The present application relates to expandable introducer sheaths for prosthetic devices such as transcatheter heart valves and methods of making the same.
Endovascular delivery catheter assemblies are used to implant prosthetic devices, such as a prosthetic valve, at locations inside the body that are not readily accessible by surgery or where access without invasive surgery is desirable. For example, aortic, mitral, tricuspid, and/or pulmonary prosthetic valves can be delivered to a treatment site using minimally invasive surgical techniques.
An introducer sheath can be used to safely introduce a delivery apparatus into a patient's vasculature (e.g., the femoral artery). An introducer sheath generally has an elongated sleeve that is inserted into the vasculature and a housing that contains one or more sealing valves that allow a delivery apparatus to be placed in fluid communication with the vasculature with minimal blood loss. Such introducer sheaths may be radially expandable. However, such sheaths tend to have complex mechanisms, such as ratcheting mechanisms that maintain the sheath in an expanded configuration once a device with a larger diameter than the sheath's original diameter is introduced. Existing expandable sheaths can also be prone to axial elongation as a consequence of the application of longitudinal force attendant to passing a prosthetic device through the sheath. Such elongation can cause a corresponding reduction in the diameter of the sheath, increasing the force required to insert the prosthetic device through the narrowed sheath.
Accordingly, there remains a need in the art for an improved introducer sheath for endovascular systems used for implanting valves and other prosthetic devices.
The expandable sheaths disclosed herein include a first polymeric layer, a braided layer radially outward of the first polymeric layer (the braided layer comprising a plurality of filaments braided together), and a second polymeric layer radially outward of the braided layer. The second polymeric layer can be bonded to the first polymeric layer, such that the braided layer is encapsulated between the first and second polymeric layers. When a medical device is passed through the sheath, the diameter of the sheath expands from a first diameter to a second diameter around the medical device.
In some embodiments, when a medical device is passed through the sheath, the diameter of the sheath expands from a first diameter to a second diameter around the medical device while resisting axial elongation of the sheath, such that a length of the sheath remains substantially constant.
In some embodiments, the first and second polymeric layers include a plurality of longitudinally-extending folds when the sheath is at the first diameter. The longitudinally-extending folds create a plurality of circumferentially spaced ridges and a plurality of circumferentially spaced valleys. As a medical device is passed through the sheath, the ridges and valleys level out to allow the sheath to radially expand.
In some embodiments, a portion of the first polymeric layer and/or a portion of the second polymeric layer comprises an elastic coating.
In some embodiments, the filaments of the braided layer are movable between the first and second polymeric layers, such that the braided layer can radially expand as a medical device is passed through the sheath. The length of the sheath can stay substantially constant as the braided layer radially expands. In some embodiments, the filaments of the braided layer are resiliently buckled when the sheath is at the first diameter, and the first and second polymeric layers are attached to each other at a plurality of open spaces between the filaments of the braided layer. In some embodiments, the braided layer includes a self-contracting material. In some embodiments, at least a portion of the plurality of filaments includes an elastic coating.
Some embodiments of the expandable sheath can include an outer cover formed of a heat shrink material and extending over at least a longitudinal portion of the first polymeric layer, the braided layer, and the second polymeric layer. The outer cover can include one or more longitudinally extending slits, weakened portions, or scorelines.
Some expandable sheath embodiments include a cushioning layer positioned between the braided layer and an adjacent polymeric layer. The cushioning layer dissipates radial forces acting between filaments of the braided layer and the adjacent polymeric layer. A first cushioning layer can be positioned between the braided layer and the first polymeric layer, and a second cushioning layer can be positioned between the braided layer and the second polymeric layer. The cushioning layer(s) can have, for example, a thickness of from about 80 microns to about 1000 microns. Some embodiments of the cushioning layer can have a porous interior region. The cushioning layer can further include a sealed surface positioned between the porous interior region and the adjacent polymeric layer, with the sealed surface having a higher melting point than the adjacent polymeric layer. The sealed surface can also be thinner than the porous interior region of the cushioning layer. In some embodiments, the sealed surface is a sealing layer attached to the cushioning layer. In some embodiments, the sealed surface is a surface of the cushioning layer, and the sealed surface of the cushioning layer is continuous with and formed of the same material as the porous interior region of the cushioning layer.
