Expandable sand screen and method for installing same in a wellbore

Information

  • Patent Grant
  • 6571871
  • Patent Number
    6,571,871
  • Date Filed
    Wednesday, June 20, 2001
    23 years ago
  • Date Issued
    Tuesday, June 3, 2003
    21 years ago
Abstract
The present invention provides apparatus and methods for expanding an expandable sand screen in the wellbore and then fracturing the wellbore. In one aspect of the invention, an expandable sand screen includes a perforated inner pipe and outer shroud. The outer shroud includes a plurality of longitudinal channels that retain their general shape after the expandable sand screen is expanded. In the expanded state, the channels provide a fluid conduit along an area between the screen and the wall of the wellbore. In a subsequent fracturing operation, slurry travels along the conduits permitting communication of the fracturing slurry with hydrocarbon bearing formations.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an expandable sand screen. More particularly the present invention relates to an expandable sand screen that permits fracturing of a hydrocarbon bearing formation after the well screen is expanded in a wellbore.




2. Description of Related Art




Hydrocarbon wells are typically formed with a central wellbore that is supported by steel casing. The casing lines the borehole in the earth and the annular area created between the casing and the borehole is filled with cement to further support and form the wellbore.




While some wells are produced by simply perforating the casing of the central wellbore and collecting the hydrocarbons, wells routinely include portions of wellbore that are left open or unlined with casing. Because they are left open, hydrocarbons in an adjacent formation migrate into these wellbores where they are affected along a perforated tubular or sand screen having apertures in its wall and some kind of filtering material to prevent sand and other particles from entering. The sand screen is attached to production tubing at an upper end and the hydrocarbons travel to the surface of the well via the tubing. In this specification “open” and “horizontal” wellbore refers to an unlined bore hole or wellbore.




Because open wellbores have no support provided along their walls, and because the formations accessed by these wellbores have a tendency to produce sand and particulate matter in quantities that hamper production along a sand screen, open wellbores are often treated by fracturing and packing. Fracturing a wellbore or formation means subjecting the walls of the wellbore and the formation to high pressure solids and/or fluids that are intended to penetrate the formation and stimulate its production by increasing and enlarging the fluid paths towards the wellbore. Packing a wellbore refers to a slurry of sand that is injected into an annular area between the sand screen and the walls of the wellbore to support the wellbore and provide additional filtering to the hydrocarbons. Fracturing and packing can be performed simultaneously. A cross-over tool is typically utilized to direct the fracturing/packing material towards the annulus of the open wellbore while returning fluid is circulated up the interior of the screen and returns to the surface of the well in an annular area of the central wellbore.




There are problems associated with the packing of an open wellbore. One such problem relates to sand bridges or obstructions which form in the annulus between the sand screen and the wall of the wellbore. These sand bridges can form anywhere along the wellbore and they prevent the flow of injected material as it travels along the annulus. The result is an incomplete fracturing/packing job that leaves some portion of the sand screen exposed to particulate matter and in some cases, high velocity particles that can damage the screen.




Today there exists a sand screen that can be expanded in the wellbore. This expandable sand screen “ESS” consists of a perforated base pipe, woven filtering material and a protective, perforated outer shroud. Both the base pipe and the outer shroud are expandable and the woven filter is typically arranged over the base pipe in sheets that partially cover one another and slide across one another as the ESS is expanded. The foregoing arrangement of expandable sand screen is known in the art and is described in U.S. Pat. No. 5,901,789 which is incorporated by reference herein in its entirety. Expandable sand screen is expanded by a cone-shaped object urged along its inner bore or by an expander tool having radially outward extending rollers that are fluid powered from a tubular string. Using expander means like these, the ESS is subjected to outwardly radial forces that urge the walls of the ESS past their elastic limit, thereby increasing the inner and outer diameter of the ESS.




The biggest advantage to the use of expandable sand screen in an open wellbore like the one described herein is that once expanded, the annular area between the screen and the wellbore is mostly eliminated and with it the need for a gravel pack. Typically, the ESS is expanded to a point where its outer wall places a stress on the wall of the wellbore, thereby providing support to the walls of the wellbore to prevent dislocation of particles.




