1. Field of the Invention
The present invention generally relates to a downhole tool for use in a wellbore. More particularly, the invention relates to a downhole tool for isolating a wellbore. More particularly still, the invention relates to an expandable tubular having an expandable or swelling sealing element for isolating a wellbore.
2. Description of the Related Art
In the drilling of oil and gas wells, a wellbore is formed using a drill bit that is urged downwardly at a lower end of a drill string. After drilling a predetermined depth, the drill string and bit are removed, and the wellbore is typically lined with a string of steel pipe called casing. The casing provides support to the wellbore and facilitates the isolation of certain areas of the wellbore adjacent hydrocarbon bearing formations. The casing typically extends down the wellbore from the surface of the well to a designated depth. An annular area is thus defined between the outside of the casing and the earth formation. This annular area is filled with cement to permanently set the casing in the wellbore and to facilitate the isolation of production zones and fluids at different depths within the wellbore.
Generally, it is desirable to provide a flow path for hydrocarbons from the surrounding formation into the newly formed wellbore. Typically, perforations are formed in the casing at the anticipated depth of hydrocarbons. The perforations are strategically formed adjacent the hydrocarbon zones to limit the production of water from water rich zones close to the hydrocarbon rich zones.
However, a problem arises when the cement does not adhere to the wellbore properly to provide an effective fluid seal. The ineffective seal allows water to travel along the cement and wellbore interface to the hydrocarbon rich zone. As a result, water may be produced along with the hydrocarbons.
One attempt to solve this problem is to employ a downhole packer to isolate specific portions of the wellbore. The downhole packer may be installed as an open-hole completion to isolate a portion of the wellbore and eliminate the need of cementing the annular area between the casing and the wellbore of the isolated portion. Typically, the downhole packer may be formed as an integral member of the existing casing and installed adjacent the desired production zone.
More recently, expandable tubular technology has been applied to downhole packers. Generally, expandable technology enables a smaller diameter tubular to pass through a larger diameter tubular, and thereafter expanded to a larger diameter. In this respect, expandable technology permits the formation of a tubular string having a substantially constant inner diameter. Accordingly, an expandable packer may be lowered into the wellbore and expanded into contact with the wellbore. By adopting the expandable technology, the expandable packer allows a larger diameter production tubing to be used because the conventional packer mandrel and valving system are no longer necessary.
However, one drawback of the downhole or expandable packers is their lack of gripping members on their outer surfaces. Consequently, the outer surfaces of these conventional packers may be unable to generate sufficient frictional contact to support their weight in the wellbore. Additionally, the expandable packer may not provide sufficient seal load to effectively seal the annular area between the expanded packer and the wellbore.
There is a need, therefore, for a packer having a sealing element that will effectively seal a portion of a tubular or a wellbore. There is a further need for a packer that will not reduce the diameter of the wellbore. Further still, there is a need for a sealing assembly that will effectively isolate a zone within a tubular or a wellbore.
The present invention generally relates to an apparatus for sealing a wellbore. The sealing apparatus includes an expandable tubular body having one or more sealing elements disposed thereon. In one aspect, the sealing elements include swelling and non-swelling sealing elements. Preferably, the swelling sealing elements are made of a swelling elastomer capable of swelling upon activation by an activating agent. The swelling elements may be covered with a protective layer during the run-in. When the tubular body is expanded, the protective layer breaks, thereby exposing the swelling elements to the activating agent. In turn, the swelling elements swell and contact the wellbore to form a fluid tight seal.
In another aspect, an apparatus for completing a well is provided. The apparatus includes an expandable tubular having a first sealing member and a second sealing member. Each sealing member has a tubular body and one or more swelling elements disposed around an outer surface of the tubular body.
In another aspect still, the present invention provides a method for completing a well. The method involves running a sealing apparatus into the wellbore. The sealing apparatus includes a tubular body and a swelling element disposed around an outer surface of the tubular body. The sealing apparatus is expanded to cause the swelling element to swell and contact the wellbore.
