The inventions relate to a sheath or catheter that has an expandable distal end.
In many minimally invasive medical procedures, an introducer sheath or catheter may be placed in a vessel to gain access to a site within a body for a diagnostic or therapeutic procedure. Sheaths and catheters are used as conduits to pass surgical instruments, implantable devices, or biological matter, such as clots, tissue samples, or other matter. The inner diameter of the sheath is designed as large as possible for the surgical instrument, implant device, or tissue sample to pass through it. It is generally desirable to minimize the outer diameter of the sheath and maximize the inner diameter of the sheath. A small outer diameter is desired to minimize the size of the hole at the insertion site. A smaller outer diameter also provides less disruption to the circulatory pathway. Since the outer diameter may be minimized and the inner diameter may be maximized, the thickness of the wall of the sheath could lack sufficient column strength for insertion into a blood vessel or other circumstances with longitudinally applied forces.
Medical devices that are implanted may require removal from the body or repositioning within the body. The device that is to be removed may be a temporary implant which has performed the desired diagnostic or therapeutic function. Alternatively, a device may be classified as a permanent implant but may require removal for some other reason. Sometimes devices need to be repositioned in the body. One way of repositioning a device is to pull the device back into a catheter (or push the catheter around the device) so that the device is disposed within the catheter. Then the device is repositioned to a desired delivery location and then deployed. The devices that are removed or repositioned may not collapse into a reduced profile configuration easily or completely.
Because the devices may not collapse completely or in a suitable orientation it may be difficult to reconstrain the device in a catheter. Specifically, this difficulty may be compounded by the material that is used to construct the catheter. The catheter walls are optimally designed to be as thin as possible while having sufficient column strength for proper operation. A material commonly selected for the construction of catheters typically has high stiffness or rigidity. The same material properties that are desirable in the construction of the catheter may make the withdrawal of an implant or tissue more difficult because a catheter constructed of a stiff material will not expand to accommodate a device that is being reconstrained after deployment. This can make it awkward to pass surgical instruments, implantable devices, and tissue samples either in or out of the sheath tip.
It is desirable to have a catheter that is suitable for reconstraining large or awkwardly shaped surgical instruments and implantable devices after delivery such that they may be repositioned or removed from the body, including medical devices that are being removed from a body with a larger diameter than that of the catheter. The same catheter may be used to reposition a device within the body to an alternative delivery site. A catheter or sheath constructed according to this description may be used to deliver a medical device, surgical instrument, or biological sample. These catheters have a reduced risk of splitting or tearing when a device is positioned within the catheter. As used here, the terms sheath and catheter are used interchangeably.
According to one embodiment, a distal tip of a catheter is constructed to expand radially and thus facilitate the retrieval and repositioning of surgical tools, implantable devices, or biological matter that have a larger diameter than the unexpanded diameter of the catheter. The distal end of the catheter may be formed with either a single layer or multiple layers of material which may be the same or different from the materials comprising the rest of the catheter. In one embodiment, the distal end of the catheter may have one or more straight or curved generally longitudinally-oriented slits. The slits extend through the thickness of one or more layers of the catheter. During delivery of a device, the slits may be closed or open depending on desired delivery characteristics. If the device requires removal or repositioning, the slits in the catheter separate and the catheter diameter expands if necessary as the device is retrieved into the catheter. An elastomeric layer holds the sliced portions of the catheter together and provides an expandable layer so that the catheter remains a single piece. The slits may extend longitudinally from the distal end to a location up to 15 cm along the length of the catheter or more. Alternatively, the slits may begin at a location slightly away from the distal end and continue longitudinally for up to 15 cm along the catheter or more.
In another embodiment, one or more zig-zag slits may be provided longitudinally along a length of the distal end of the catheter and in a direction perpendicular to the radial axis of the catheter, or it can have some angle relative to a perpendicular orientation, or they can have an overall curved shape. The zig-zag configuration of the slits may include straight cuts or separations in the catheter. The zig-zag cuts also may be rounded at the peak and/or the valley of the cut, and/or along the length of the cut. In a preferred form, the size of the zig-zag slits are constructed so that in an expanded configuration (e.g., when a device has been retrieved) the teeth of opposing sides of the zig-zag do not completely separate. Thus the catheter minimizes the likelihood of a longitudinal tear of the elastomeric material, if present. It is desirable that the entire device that has been inserted into the catheter remain in the catheter and not extend through any perforations or tears in the catheter.