While the ESS removes the need for packing the wellbore with sand, it does not eliminate the need to fracture the formation in order to improve production. Fracturing prior to expanding the screen in the wellbore is not realistic because the particulate matter, like the sand used in the fracturing will remain in the annulus and hamper uniform expansion of the screen. Fracturing after expansion of the expandable sand screen is not possible because, as explained herein, the annular path for the fracturing material has been eliminated.




There is a need therefore for an expandable sand screen for use in a wellbore to be fractured. There is a further need for an expandable sand screen that can be expanded prior to the fracturing of the wellbore surrounding the screen. There is yet a further need for an expandable sand screen that forms a path or conduit for the flow of fracturing material along its outer surface after it has been expanded.




SUMMARY OF THE INVENTION




The present invention provides apparatus and methods for expanding an expandable sand screen in an open wellbore and then fracturing the wellbore. In one aspect of the invention, an expandable sand screen includes a perforated inner pipe and outer shroud. The outer shroud includes a plurality of longitudinal channels that retain their general shape after the expandable sand screen is expanded. In the expanded state, the channels provide a fluid conduit along an area between the screen and the wall of the wellbore. In a subsequent fracturing operation, a slurry travels along the conduits permitting communication of the slurry with hydrocarbon bearing formations to effectively fracture the formation. In another aspect, a method of fracturing includes expanding an expandable well screen in a wellbore whereby the expanded screen provides longitudinal channels in communication with the hydrocarbon bearing formation. Thereafter, fracturing slurry is injected and travels along the channels, thereby exposing the slurry to the formation. In yet another aspect of the invention, joints of the ESS are assembled together into sections and the channels on the outer surface of each joint are aligned to ensure that the longitudinal channels are aligned throughout the ESS section.











BRIEF DESCRIPTION OF THE DRAWINGS




So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.




It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.





FIG. 1

is a section view showing an open, horizontal wellbore with an expandable sand screen disposed therein.





FIG. 2

is an exploded view of an expander tool.





FIG. 3

is a section view of the expandable sand screen in an unexpanded state.





FIG. 4

is a section view of the wellbore with the screen partially expanded.





FIG. 5

is a section view of the expandable sand screen in an expanded state.





FIG. 6

is a section view of the wellbore being treated with material injected from the surface of the well through a cross-over tool.





FIG. 7

is a section view of the wellbore tied back to the surface of the wall with a production tubing.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

is a section view of a wellbore


200


with an expandable sand screen


210


according to the present invention disposed therein. The wellbore includes a central wellbore which is lined with casing


215


. The annular area between the casing and the earth is filled with cement


220


as is typical in well completion. Extending from the central wellbore is an open, horizontal wellbore


225


. A formation


226


is shown adjacent the wellbore


225


. Disposed in the open wellbore is an expandable sand screen (ESS)


210


. As illustrated in

FIG. 1

, the ESS


210


is run into the wellbore on a tubular run-in string


230


. Disposed at the end of the run-in string is an expander tool


100


. In the embodiment shown, the expander tool


100


is initially fixed to the expandable sand screen


210


with a temporary connection


235


like a shearable connection or some other temporary mechanical means. Typically, the ESS


210


is located at the lower end of a liner


218


which is run into the well and hung from the lower portion of the casing


215


by some conventional slip means. Below the liner top, the outer diameter of the liner


218


is reduced to a diameter essentially equal to the diameter of the ESS.