So that the manner in which the above recited features of the present invention, and other features contemplated and claimed herein, are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
As illustrated in
A torque anchor 40 may be disposed on the working string 5 to prevent rotation of the sealing assembly 100 during the expansion process.
The torque anchor 40 is run into the wellbore 10 on the working string 5 along with the expander tool 200 and the sealing assembly 100. In the run-in position, the slip members 41, 42 are retracted within the housing 43, because the sealing assembly 100 is retained by the collet 155. Once the sealing assembly 100 has been lowered to the appropriate depth within the wellbore 10, the torque anchor 40 is activated. Fluid pressure provided from the surface through the working string 5 forces the upper and lower slip members 41, 42 outward from the torque anchor body 40. The upper slip members 41 act against the inner surface of the wellbore 10, thereby placing the torque anchor 40 in frictional contact with the wellbore 10. Similarly, the lower slip members 42 act against an inner surface of the sealing assembly 100, thereby placing the torque anchor 40 in frictional contact with the sealing assembly 100. This activated position is depicted in
As shown in
As illustrated in
The expander tool 200 may include an apparatus for axially translating the expander tool 200 relative to the sealing assembly 100. One exemplary apparatus 300 for translating the expander tool 200 is disclosed in U.S. patent application Ser. No. 10/034,592, filed on Dec. 28, 2001, which application is herein incorporated by reference in its entirety. In one aspect, the translating apparatus 300 includes helical threads 310 formed on the work string 5 as illustrated in
In one embodiment, the motor 30 illustrated in
The sealing assembly 100 shown in
As shown, each sealing apparatus 110, 120 is connected to one end of the expandable liner 105. In this respect, the sealing apparatus 110, 120 are designed as separate components that may be easily attached to an expandable tubular 105 as needed. However, it must be noted that the sealing apparatus 110, 120 may also be formed directly on the expandable tubular 105 without deviating from the aspects of the present invention. Although only two sealing apparatus are described in the present embodiment, aspects of the present invention are equally applicable with one or more sealing apparatus. In the embodiment shown, the upper sealing apparatus 110 and the lower sealing apparatus 120 are substantially similar and interchangeable. Therefore, the upper sealing apparatus 110 will be described below as the description relating to the upper sealing apparatus 110 is also applicable to the lower sealing apparatus 120.
The sealing elements used to isolate the wellbore 10 may include swelling sealing elements 140 and non-swelling sealing elements 150. In one embodiment, the swelling sealing elements 140 are made of a swelling elastomer that increases in size upon activation by an activating agent. Depending on the application, swelling elastomers may be selected to activate upon exposure to an activating agent such as a wellbore fluid, hydrocarbons, water, drilling fluids, non-hydrocarbons, and combinations thereof. An example of a swelling elastomer activated by hydrocarbons is neoprene. Examples of swelling elastomers activated by water include, but not limited to, nitrile and hydrogentated nitrile. Without limiting the aspects of the present invention to a certain activating mechanism, it has been found that activation occurs by way of absorption of the activating agent by the swelling elastomers. In turn, the absorption causes the polymer chains of the swelling elastomers to swell radially and axially. It must be noted that different types of swelling elastomers activated by other forms of activating agents are equally applicable without departing from the aspects of the present invention. Further, swelling elastomers described herein as being hydrocarbon activated or water activated are not limited to elastomers activated solely by hydrocarbon or water, but may encompass elastomers that exhibit a faster swelling rate for one activating agent than another activating agent. For example, swelling elastomers classified as hydrocarbon activated may include elastomers activated by either hydrocarbon or water. However, the hydrocarbon activated swelling elastomer display a faster swelling rate when exposed to hydrocarbon than water.