The formations described above may be used together and other formations may be used to allow for radial expansion of the catheter as the device is being positioned within the catheter. These formations may or may not require longitudinal contraction. These formations can be present along a portion or the entire length of the sheath tip. Other materials can be added to the sheath tip, such as wires for strength, coatings to change friction characteristics, and coatings of a different durometer, or, the device can be made to have a minimal number of parts and portions.
The catheter can be an introducer through which surgical instruments and implantable devices such as stents, filters, occluders, or other devices are inserted into a living body. The catheter can also be a retriever through which tissue or other biological matter, surgical instruments, and implantable devices are withdrawn from a living body. The cut of the catheter material that forms the slits may be aligned with the radial axis or may be slanted or curved. The cut may be formed from a sharp object, such as a knife, or alternative methods may be used to form the slits.
In another embodiment, the catheter or sheath may have a distal end that is partially or wholly comprised of braided material. In such a device that uses a braided configuration, the longitudinal length shortens as the radius expands. This embodiment has the advantage that individual segments of the catheter are not separated as the catheter expands radially.
A radially expandable distal end of a catheter allows surgical instruments, biological matter, and implantable devices, including such devices as may be folded, compressed, or loaded in the sheath in a specialized manner such that the device can be introduced through a smaller diameter delivery sheath than otherwise possible, to be more easily deployed upon delivery to the desired site within the body. A radially expandable distal end of a catheter allows and facilitates retrieval of surgical instruments and implantable devices, including devices that unfold or expand or otherwise deploy in some way after delivery within the body. The expandable distal end can accommodate more easily the volume of a partially or wholly deployed device, and can overcome snags resulting from the geometry of a partially or wholly deployed device, reducing trauma to the vessel through which such instruments or implantable devices must be withdrawn. Once a device is retrieved into the catheter, the sheath tip can further aid in the complete recovery of a device by acting to compress the device. It is desirable that an expandable distal end of a catheter accommodates an article with a larger dimension than that of the catheter.
These and other features and advantages will become apparent from the drawings and detailed description.
The inventions will be more clearly understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
a) is a side perspective view of a catheter according to an embodiment of the present invention with a portion of an outer elastomeric layer removed;
b) is an end view section taken from lines 2(b)-2(b) in
c) is a side perspective view of a catheter according to an embodiment with a portion of an outer elastomeric layer removed;
d) is an end view section taken from lines 2(d)-2(d) in
e) is a detail view of a catheter constructed according to an embodiment illustrating a possible configuration with a device disposed in the distal end of the catheter and a clear elastomeric material used as an outer layer;
f) is a detail view of the tooth configuration taken from circle 2(f) in
a), 3(c), 3(e) and 3(g) are detailed views of alternative embodiments of the distal end of a catheter;
b), 3(d), 3(f) and 3(h) are end views of the detail views of
a) and 4(b) illustrate slices or cuts at various orientations;
a) and 5(b) are detailed views of an alternative embodiment of the distal end of the catheter using a braid.
A catheter can expand radially at its distal end to accommodate an element (e.g., medical device) that is larger than the diameter of the catheter. At times it is desirable, sometimes necessary, to remove or reposition a medical device that has been previously deployed. A catheter as described here allows a device to be removed or repositioned by expanding to accommodate the device as the device is brought within the catheter. According to some embodiments, the catheter is configured to reduce the possibility of tearing the elastomeric layer longitudinally along the catheter by the edges of a surgical instrument or implantable device being removed or repositioned.
Referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to
The catheter 10 can be various lengths, such as between 50 cm and 100 cm. The catheter can be longer or shorter as necessary for a particular application. The diameter of the catheter is typically between 5 and 15 French. Of course, the catheter could have a larger or smaller diameter as a particular application warranted. Typical wall thickness of the catheter 10 can vary greatly depending on the material selected and the length of the catheter.
