faces, 56′ and 58′ respectively. Side faces 56′, 58′ may further include a plurality of attachment locations 60′ therein. Preferably, attachment locations 60′ are adapted to receive a portion of adjustment tool 61. A surgeon or any other operating room personnel may use adjustment tool 61 to rotate insert 40′ along axis 22′ in either the first and/or second directions D1, D2.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims. For example, the present invention may be applied to hip systems as well.
This application is a continuation of U.S. application Ser. No. 11/974,424, filed on Oct. 12, 2007, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3102536 | Rose | Sep 1963 | A |
3806957 | Shersher et al. | Apr 1974 | A |
3978528 | Crep | Sep 1976 | A |
4030143 | Elloy et al. | Jun 1977 | A |
4040131 | Gristina | Aug 1977 | A |
4693723 | Gabard et al. | Sep 1987 | A |
5462563 | Shearer et al. | Oct 1995 | A |
5569263 | Hein | Oct 1996 | A |
5658340 | Muller et al. | Aug 1997 | A |
5702457 | Walch et al. | Dec 1997 | A |
5728161 | Camino et al. | Mar 1998 | A |
5741335 | Gerber et al. | Apr 1998 | A |
6033439 | Camino et al. | Mar 2000 | A |
6120542 | Camino et al. | Sep 2000 | A |
6193758 | Huebner | Feb 2001 | B1 |
6206925 | Tornier | Mar 2001 | B1 |
6228120 | Leonard et al. | May 2001 | B1 |
6368352 | Camino et al. | Apr 2002 | B1 |
6494913 | Huebner | Dec 2002 | B1 |
6508841 | Martin et al. | Jan 2003 | B2 |
6673114 | Hartdegen et al. | Jan 2004 | B2 |
6761740 | Tornier | Jul 2004 | B2 |
6790234 | Frankle | Sep 2004 | B1 |
6887277 | Rauscher et al. | May 2005 | B2 |
6899736 | Rauscher et al. | May 2005 | B1 |
6953478 | Bouttens et al. | Oct 2005 | B2 |
6969406 | Tornier et al. | Nov 2005 | B2 |
6986790 | Ball et al. | Jan 2006 | B2 |
7011686 | Ball et al. | Mar 2006 | B2 |
7097663 | Nicol et al. | Aug 2006 | B1 |
7108405 | Matts et al. | Sep 2006 | B2 |
7169184 | Dalla Pria et al. | Jan 2007 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7238208 | Camino et al. | Jul 2007 | B2 |
7241314 | Winslow | Jul 2007 | B1 |
7297163 | Huebner | Nov 2007 | B2 |
7309360 | Tornier et al. | Dec 2007 | B2 |
7329284 | Maroney et al. | Feb 2008 | B2 |
7425214 | McCarthy et al. | Sep 2008 | B1 |
7445638 | Beguin et al. | Nov 2008 | B2 |
7462197 | Tornier et al. | Dec 2008 | B2 |
7608109 | Dalla Pria | Oct 2009 | B2 |
7611539 | Bouttens et al. | Nov 2009 | B2 |
7621961 | Stone | Nov 2009 | B2 |
7678150 | Tornier et al. | Mar 2010 | B2 |
7758650 | Dews et al. | Jul 2010 | B2 |
7854768 | Wiley et al. | Dec 2010 | B2 |
7918892 | Huebner | Apr 2011 | B2 |
7922769 | Deffenbaugh et al. | Apr 2011 | B2 |
7959680 | Stone et al. | Jun 2011 | B2 |
8062376 | Shultz et al. | Nov 2011 | B2 |
8070820 | Winslow et al. | Dec 2011 | B2 |
8118875 | Rollet | Feb 2012 | B2 |
8157866 | Winslow et al. | Apr 2012 | B2 |
8236059 | Stone et al. | Aug 2012 | B2 |
8241366 | Roche et al. | Aug 2012 | B2 |
8246687 | Katrana et al. | Aug 2012 | B2 |
8303665 | Tornier et al. | Nov 2012 | B2 |