The swelling elements 140 may be disposed on the tubular body 130 in many different arrangements. Preferably, multiple rings of swelling elements 140 are arranged around the recessed portion 131. However, a single ring of swelling element 140 is also contemplated. In one embodiment, alternate rings of hydrocarbon activated swelling elements 140H and water activated swelling elements 140W are disposed on the tubular body 130 as illustrated in
The swelling elements 140 may be covered with a protective layer 145 to avoid premature swelling prior to reaching the desired location in the wellbore 10. Preferably, the protective layer 145 is made of a material that does not swell substantially upon contact with the activating agent. Further, the protective layer 145 should be strong enough to avoid tearing or damage as the sealing assembly 100 is run-in the wellbore 10. On the other hand, the protective layer 145 should break or tear upon expansion of the sealing apparatus 110, 120 by the expander tool 200 in order to expose the swelling elastomers 140 to the activating agent. In one embodiment, the protective layer 145 may include mylar, plastic, or other material having the desired qualities of the protective layer 145 as disclosed herein.
Non-swelling sealing elements 150 may be placed at each end of the swelling sealing elements 140 to contain and control the direction of swelling. In one embodiment, the non-swelling sealing elements 150 include a pair of non-swelling lip seals 150 as illustrated in
In another aspect, the non-swelling nature of the base portion 154 of the lip seal 150 serves to control the direction of expansion of the swelling elements 140. In this respect, the swelling elements 140 are allowed to expand axially relative to the wellbore 10 until they encounter the base portion 154. As such, the base portion 154 acts as barriers to axial expansion and limits further axial swelling of the swelling elements 140. As a result, the swelling elements 140 are limited to swelling radially toward the wellbore 10. In this manner, a substantial amount of swelling is directed toward the wellbore 10, thereby creating a fluid tight seal between the wellbore 10 and the sealing apparatus 110. Although a single directional lip seal 152 is disclosed herein, aspects of the present invention also contemplate the use of non-swelling elements 150 having no lip seals or a bi-directional lip seal.
In another aspect, the non-swelling elements 150 may include a reinforcement sheath 155 embedded therein. The reinforcement sheath 155 provides additional support to the flexible member 152 so that it may withstand stronger forces encountered in the wellbore 10. Preferably, the reinforcement sheath 155 is made of a thin, flexible, and strong material. Examples of the reinforcement sheath 155 include wire mesh, wire cloth, cotton weave, polyester, kevlar, nylon, steel, composite, fiberglass, and other thin, flexible, and other materials as is known to a person of ordinary skill in the art. In another embodiment, the reinforcement sheath 155 may be wrapped around a portion of the non-swelling elements 150.
In another aspect still, backup rings 160 may be disposed between the swelling sealing elements 150 to contain and control the direction of swelling as illustrated in
In operation, the sealing assembly 100 is lowered into the wellbore 10 and positioned adjacent the area of the wellbore 10 to be sealed off as illustrated in
As the expander tool 200 translates axially along the sealing assembly 100, the recessed portion 131 and the non-recessed portion 132 of the sealing apparatus 110 are expanded to the same or substantially the same inner diameter as shown in
After the sealing apparatus 110 has been expanded, the collet and the torque anchor 40 may be de-actuated, thereby releasing the expander tool 200 from the sealing assembly 100. In this respect, the expander tool 200 is free to move axially relative to the sealing assembly 100. The expander tool 200 may now be rotated by rotating the work string 5. The expansion process continues by moving the expander tool 200 axially toward the unexpanded portions of the sealing assembly 100. After the sealing assembly 100 has been fully expanded, the expander tool 200 is de-actuated and removed from the wellbore 10.
In another embodiment (not shown), the sealing assembly 100 may be expanded in sections. After the upper sealing apparatus 110 is expanded. The unexpanded portion of the sealing assembly 100 above the upper sealing apparatus 110 may be severed from the remaining portions of the sealing assembly 100. Thereafter, the torque anchor 40 may be de-actuated to free the expander tool 200. The expanded upper sealing apparatus 110 now serves to hold the sealing assembly 100 in the wellbore 10, thereby allowing the work string 5 to move axially in the wellbore 10. The work string 5 may now reposition itself in the wellbore 10 so that the expander tool 200 may expand the next section of the sealing assembly 100.