As illustrated in
The elastomeric layer may be disposed on the inside surface of the catheter or on the outside surface of the catheter or both. The layers of the catheter are bonded together, such as through heat bonding, adhesives, or other suitable methods to join the two or more layers. If the elastomeric layer is disposed on the outer surface of the catheter a heat shrink tube may be used. Although the thickness of the layer may vary depending on the needs of a particular application and the material selected, the thickness may be between about 0.001 and 0.025 inches (25 to 625 microns), preferably between about 0.002 and 0.008 inches (50 to 200 microns). Materials for the elastomeric outer cover may include silicone, polyurethane, or polyether-amide block copolymer, such as a material known as Pebax. The elastomeric layer(s) allows the catheter portions 26 and 28 to expand as much as needed to recapture or reposition the device. The elastomeric outer cover can be flush with an inner wall at the distal end of the catheter, or the outer cover can extend beyond the inner wall a short distance to create an overhang that provides a less stiff and “softer” end. This softer tip can help to guide a divide that may have coils or other structures that could get caught if brought back into contact with a stiffer conduit. This overhang would typically have a length of about 0.005 to 0.5 inches (0.125 to 12.5 mm) and preferably about 0.1 inches (2.5 mm), and a thickness of about 0.005 to 0.1 inches (0.125 to 2.5 mm), and preferably about 0.02 to 0.04 inches (0.5 to 1.0 mm). In addition to the end portion, other sections of the catheter can include multiple layers as shown, for example, in application Ser. No. 10/693,398, which is incorporated herein by reference.
a) and 2(b) illustrate a distal end portion 40 of a catheter. The illustrated embodiment includes a two-wall structure comprised of an elastomeric cover 30 surrounding a relatively high stiffness inner wall 42 (compared to the stiffness of the outer wall). The inner wall has two slits 44, 46 extending in a zig-zag pattern along a longitudinal direction at the distal end of the catheter. The material for the inner wall may include high density polyethylene (HDPE), high-stiffness polyether-amide block copolymer or, high stiffness polyurethane. The zig-zag pattern may extend longitudinally up to 15 cm or more along the length of the distal end portion 40 of the catheter.
The zig-zag pattern forms tooth shapes 52 along the length of the zig-zag pattern. The shapes may be triangular as shown or, alternatively, rectangular, semi-circular or irregular. As depicted in
c) and 2(d) illustrate the distal end portion 40 of the catheter in a slightly expanded configuration. The catheter 26, 28 portions with semicircular cross-sections are slightly spread apart and allow for a device with a larger diameter to be inserted into the catheter than would be able to absent the longitudinal slits. The elastomeric layer 30 shown partially removed in
Referring to
a) through 3(h) illustrate other aspects that may be incorporated into catheters described here. For clarity of illustration, the elastomeric layer has not been illustrated, but may or may not be present. Specifically,
a) and 4(b) illustrate the end view of a catheter having alternative configurations for the orientation of the slits that may be used to create any of the slits previously mentioned.
In another embodiment, the expandable catheter end portion 130 includes a wall 132 formed by braided material 134 as illustrated in
Features of the embodiments described here include the following: the expandable sheath tip facilitates the deployment and retrieval of surgical instruments, implantable devices, and biological matter; use of the expandable sheath tip to partially deploy, expand or inflate an implantable device or surgical instrument before delivery of such implantable device or surgical instrument is specifically envisioned. The sheath tip radially expands to more easily accommodate implantable device or surgical instrument volumes and overcome any device or instrument geometry that may tear an elastomeric sleeve. The sheath tip may or may not be accompanied or enhanced by the addition of other materials such as braids, different tubing, or coatings. The elastomeric material, when present, expands such that the implant will be fully or partially encapsulated within the tip. The elastomeric material, when present, also serves to ensure a controlled and consistent expansion of the tip geometry. In addition to the containment of the retrieved device and protection against cut sheath tip areas, the elastomeric material, when present, may extend past the tip of the sheath to form a highly flexible ring that corrects snags, ensuring the successful entry of the device into the sheath tip.
Once the device is retrieved, the material continues to aid in the complete recovery by compressing the implant to facilitate any remaining size discrepancy between the retrieved device and the dimensions of the full length of the sheath. The expandable sheath tip preserves rigidity, column strength, and stiffness where necessary.
In other configurations of catheters, combinations of the above embodiments are possible. For example, one embodiment includes a high-durometer inner wall with a longitudinally-oriented zig-zag slit, having a cover comprised of a low-durometer braided material. Additionally, the slits may extend the entire length of the catheter so that a device may be pulled through the length of the catheter. Numerous modifications and variations of the present inventions are possible in light of the above teachings. Although the embodiments have been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made by those skilled in the art without departing from the spirit and scope of the inventions.