Another expandable sheath embodiment can include a braided layer (including a plurality of filaments braided together), and a first expandable sealing layer adhered to a portion of the filaments of the braided layer. The sealing layer is impermeable to blood flow. When a medical device is passed through the sheath, the diameter of the sheath expands from a first diameter to a second diameter around the medical device. In some embodiments, a second expandable sealing layer can be adhered to a portion of the filaments of the braided layer. The second expandable sealing layer can be positioned on the opposite side of the braided layer as the first expandable sealing layer. In some embodiments, the braided layer includes a self-contracting material, and the expandable sealing layer varies in thickness according to the longitudinal position of the sheath.
In some embodiments, at least a portion of the plurality of filaments includes a sealing coating instead of, or in addition to, one or both of the sealing layers.
Methods of making expandable sheaths are also disclosed herein. One embodiment of a method of making an expandable sheath includes: placing a braided layer radially outward of a first polymeric layer situated on a mandrel (the mandrel having a first diameter), and applying a second polymeric layer radially outward of the braided layer, applying heat and pressure to the first polymeric layer, the braided layer, and the second polymeric layer such that the first and second polymeric layers bond to each other and encapsulate the braided layer to form an expandable sheath. The method further includes removing the expandable sheath from the mandrel to allow the expandable sheath to at least partially radially collapse to a second diameter that is less than the first diameter.
In some embodiments, an elastic coating can be applied to a portion of the plurality of filaments. In some embodiments, an elastic coating can be applied to a portion of the first polymeric layer and/or a portion of the second polymeric layer.
Some embodiments of the methods of making expandable sheaths can include shape-setting the braided layer to a contracted diameter prior to placing the braided layer radially outward of the first polymeric layer.
In some embodiments of the methods of making expandable sheaths, applying heat and pressure further includes placing the mandrel in a vessel containing a thermally-expandable material, heating the thermally-expandable material in the vessel, and applying a radial pressure of 100 MPa or more to the mandrel via the thermally-expandable material.
In some embodiments of the methods of making expandable sheaths, applying heat and pressure further includes applying a heat shrink tubing layer over the second polymeric layer and applying heat to the heat shrink tubing layer.
Some embodiments of the methods of making expandable sheaths can include resiliently buckling the filaments of the braided layer as the sheath is radially collapsed to the second diameters.
Some embodiments of the methods of making expandable sheaths can include sealing a surface of a cushioning layer and applying the cushioning layer such that the sealed surface contacts the first polymeric layer or the second polymeric layer.
Some embodiments of the methods of making expandable sheaths can include crimping the expandable sheath to a third diameter, the third diameter being smaller than the first diameter and the second diameter.
Some other embodiments also describe the sheath further comprising a distal end portion having a predetermined length and comprising two or more layers.
Yet, in other embodiments, as disclosed herein, the distal end portion can extend distally beyond a longitudinal portion of the sheath comprising the braided layer.
Also disclosed herein are embodiments where the distal end portion comprises an inner polymeric layer and an outer polymeric layer.
In still further embodiments, the distal end portion can further comprise an external covering.
In yet further embodiments, a portion of the distal end portion can comprise a portion of a distal end of the braided layer.
Also disclosed are embodiments, where the portion of the distal end of the braided layer comprises loops.
In some embodiments disclosed herein, the external covering can have a melting temperature lower than a melting temperature of the inner polymeric layer.
While in other embodiments, the external covering can have a melting temperature lower than a melting temperature of the outer polymeric layer.
In still further embodiments, the external covering can comprise a low density polyethylene.
Also described herein are embodiments, where a portion of the sheath proximal to the distal end portion of the sheath does not comprise the external covering.
In yet other embodiments described herein, a portion of the sheath extending from a proximal end of the sheath to a portion of the sheath proximal to the distal end portion of the sheath does not comprise the external covering.
Some embodiments comprise the sheath comprising at least one attachment region between the distal end portion and a portion of the sheath proximal to the distal end.
Yet, in other embodiments, the attachment region is a circumferential attachment region.
While in other embodiments, the attachment region comprises a plurality of circumferentially spaced attachment regions.
Also disclosed are the embodiments where the distal end portion of the sheath comprises a first plurality of folds present in the inner layer.
In other embodiments, the distal end portion of the sheath comprises a second plurality of folds present in the outer layer.
In still further embodiments, the distal end portion of the sheath can comprise a third plurality of folds present in the external covering.
Also disclosed are the embodiments, where folds in the third plurality of folds present in the external covering are at least partially attached to each other.