FIG. 2

is an exploded view of an exemplary expansion tool


100


. The expansion tool


100


has a body


102


which is hollow and generally tubular with connectors


104


and


106


for connection to other components (not shown) of a downhole assembly. The connectors


104


and


106


are of a reduced diameter compared to the outside diameter of the longitudinally central body part of the tool


100


. The central body part has three recesses


114


to hold a respective roller


116


. Each of the recesses


114


has parallel sides and extends radially from a radially perforated tubular core (not shown) of the tool


100


. Each of the mutually identical rollers


116


is somewhat cylindrical and barreled. Each of the rollers


116


is mounted by means of an axle


118


at each end of the respective roller and the axles are mounted in slidable pistons


120


. The rollers are arranged for rotation about a respective rotational axis which is parallel to the longitudinal axis of the tool


100


and radially offset therefrom at 120-degree mutual circumferential separations around the central body. The axles


118


are formed as integral end members of the rollers and the pistons


120


are radially slidable, one piston


120


being slidably sealed within each radially extended recess


114


. The inner end of each piston


120


is exposed to the pressure of fluid within the hollow core of the tool


100


by way of the radial perforations in the tubular core. In this manner, pressurized fluid provided from the surface of the well, via a tubular, can actuate the pistons


120


and cause them to extend outward whereby the rollers contact the inner wall of a tubular to be expanded.





FIG. 3

is a section view of the expandable sand screen


210


of the present invention in a wellbore


200


prior to expansion. The ESS includes a base pipe


240


having perforation


242


formed therein, woven filter material


245


and an outer shroud


250


having perforations


255


formed therein and also having outwardly formed longitudinal channels


260


formed thereupon. The channels


260


are formed by bending the surface of the outer shroud


250


between perforations


255


to create two sides


265


,


270


and a bottom portion


275


. In the preferred embodiment illustrated in

FIG. 3

, the bottom portion of each channel is welded or otherwise attached to the base pipe in at least one location


280


. The woven filter material


245


is held between the bottom


275


of the channel


260


and the base pipe


240


. The outer shroud


250


may be formed by any well-known metal working means including pressing and bending. A longitudinal seam (not shown) is formed by the cylindrical shroud after it is wrapped around the base pipe and filter material and its free ends are connected.





FIG. 4

is a section view illustrating the wellbore


200


and the ESS


210


partially expanded therein. As shown in the figure, the expansion tool


100


has been activated with its rollers


116


contacting the inner wall of base pipe


240


and applying an outward radial force thereto. Typically, the temporary connection


235


between the expander tool


100


and the ESS


210


is disengaged as the expander tool is actuated and thereafter, the expander tool moves independently of the expandable sand screen


210


. By using the run-in string


230


to move the expander tool axially and rotationally within the ESS, the ESS


210


can be circumferentially expanded into or nearly into contact with the wellbore therearound.





FIG. 5

is a section view illustrating the expandable sand screen


210


of the present invention after it has been expanded in a wellbore


200


. Radial force applied to the inner wall of the base pipe


240


has forced the pipe past its elastic limits and also expanded the diameter of the base pipe perforations


242


. Also expanded is the shroud


250


with its formed channels


260


. As shown in the figure, the shroud is expanded to a point wherein the upper edges of the sides


265


,


270


of the channel


260


are either in contact or almost in contact with the wellbore


200


. The decision relating to contact between the expanded sand screen in a wellbore depends upon the needs of the user. Contact between the screen


210


and the wellbore


200


can place a slight stress on the wellbore and reduce the risk of particulate matter entering the wellbore. On the other hand, leaving a slight space between the edges of the channel and the wellbore leaves a greater fluid path for fracturing material to reach areas of the wellbore between the channels.





FIG. 6

is a section view of the wellbore


200


illustrating an apparatus used to fracture the well after the ESS


210


has been expanded. As illustrated, a string of tubulars


300


is inserted into the top of the liner. An assembly at the lower end of the string of tubulars is typical of one used in fracturing operations and includes a cross-over tool


310


made up of an exit port


315


(not shown) permitting fluids to exit the tubular and a first and second packer


320


,


325


disposed on either side of the exiting port to isolate the port from the annular area between the liner and the run-in string. A sliding sleeve (not shown) on the liner permits fluid communication between the interior of the string


300


and the exterior of the liner. As illustrated by arrows


330


, a slurry of fracturing and/or packing material is injected from the surface of the well down the tubular string


300


. At some predetermined location below the top of the liner


218


, the cross-over tool


310


permits the material to flow to an annular area outside of the liner and the expanded sand screen. In this manner, the material flows to the outer surface of the expanded sand screen and longitudinally flows along the channels