This application claims priority to provisional application Ser. No. 60/496,168, filed Aug. 19, 2003, which is expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3294631 | Lorenz et al. | Dec 1966 | A |
3824631 | Burstein et al. | Jul 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3875648 | Bone | Apr 1975 | A |
3924631 | Mancusi, Jr. | Dec 1975 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4007743 | Blake | Feb 1977 | A |
4149327 | Hammer et al. | Apr 1979 | A |
4425908 | Simon | Jan 1984 | A |
4610674 | Suzuki et al. | Sep 1986 | A |
4626245 | Weinstein | Dec 1986 | A |
4693249 | Schenck et al. | Sep 1987 | A |
4696300 | Anderson | Sep 1987 | A |
4710181 | Fuqua | Dec 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4840623 | Quackenbush | Jun 1989 | A |
4902508 | Badylak et al. | Feb 1990 | A |
4909787 | Danforth | Mar 1990 | A |
4915107 | Rebuffat et al. | Apr 1990 | A |
4917089 | Sideris | Apr 1990 | A |
4921479 | Grayzel | May 1990 | A |
4956178 | Badylak et al. | Sep 1990 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5049131 | Deuss | Sep 1991 | A |
5078736 | Behl | Jan 1992 | A |
5106913 | Yamaguchi et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5149327 | Oshiyama | Sep 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5167363 | Adkinson et al. | Dec 1992 | A |
5167637 | Okada et al. | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5176659 | Mancini | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5211654 | Kaltenbach | May 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5226879 | Ensminger et al. | Jul 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5245023 | Peoples et al. | Sep 1993 | A |
5245080 | Aubard et al. | Sep 1993 | A |
5250430 | Peoples et al. | Oct 1993 | A |
5257637 | El Gazayerli | Nov 1993 | A |
5275826 | Badylak et al. | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5284488 | Sideris | Feb 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5316262 | Koebler | May 1994 | A |
5318588 | Horzewski et al. | Jun 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5334217 | Das | Aug 1994 | A |
5350363 | Goode et al. | Sep 1994 | A |
5354308 | Simon et al. | Oct 1994 | A |
5364356 | Hofling | Nov 1994 | A |
5411481 | Allen et al. | May 1995 | A |
5413584 | Schulze | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5453099 | Lee et al. | Sep 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5480353 | Garza, Jr. | Jan 1996 | A |
5480424 | Cox | Jan 1996 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5507811 | Koike et al. | Apr 1996 | A |
5534432 | Peoples et al. | Jul 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5562632 | Davila et al. | Oct 1996 | A |
5577299 | Thompson et al. | Nov 1996 | A |
5601571 | Moss | Feb 1997 | A |
5603703 | Elsberry et al. | Feb 1997 | A |
5618311 | Gryskiewicz | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626599 | Bourne et al. | May 1997 | A |
5634901 | Alba et al. | Jun 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5643282 | Kieturakis | Jul 1997 | A |
5649950 | Bourne et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5663063 | Peoples et al. | Sep 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713864 | Verkaart | Feb 1998 | A |
5717259 | Schexnayder | Feb 1998 | A |
5720754 | Middleman et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5733337 | Carr, Jr. et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5772641 | Wilson | Jun 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5776183 | Kanesaka et al. | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5810884 | Kim | Sep 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5885258 | Besselink et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5902319 | Daley | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5928250 | Koike et al. | Jul 1999 | A |
5944691 | Querns et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5955110 | Patel et al. | Sep 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5980505 | Wilson | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5993475 | Lin et al. | Nov 1999 | A |
5993844 | Abraham et al. | Nov 1999 | A |