In certain embodiments, disclosed also are methods of forming a tip of a sheath. In such exemplary embodiments the method comprises pre-crimping a distal end portion of any of the disclosed herein sheaths to a first diameter, wherein the distal end portion extends distally beyond a longitudinal portion of the sheath comprising the braided layer and comprises an inner polymeric layer and an outer polymeric layer; wherein the inner polymeric layer and the outer layer exhibit a first melting temperature; covering the pre-crimped distal end portion with an external covering; wherein the external covering exhibits a second melting temperature, wherein the second melting temperature is lower than the first melting temperature; heating at least a portion of the pre-crimped distal end portion covered with the external covering to a first temperature, wherein the first temperature is equal or greater than the first melting temperature, thereby forming at least one attachment region between the external cover and the inner and outer polymeric layers; inserting a mandrel into a lumen of at least a portion of the distal end portion and further crimping the at least a portion of the distal end portion to a second diameter; and heating the at least a portion of the distal end portion to a second temperature; wherein the second temperature is equal or greater than the second melting temperature.
Also disclosed are embodiments wherein the second temperature is lower than the first melting temperature.
In some embodiments, wherein the second diameter is smaller than the first diameter.
Some embodiments of the methods disclosed herein include that the step of crimping can form a plurality of folds along the external covering.
In yet other embodiments, the inner polymeric layer and outer polymeric layer comprise a plurality of folds.
In yet further exemplary embodiments, the plurality of folds in the inner polymeric layer and the outer polymeric layer are formed at the pre-crimping step. While in other exemplary embodiments, the plurality of folds in the inner polymeric layer and the outer polymeric layer are formed at the crimping step.
Also disclosed herein are the embodiments, where the step of heating to the second temperature forms an attachment between at least a portion of the plurality of folds in the external covering to each other.
In yet other embodiments of the methods disclosed herein comprise applying a heat-shrink material to at least a portion of the crimped distal end portion.
In still further embodiments, the step of applying the heat-shrink material is performed prior to the step of heating to the second temperature. While in yet other embodiments, the step of applying the heat-shrink material is performed during the step of heating to the second temperature. While in still further embodiments, the step of applying the heat-shrink material is performed after to the step of heating to the second temperature.
In yet other embodiments of the methods disclosed herein comprise removing the heat-shrink material after the attachment between at least a portion of the plurality of folds in the external covering to each other is formed.
In yet further embodiments, the heat-shrink material can be a tube or a tape.
The expandable introducer sheaths described herein can be used to deliver a prosthetic device through a patient's vasculature to a procedure site within the body. The sheath can be constructed to be highly expandable and collapsible in the radial direction while limiting axial elongation of the sheath and, thereby, undesirable narrowing of the lumen. In one embodiment, the expandable sheath includes a braided layer, one or more relatively thin, non-elastic polymeric layers, and an elastic layer. The sheath can resiliently expand from its natural diameter to an expanded diameter as a prosthetic device is advanced through the sheath, and can return to its natural diameter upon passage of the prosthetic device under the influence of the elastic layer. In certain embodiments, the one or more polymeric layers can engage the braided layer and can be configured to allow radial expansion of the braided layer while preventing axial elongation of the braided layer, which would otherwise result in elongation and narrowing of the sheath.
The prosthetic heart valve 12 can be delivered into a patient's body in a radially compressed configuration and radially expanded to a radially expanded configuration at the desired deployment site. In the illustrated embodiment, the prosthetic heart valve 12 is a plastically expandable prosthetic valve that is delivered into the patient's body in a radially compressed configuration on a balloon of the balloon catheter 16 (as shown in
Further details regarding a mechanically expandable heart valve that can be implanted using the devices disclosed herein are disclosed in U.S. Publication No. 2018/0153689, which is incorporated herein by reference. In still other embodiments, a prosthetic valve can incorporate two or more of the above-described technologies. For example, a self-expandable heart valve can be used in combination with an expansion device to assist expansion of the prosthetic heart valve.
In alternative embodiments, the introducer device 90 need not include a housing 92. For example, the sheath 100 can be an integral part of a component of the delivery apparatus 10, such as the guide catheter. For example, the sheath can extend from the handle 18 of the guide catheter. Additional examples of introducer devices and expandable sheaths can be found in U.S. patent application Ser. No. 16/378,417, which is incorporated by reference in its entirety.