260


formed on the exterior of the ESS


210


. The particulate material is left within the annular area and within fractures extending outwardly from the wellbore and fluid (illustrated by arrows


335


) is returned to the surface of the well in the interior of the string and subsequently, via the annular area between the string


300


and the casing


215


of the central wellbore. In use, a slurry of sand and gel or other fracturing material at an elevated pressure is carried into the central wellbore


200


in a tubular. Using a cross-over tool or other apparatus, the slurry is directed from the tubular to the outer surface of the expanded sand screen where it travels from a heel


226


of the wellbore


225


towards the toe


227


thereof. In this manner, the walls of the wellbore


225


and the formation


226


therearound are exposed to the high pressure slurry via the channels


260


formed on the outer surface of the shroud


250


. Return fluid is carried back towards the surface of the well in the interior of the base pipe


240


.




One method of utilizing the expandable sand screen of the invention is as follows: A section of expandable sand screen


210


is formed at the surface of a well to an appropriate length by threading joints of screen together. The channels


260


formed in the shroud


250


of each subsequent joint are aligned as the joints are assembled together. The unexpanded section of ESS is then run into the wellbore


200


on a tubular string having an expander tool


100


disposed at the end thereof. The expander tool, or alternatively the run-in string adjacent the tool, is temporarily connected to the expandable sand screen


210


with a temporary connection


235


. As the ESS


210


reaches its desired location in the wellbore


200


, the expander tool


100


is actuated and the ESS is expanded in at least two points about is circumference. In this manner, the ESS is anchored in the wellbore. By providing a pulling, pushing or rotational movement to the string and expander tool, the temporary connection


235


between the tool


100


and the sand screen


210


is disengaged an d the activated expander tool can move independently of the screen


210


.




By moving the actuated tool


100


within the sand screen, both rotationally and axially, the screen is expanded to take on an appearance illustrated in

FIGS. 5 and 7

. With the screen


210


in its expanded position within the wellbore


200


, the expansion tool


100


and run-in string are removed and a tubular having a cross-over tool at the end thereof is run into the wellbore. The cross-over tool permits fluid communication between the tubular and the channels


260


on the outer surface of the expanded screen


210


. As pressurized slurry travels down the tubular, it is directed by the cross-over tool to the longitudinal channels and is placed in communication with the wellbore.





FIG. 7

is a section view of a central


200


and a lateral


225


wellbore after the ESS


210


has been expanded into position and the well is producing hydrocarbons. A string of tubulars


400


like a string of production tubing has been inserted into the upper portion of the liner


218


and sealed therein with a packer


410


. This sealing and arrangement between the liner and the production tubing ties the liner back to the surface of the well. Hydrocarbons illustrated as arrows


415


migrate into the expanded sand screen


210


where they are collected in the interior of the screen and the liner. The hydrocarbons then move directly towards the surface of the well in the conduit provided by production tubing string


400


.




While the liner


218


and ESS


210


are shown run into the wellbore on a run in string of tubulars, it will be understood that the apparatus of the invention can be transported into the wellbore using any number of means including coiled tubing. For example, using coiled tubing and a mud motor disposed thereupon, the apparatus can be utilized with rotation provided by the mud motor. A fluid powered tractor can be used to provide axial movement of the apparatus into the lateral wellbore


225


. These variations are within the scope of the invention.




As the foregoing demonstrates, the present invention provides an apparatus and methods to utilize expandable sand screen in an open wellbore in a way that minimizes the need to fill an annular area around the screen with gravel. Additionally, the invention provides for an effective fracturing of an open wellbore without the risk of sand bridges being formed between the screen and the walls of the wellbore.




The apparatus described herein is a sand screen intended to filter hydrocarbons. However, the structure described relating to the grooves could be utilized with any expandable wellbore component leaving a fluid path along the outer surface thereof after expansion. Other uses include water wells and injection wells.




While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.