5997575 | Whitson et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6019753 | Pagan | Feb 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6027519 | Stanford | Feb 2000 | A |
6030007 | Bassily et al. | Feb 2000 | A |
6056760 | Koike et al. | May 2000 | A |
6071998 | Muller et al. | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6077880 | Castillo et al. | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6096347 | Geddes et al. | Aug 2000 | A |
6106913 | Scardino et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168588 | Wilson | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6183443 | Kratoska et al. | Feb 2001 | B1 |
6187039 | Hiles et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6197016 | Fourkas et al. | Mar 2001 | B1 |
6199262 | Martin | Mar 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6221092 | Koike et al. | Apr 2001 | B1 |
6227139 | Nguyen et al. | May 2001 | B1 |
6228097 | Levinson et al. | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6245537 | Williams et al. | Jun 2001 | B1 |
6261309 | Urbanski | Jul 2001 | B1 |
6265333 | Dzenis et al. | Jul 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6306150 | Levinson | Oct 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6312443 | Stone | Nov 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6315791 | Gingras et al. | Nov 2001 | B1 |
6316262 | Huisman et al. | Nov 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6322548 | Payne et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6334872 | Termin et al. | Jan 2002 | B1 |
6342064 | Koike et al. | Jan 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6356782 | Sirimanne et al. | Mar 2002 | B1 |
6358238 | Sherry | Mar 2002 | B1 |
6364853 | French et al. | Apr 2002 | B1 |
6371904 | Sirimanne et al. | Apr 2002 | B1 |
6375625 | French et al. | Apr 2002 | B1 |
6375671 | Kobayashi et al. | Apr 2002 | B1 |
6379342 | Levinson | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6398796 | Levinson | Jun 2002 | B2 |
6402772 | Amplatz et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6426145 | Moroni | Jul 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6450987 | Kramer | Sep 2002 | B1 |
6460749 | Levinson et al. | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6488706 | Solymar | Dec 2002 | B1 |
6494846 | Margolis | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6514280 | Gilson | Feb 2003 | B1 |
6514515 | Williams | Feb 2003 | B1 |
6548569 | Williams et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6585719 | Wang | Jul 2003 | B2 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6596013 | Yang et al. | Jul 2003 | B2 |
6599448 | Ehrhard, Jr. et al. | Jul 2003 | B1 |
6610764 | Martin et al. | Aug 2003 | B1 |
6623508 | Shaw et al. | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626936 | Stinson | Sep 2003 | B2 |
6629901 | Huang | Oct 2003 | B2 |
6666861 | Grabek | Dec 2003 | B1 |
6669722 | Chen et al. | Dec 2003 | B2 |
6689589 | Huisman et al. | Feb 2004 | B2 |
6712804 | Roue et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6726696 | Houser et al. | Apr 2004 | B1 |
6749600 | Levy | Jun 2004 | B1 |
6828357 | Martin et al. | Dec 2004 | B1 |
6838493 | Williams et al. | Jan 2005 | B2 |
6867247 | Williams et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6867249 | Lee et al. | Mar 2005 | B2 |
6921410 | Porter | Jul 2005 | B2 |
7094243 | Mulholland et al. | Aug 2006 | B2 |
20010010481 | Blanc et al. | Aug 2001 | A1 |
20010014800 | Frazier et al. | Aug 2001 | A1 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010034537 | Shaw et al. | Oct 2001 | A1 |
20010034567 | Allen et al. | Oct 2001 | A1 |
20010037129 | Thill | Nov 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010044639 | Levinson | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020010481 | Jayaraman | Jan 2002 | A1 |
20020019648 | Akerfeldt et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020026208 | Roe et al. | Feb 2002 | A1 |
20020029048 | Miller | Mar 2002 | A1 |
20020032459 | Horzewski et al. | Mar 2002 | A1 |
20020032462 | Houser et al. | Mar 2002 | A1 |