In another aspect, the sealing assembly 100 may be disposed in an under-reamed portion 10U of the wellbore 10 as illustrated in
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of co-pending U.S. patent application Ser. No. 10/328,708, filed Dec. 23, 2002 now U.S. Pat. No. 6,907,937. The aforementioned related patent application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2306160 | Freyssinet | Dec 1942 | A |
2519116 | Crake | Aug 1950 | A |
2656891 | Toelke | Oct 1953 | A |
2814517 | Razdow | Nov 1957 | A |
2945541 | Maly et al. | Jul 1960 | A |
3147016 | Traufler | Sep 1964 | A |
3385367 | Kollsman | May 1968 | A |
3593799 | Boughton et al. | Jul 1971 | A |
3677987 | Pence, Jr. | Jul 1972 | A |
3690375 | Shillander | Sep 1972 | A |
3740360 | Nimerick | Jun 1973 | A |
3918523 | Stuber | Nov 1975 | A |
4078606 | Montgomery | Mar 1978 | A |
4137970 | Laflin et al. | Feb 1979 | A |
4253676 | Baker et al. | Mar 1981 | A |
4300775 | Ringel | Nov 1981 | A |
4403660 | Coone | Sep 1983 | A |
4406469 | Allison | Sep 1983 | A |
4452463 | Buckner | Jun 1984 | A |
4457369 | Henderson | Jul 1984 | A |
4601498 | Haugen | Jul 1986 | A |
4633950 | Delhommer et al. | Jan 1987 | A |
4662450 | Haugen | May 1987 | A |
4674570 | Jackson | Jun 1987 | A |
4730670 | Kim | Mar 1988 | A |
4762179 | Wesson et al. | Aug 1988 | A |
4836940 | Alexander | Jun 1989 | A |
4862967 | Harris | Sep 1989 | A |
4886117 | Patel | Dec 1989 | A |
4907651 | Bou-Mikael | Mar 1990 | A |
4913232 | Cheymol et al. | Apr 1990 | A |
4919989 | Colangelo | Apr 1990 | A |
4936386 | Colangelo | Jun 1990 | A |
5083608 | Abdrakhmanov et al. | Jan 1992 | A |
5086841 | Reid et al. | Feb 1992 | A |
5165703 | Morvant | Nov 1992 | A |
5226492 | Solaeche P. et al. | Jul 1993 | A |
5271469 | Brooks et al. | Dec 1993 | A |
5309993 | Coon et al. | May 1994 | A |
5311938 | Hendrickson et al. | May 1994 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5605195 | Eslinger et al. | Feb 1997 | A |
5623993 | Van Buskirk et al. | Apr 1997 | A |
5676384 | Culpepper | Oct 1997 | A |
5687748 | Conrad et al. | Nov 1997 | A |
5749585 | Lembcke | May 1998 | A |
5787987 | Forsyth et al. | Aug 1998 | A |
5803178 | Cain | Sep 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5875847 | Forsyth | Mar 1999 | A |
5941313 | Arizmendi | Aug 1999 | A |
6009951 | Coronado et al. | Jan 2000 | A |
6041858 | Arizmendi | Mar 2000 | A |
6073692 | Wood et al. | Jun 2000 | A |
6431282 | Bosma et al. | Aug 2002 | B1 |
6446717 | White et al. | Sep 2002 | B1 |
6561227 | Cook et al. | May 2003 | B1 |
6662876 | Lauritzen | Dec 2003 | B1 |
6698517 | Simpson et al. | Mar 2004 | B1 |
6702029 | Metcalfe et al. | Mar 2004 | B1 |
6722441 | Lauritzen et al. | Apr 2004 | B1 |
6834725 | Whanger et al. | Dec 2004 | B1 |
6840325 | Stephenson | Jan 2005 | B1 |
20040112609 | Whanger et al. | Jun 2004 | A1 |
20040231861 | Whanger et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
2 435 382 | Aug 2002 | CA |
0 237 662 | Sep 1987 | EP |
WO 0220941 | Mar 2002 | WO |
WO 02059452 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050269108 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10328708 | Dec 2002 | US |
Child | 11158298 | US |