Referring to
In certain embodiments, the inner layer 102 and/or the outer layer 108 can comprise a relatively thin layer of polymeric material. For example, in some embodiments, the thickness of the inner layer 102 can be from 0.01 mm to 0.5 mm, 0.02 mm to 0.4 mm, or 0.03 mm to 0.25 mm. In certain embodiments, the thickness of the outer layer 108 can be from 0.01 mm to 0.5 mm, 0.02 mm to 0.4 mm, or 0.03 mm to 0.25 mm.
In certain examples, the inner layer 102 and/or the outer layer 108 can comprise a lubricious, low-friction, and/or relatively non-elastic material. In particular embodiments, the inner layer 102 and/or the outer layer 108 can comprise a polymeric material having a modulus of elasticity of 400 MPa or greater. Exemplary materials can include ultra-high-molecular-weight polyethylene (UHMWPE) (e.g., Dyneema®), high-molecular-weight polyethylene (HMWPE), or polyether ether ketone (PEEK). With regard to the inner layer 102 in particular, such a low coefficient of friction materials can facilitate passage of the prosthetic device through the lumen 112. Other suitable materials for the inner and outer layers can include polytetrafluoroethylene (PTFE), expanded polytetrafluoroethylene (ePTFE), ethylene tetrafluoroethylene (ETFE), nylon, polyethylene, polyether block amide (e.g., Pebax), and/or combinations of any of the above. Some embodiments of a sheath 100 can include a lubricious liner on the inner surface of the inner layer 102. Examples of suitable lubricious liners include materials that can further reduce the coefficient of friction of the inner layer 102, such as PTFE, polyethylene, polyvinylidine fluoride, and combinations thereof. Suitable materials for a lubricious liner also include other materials desirably having a coefficient of friction of 0.1 or less.
Additionally, some embodiments of the sheath 100 can include an exterior hydrophilic coating on the outer surface of the outer layer 108. Such a hydrophilic coating can facilitate insertion of the sheath 100 into a patient's vessel, reducing potential damage. Examples of suitable hydrophilic coatings include the Harmony™ Advanced Lubricity Coatings and other Advanced Hydrophilic Coatings available from SurModics, Inc., Eden Prairie, Minn. DSM medical coatings (available from Koninklijke DSM N.V, Heerlen, the Netherlands), as well as other hydrophilic coatings (e.g., PTFE, polyethylene, polyvinylidine fluoride), are also suitable for use with the sheath 100. Such hydrophilic coatings may also be included on the inner surface of the inner layer 102 to reduce friction between the sheath and the delivery system, thereby facilitating the use and improving safety. In some embodiments, a hydrophobic coating, such as Perylene, may be used on the outer surface of the outer layer 108 or the inner surface of the inner layer 102 in order to reduce friction.
In certain embodiments, the second layer 104 can be a braided layer.
The braided layer 104 can extend along substantially the entire length L of the sheath 100, or alternatively, can extend only along a portion of the length of the sheath. In particular embodiments, the filaments 110 can be wires made from metal (e.g., Nitinol, stainless steel, etc.), or any of various polymers or polymer composite materials, such as carbon fiber. In certain embodiments, the filaments 110 can be round, and can have a diameter of from 0.01 mm to 0.5 mm, 0.03 mm to 0.4 mm, or 0.05 mm to 0.25 mm. In other embodiments, the filaments 110 can have a flat cross-section with dimensions of 0.01 mm×0.01 mm to 0.5 mm×0.5 mm, or 0.05 mm×0.05 mm to 0.25 mm×0.25 mm. In one embodiment, filaments 110 having a flat cross-section can have dimensions of 0.1 mm×0.2 mm. However, other geometries and sizes are also suitable for certain embodiments. If a braided wire is used, the braid density can be varied. Some embodiments have a braid density of from ten picks per inch to eighty picks per inch, and can include eight wires, sixteen wires, or up to fifty-two wires in various braid patterns. In other embodiments, the second layer 104 can be laser cut from a tube, or laser-cut, stamped, punched, etc., from sheet stock and rolled into a tubular configuration. The layer 104 can also be woven or knitted, as desired.
The third layer 106 can be a resilient, elastic layer (also referred to as an elastic material layer). In certain embodiments, the elastic layer 106 can be configured to apply force to the underlying layers 102 and 104 in a radial direction (e.g., toward the central axis 114 of the sheath) when the sheath expands beyond its natural diameter by passage of the delivery apparatus through the sheath. Stated differently, the elastic layer 106 can be configured to apply encircling pressure to the layers of the sheath beneath the elastic layer 106 to counteract expansion of the sheath. The radially inwardly directed force is sufficient to cause the sheath to collapse radially back to its unexpanded state after the delivery apparatus is passed through the sheath.