8337563 | Roche et al. | Dec 2012 | B2 |
8361157 | Bouttens et al. | Jan 2013 | B2 |
20020120339 | Callaway et al. | Aug 2002 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030158605 | Tornier | Aug 2003 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20040267370 | Ondrla | Dec 2004 | A1 |
20050128755 | Matts et al. | Jun 2005 | A1 |
20050256583 | Bouttens et al. | Nov 2005 | A1 |
20050278032 | Tornier et al. | Dec 2005 | A1 |
20050288681 | Klotz et al. | Dec 2005 | A1 |
20060020344 | Shultz et al. | Jan 2006 | A1 |
20060200247 | Charrois | Sep 2006 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070173945 | Wiley et al. | Jul 2007 | A1 |
20070179624 | Stone et al. | Aug 2007 | A1 |
20070244563 | Roche et al. | Oct 2007 | A1 |
20080221622 | Triplett et al. | Sep 2008 | A1 |
20080228281 | Forrer et al. | Sep 2008 | A1 |
20080275507 | Triplett et al. | Nov 2008 | A1 |
20080294268 | Baum et al. | Nov 2008 | A1 |
20090099662 | Splieth et al. | Apr 2009 | A1 |
20090149961 | Dallmann | Jun 2009 | A1 |
20090164021 | Dallmann | Jun 2009 | A1 |
20090171462 | Poncet et al. | Jul 2009 | A1 |
20090192621 | Winslow et al. | Jul 2009 | A1 |
20090210065 | Nerot et al. | Aug 2009 | A1 |
20090281630 | Delince et al. | Nov 2009 | A1 |
20100087927 | Roche et al. | Apr 2010 | A1 |
20100161065 | Williams, Jr. et al. | Jun 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100222886 | Wiley et al. | Sep 2010 | A1 |
20100228352 | Courtney, Jr. et al. | Sep 2010 | A1 |
20110153023 | Deffenbaugh et al. | Jun 2011 | A1 |
20110196491 | Huebner | Aug 2011 | A1 |
20120029647 | Winslow et al. | Feb 2012 | A1 |
20120191201 | Smits et al. | Jul 2012 | A1 |
20120209392 | Angibaud et al. | Aug 2012 | A1 |
20120221112 | Lappin | Aug 2012 | A1 |
20120253467 | Frankle | Oct 2012 | A1 |
20120303130 | Winslow et al. | Nov 2012 | A1 |
20130006369 | Wiley et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
10335442 | Feb 2005 | DE |
1520560 | Apr 2005 | EP |
1656910 | May 2006 | EP |
2047827 | Apr 2009 | EP |
2201912 | Jun 2010 | EP |
2689756 | Oct 1993 | FR |
2405346 | Mar 2005 | GB |
0147442 | Jul 2001 | WO |
2005032430 | Apr 2005 | WO |
2007031575 | Mar 2007 | WO |
2007039820 | Apr 2007 | WO |
2007084939 | Jul 2007 | WO |
2008000928 | Jan 2008 | WO |
Entry |
---|
Extended European Search Report for Application No. EP12195588 dated Mar. 1, 2013. |
Delta Reverse Shoulder System, Surgical Technique, DePuy 2004. |
European Search Report, EP 08166202. |
European Search Report, EP 10156704, dated Jun. 14, 2010. |
Mode Operatoire, Operative Technique, Arrow, date not known. |
Reverse Shoulder Prosthesis, Surgical Technique, Encore, 2005. |
Trabecular Metal Reverse Shoulder System, Zimmer, date not known. |
Extended European Search Report for Application No. 12183703 dated Jan. 30, 2013. |
Number | Date | Country | |
---|---|---|---|
20120330428 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11974424 | Oct 2007 | US |
Child | 13589669 | US |