20020034259 | Tada | Mar 2002 | A1 |
20020035374 | Borillo et al. | Mar 2002 | A1 |
20020043307 | Ishida et al. | Apr 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020052572 | Franco et al. | May 2002 | A1 |
20020058989 | Chen et al. | May 2002 | A1 |
20020077555 | Schwartz | Jun 2002 | A1 |
20020095174 | Tsugita et al. | Jul 2002 | A1 |
20020096183 | Stevens et al. | Jul 2002 | A1 |
20020099389 | Michler et al. | Jul 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111537 | Taylor et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020129819 | Feldman et al. | Sep 2002 | A1 |
20020164729 | Skraly et al. | Nov 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020177870 | Sepetka et al. | Nov 2002 | A1 |
20020183786 | Girton | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183823 | Pappu | Dec 2002 | A1 |
20020198563 | Gainor et al. | Dec 2002 | A1 |
20030004533 | Dieck et al. | Jan 2003 | A1 |
20030023266 | Welch et al. | Jan 2003 | A1 |
20030028213 | Thill et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030055455 | Yang et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030059640 | Marton et al. | Mar 2003 | A1 |
20030065379 | Babbs et al. | Apr 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030139819 | Beer et al. | Jul 2003 | A1 |
20030171774 | Freudenthal et al. | Sep 2003 | A1 |
20030191495 | Ryan et al. | Oct 2003 | A1 |
20030195530 | Thill | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040073242 | Chanduszko | Apr 2004 | A1 |
20040176799 | Chanduszko et al. | Sep 2004 | A1 |
20040186444 | Daly et al. | Sep 2004 | A1 |
20040210301 | Obermiller | Oct 2004 | A1 |
20040215223 | Shaw et al. | Oct 2004 | A1 |
20040234567 | Dawson | Nov 2004 | A1 |
20050025809 | Hasirci et al. | Feb 2005 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050113868 | Devellian | May 2005 | A1 |
20050267523 | Devellian et al. | Dec 2005 | A1 |
20050273135 | Chanduszko et al. | Dec 2005 | A1 |
20050288786 | Chanduszko | Dec 2005 | A1 |
20060122647 | Callaghan et al. | Jun 2006 | A1 |
20060265004 | Callaghan et al. | Nov 2006 | A1 |
20070010851 | Chanduszko et al. | Jan 2007 | A1 |
20070167981 | Opolski | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
9413645 | Oct 1994 | DE |
0362113 | Apr 1990 | EP |
0474887 | Mar 1992 | EP |
0 631 791 | Jan 1995 | EP |
0 839 549 | May 1998 | EP |
0839549 | May 1998 | EP |
0 861 632 | Sep 1998 | EP |
1 013 227 | Jun 2000 | EP |
1 046 375 | Oct 2000 | EP |
1 222 897 | Jul 2002 | EP |
WO 9608286 | Mar 1996 | WO |
WO 9625179 | Aug 1996 | WO |
WO-9631157 | Oct 1996 | WO |
WO 9631157 | Oct 1996 | WO |
WO-9807375 | Feb 1998 | WO |
WO-9808462 | Mar 1998 | WO |
WO-9816174 | Apr 1998 | WO |
WO-9818864 | May 1998 | WO |
WO-9829026 | Jul 1998 | WO |
WO-9851812 | Nov 1998 | WO |
WO-9905977 | Feb 1999 | WO |
WO-9918862 | Apr 1999 | WO |
WO-9918864 | Apr 1999 | WO |
WO-9918870 | Apr 1999 | WO |
WO-9918871 | Apr 1999 | WO |
WO-9930640 | Jun 1999 | WO |
WO 0027292 | May 2000 | WO |
WO 0044428 | Aug 2000 | WO |
WO-0108600 | Feb 2001 | WO |
WO-0119256 | Mar 2001 | WO |
WO-0121247 | Mar 2001 | WO |
WO-0128432 | Apr 2001 | WO |
WO-0130268 | May 2001 | WO |
WO 0149185 | Jul 2001 | WO |
WO-0178596 | Oct 2001 | WO |
WO-0193783 | Dec 2001 | WO |
WO-0217809 | Mar 2002 | WO |
WO 0224106 | Mar 2002 | WO |
WO-03024337 | Mar 2003 | WO |
WO-03053493 | Jul 2003 | WO |
WO-03053493 | Jul 2003 | WO |
WO-03059152 | Jul 2003 | WO |
WO-03063732 | Aug 2003 | WO |
WO 03077733 | Sep 2003 | WO |
WO-03082076 | Oct 2003 | WO |
WO 03092517 | Nov 2003 | WO |
WO-03103476 | Dec 2003 | WO |
WO-2004032993 | Apr 2004 | WO |
WO-2004037333 | May 2004 | WO |
WO-2004043266 | May 2004 | WO |
WO-2004043508 | May 2004 | WO |
WO-2004052213 | Jun 2004 | WO |
WO-2005006990 | Jan 2005 | WO |
WO-2005018728 | Mar 2005 | WO |
WO-2005027752 | Mar 2005 | WO |
WO-2005074813 | Aug 2005 | WO |
WO-2005092203 | Oct 2005 | WO |
WO-2005110240 | Nov 2005 | WO |
WO-2005112779 | Dec 2005 | WO |
WO-2006036837 | Apr 2006 | WO |
WO-2006102213 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20050080430 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60496168 | Aug 2003 | US |