In the illustrated embodiment, the elastic layer 106 can comprise one or more members configured as strands, ribbons, or bands 116 helically wrapped around the braided layer 104. For example, in the illustrated embodiment, the elastic layer 106 comprises two elastic bands 116A and 116B wrapped around the braided layer with opposite helicity, although the elastic layer may comprise any number of bands depending upon the desired characteristics. The elastic bands 116A and 116B can be made from, for example, any of a variety of natural or synthetic elastomers, including silicone rubber, natural rubber, any of various thermoplastic elastomers, polyurethanes such as polyurethane siloxane copolymers, urethane, plasticized polyvinyl chloride (PVC), styrenic block copolymers, polyolefin elastomers, etc. In some embodiments, the elastic layer can comprise an elastomeric material having a modulus of elasticity of 200 MPa or less. In some embodiments, the elastic layer 106 can comprise a material exhibiting an elongation to break of 200% or greater, or an elongation to break of 400% or greater. The elastic layer 106 can also take other forms, such as a tubular layer comprising an elastomeric material, a mesh, a shrinkable polymer layer such as a heat-shrink tubing layer, etc. In lieu of, or in addition to, the elastic layer 106, the sheath 100 may also include an elastomeric or heat-shrink tubing layer around the outer layer 108. Examples of such elastomeric layers are disclosed in U.S. Publication No. 2014/0379067, U.S. Publication No. 2016/0296730, and U.S. Publication No. 2018/0008407, which are incorporated herein by reference. In other embodiments, the elastic layer 106 can also be radially outward of the polymeric layer 108.
In certain embodiments, one or both of the inner layer 102 and/or the outer layer 108 can be configured to resist axial elongation of the sheath 100 when the sheath expands. More particularly, one or both of the inner layer 102 and/or the outer layer 108 can resist stretching against longitudinal forces caused by friction between a prosthetic device and the inner surface of the sheath such that the length L remains substantially constant as the sheath expands and contracts. As used herein with reference to the length L of the sheath, the term “substantially constant” means that the length L of the sheath increases by not more than 1%, by not more than 5%, by not more than 10%, by not more than 15%, or by not more than 20%. Meanwhile, with reference to
For example, in some embodiments, the inner layer 102 and the outer layer 108 can be heat-bonded during the manufacturing process such that the braided layer 104 and the elastic layer 106 are encapsulated between the layers 102 and 108. More specifically, in certain embodiments, the inner layer 102 and the outer layer 108 can be adhered to each other through the spaces between the filaments 110 of the braided layer 104 and/or the spaces between the elastic bands 116. The layers 102 and 108 can also be bonded or adhered together at the proximal and/or distal ends of the sheath. In certain embodiments, the layers 102 and 108 are not adhered to the filaments 110. This can allow the filaments 110 to move angularly relative to each other, and relative to the layers 102 and 108, allowing the diameter of the braided layer 104, and thereby the diameter of the sheath, to increase or decrease. As the angle θ between the filaments 110A and 110B changes, the length of the braided layer 104 can also change. For example, as the angle θ increases, the braided layer 104 can foreshorten, and as the angle θ decreases, the braided layer 104 can lengthen to the extent permitted by the areas where the layers 102 and 108 are bonded. However, because the braided layer 104 is not adhered to the layers 102 and 108, the change in length of the braided layer that accompanies a change in the angle θ between the filaments 110A and 110B does not result in a significant change in the length L of the sheath.
Meanwhile, the angle θ between the filaments 110A and 110B can increase as the sheath expands to the second diameter D2 to accommodate the prosthetic valve. This can cause the braided layer 104 to foreshorten. However, because the filaments 110 are not engaged or adhered to the layers 102 or 108, the shortening of the braided layer 104 attendant to an increase in the angle θ does not affect the overall length L of the sheath. Moreover, because of the longitudinally-extending folds 126 formed in the layers 102 and 108, the layers 102 and 108 can expand to the second diameter D2 without rupturing, in spite of being relatively thin and relatively non-elastic. In this manner, the sheath 100 can resiliently expand from its natural diameter D1 to a second diameter D2 that is larger than the diameter D1 as a prosthetic device is advanced through the sheath, without lengthening, and without constricting. Thus, the force required to push the prosthetic implant through the sheath is significantly reduced.