Claims
  • 1. An expandable screen for use in a wellbore comprising: an expandable, perforated tubular member that, when expanded, provides at least one fluid path between the exterior of the screen and the wellbore the path including a channel, the channel extending longitudinally between a first end of the screen to a second end of the screen.
  • 2. The expandable screen of claim 1, wherein the perforated tubular member comprises:a perforated base pipe; and an outer shroud disposed around the perforated base pipe.
  • 3. The expandable screen of claim 2, further comprising a porous filter material disposed between the perforated base pipe and the outer shroud.
  • 4. The expandable screen of claim 2, wherein the fluid path defines a channel formed on an outer surface of the outer shroud.
  • 5. The expandable screen of claim 4, wherein the channel includes two sides and a bottom surface substantially co-planar to the outer surface of the outer shroud.
  • 6. An expandable screen for use in a wellbore comprising: at least one expandable, perforated tubular member that, when expanded, provides at least one fluid path between the exterior of the screen and the wellbore, wherein the fluid path includes a channel formed on the outer surface of the member, wherein the channel extends longitudinally from a first end of the screen to a second end of the screen, wherein the channel is formed in an outer surface of a perforated outer shroud disposed around the tubular member, wherein the channel provides a fluid conduit along the exterior of the screen after expansion of the screen.
  • 7. The expandable screen of claim 6, including a plurality of channels disposed around the exterior of the screen.
  • 8. The expandable screen of claim 7, wherein the channels each include two sides and a bottom surface, the bottom surface substantially co-planar to the outer surface of the base pipe.
  • 9. The expandable screen of claim 8, wherein the channels retain their substantial shape after expansion.
  • 10. The expandable screen of claim 9, wherein the channels are disposed alternatively with the perforations of the outer shroud.
  • 11. The expandable screen of claim 10, further including a porous filter material disposed between the perforated base pipe and the shroud.
  • 12. The expandable screen of claim 11, wherein the bottom of at least one channel is connected to the base pipe with the filter material held therebetween.
  • 13. The expandable screen of claim 11, wherein multiple screens can be attached together, end to end to form a string, the channels of each screen aligned when the string is formed.
  • 14. The expandable screen of claim 12, wherein the screen is constructed and arranged to receive an expander tool in an interior thereof, the expander having at least one radially extendable rolling member to expand the screen past its elastic limit.
  • 15. A method of installing an expandable sand screen in a wellbore, the method comprising:running a section of expandable sand screen into the wellbore to a predetermined location, the expandable sand screen having at least one longitudinal channel formed on an outer surface thereof; and expanding the expandable sand screen along at least part of its length to increase the inner and outer diameter thereof in a manner leaving the at least one longitudinal channel substantially intact.
  • 16. The method of claim 15, further including:causing the at least one channel to come substantially into contact with the wellbore, forming a fluid conduit between the channel and the wellbore.
  • 17. The method of claim 16, further including injecting a slurry into the wellbore, and causing the slurry to travel along the at least one channel and communicate with a formation in the wellbore therearound.
  • 18. The method of claim 11, wherein the slurry is a slurry including fracturing material.
  • 19. The method of claim 11, wherein the slurry is a slurry including sand.
  • 20. The method of claim 11, wherein the slurry is injected with the use of a cross over tool to divert the slurry from an inside of a tubular to the outside of a tubular.
  • 21. The method of claim 15, wherein the expandable screen is run into the wellbore at the end of a liner.
US Referenced Citations (7)
Number Name Date Kind
1963629 Mark Jun 1934 A
5901789 Donnelly et al. May 1999 A
6263972 Richard et al. Jul 2001 B1
6315040 Donnelly Nov 2001 B1
6412565 Castano-Mears Jul 2002 B1
20020020524 Gano Feb 2002 A1
20020046840 Schetky et al. Apr 2002 A1
Foreign Referenced Citations (2)
Number Date Country
2 336 383 Oct 1999 GB
WO 0129368 Apr 2001 WO
Non-Patent Literature Citations (3)
Entry
Chapter 7, “Packing the Perforation Tunnels,” pp. 40-44 (Undated).
Chapter 8, “Gravel Pack Placement,” pp. 45-57, Undated.
International Search Report, International Application No. PCT/GB 02/02760, dated Sep. 19, 2002.