Additionally, because of the radial force applied by the elastic layer 106, the radial expansion of the sheath 100 can be localized to the specific portion of the sheath occupied by the prosthetic device. For example, with reference to
In addition to the advantages above, the expandable sheath embodiments described herein can provide surprisingly superior performance relative to known introducer sheaths. For example, it is possible to use a sheath configured as described herein to deliver a prosthetic device having a diameter that is two times larger, 2.5 times larger, or even three times larger than the natural outer diameter of the sheath. For example, in one embodiment, a crimped prosthetic heart valve having a diameter of 7.2 mm was successfully advanced through a sheath configured as described above and having a natural outer diameter of 3.7 mm. As the prosthetic valve was advanced through the sheath, the outer diameter of the portion of the sheath occupied by the prosthetic valve increased to 8 mm. In other words, it was possible to advance a prosthetic device having a diameter more than two times the outer diameter of the sheath through the sheath, during which the outer diameter of the sheath resiliently increased by 216%. In another example, a sheath with an initial or natural outer diameter of 4.5 mm to 5 mm can be configured to expand to an outer diameter of 8 mm to 9 mm.
In alternative embodiments, the sheath 100 may optionally include the layer 102 without the layer 108, or the layer 108 without the layer 102, depending upon the particular characteristics desired.
In the illustrated embodiments, the braided layer 104 is disposed between the polymeric layers 102 and 108, as described above. For example, the polymeric layers 102 and 108 can be adhered or laminated to each other at the ends of the sheath 100 and/or between the filaments 110 in the open spaces 136 defined by the unit cells 134. Thus, with reference to
Turning now to methods of making expandable sheaths,
With reference to
In particular embodiments, the elastic bands 116 can be applied to the braided layer 104 in a stretched, taut, or extended condition. For example, in certain embodiments, the bands 116 can be applied to the braided layer 104 stretched to a length that is twice their natural, relaxed length. This will cause the completed sheath to radially collapse under the influence of the elastic layer when removed from the mandrel, which can cause corresponding relaxation of the elastic layer, as described below. In other embodiments, the layer 102 and the braided layer 104 can be removed from the mandrel, the elastic layer 106 can be applied in a relaxed state or moderately stretched state, and then the assembly can be placed back on the mandrel such that the elastic layer is radially expanded and stretched to a taut condition prior to application of the outer layer 108.
The assembly can then be heated to a sufficiently high temperature that the heat-shrink layer 124 shrinks and compresses the layers 102-108 together. In certain embodiments, the assembly can be heated to a sufficiently high temperature such that the polymeric inner and outer layers 102 and 108 become soft and tacky, and bond to each other in the open spaces between the braided layer 104 and the elastic layer 106 and encapsulate the braided layer and the elastic layer. In other embodiments, the inner and outer layers 102, 108 can be reflowed or melted such that they flow around and through the braided layer 104 and the elastic layer 106. In an exemplary embodiment, the assembly can be heated at 150° C. for 20-30 minutes.
After heating, the sheath 100 can be removed from the mandrel 118, and the heat-shrink tubing 124 and the ePTFE layers 120 and 122 can be removed. Upon being removed from the mandrel 118, the sheath 100 can at least partially radially collapse to the natural design diameter D1 under the influence of the elastic layer 106. In certain embodiments, the sheath can be radially collapsed to the design diameter with the optional aid of a crimping mechanism. The attendant reduction in circumference can buckle the filaments 110, as shown in
In certain embodiments, a layer of PTFE can be interposed between the ePTFE layer 120 and the inner layer 102, and/or between the outer layer 108 and the ePTFE layer 122, in order to facilitate separation of the inner and outer polymeric layers 102, 108 from the respective ePTFE layers 120 and 122. In further embodiments, one of the inner layer 102 or the outer layer 108 may be omitted, as described above.
The expandable sheath 100 can also be made in other ways. For example,
The containment vessel 202 can define an interior volume or chamber 204. In the illustrated embodiment, the vessel 202 can be a metal tube, including a closed end 206 and an open end 208. The vessel 202 can be at least partially filled with a thermally-expandable material 210 having a relatively high coefficient of thermal expansion. In particular embodiments, the thermally-expandable material 210 may have a coefficient of thermal expansion of 2.4×10−4/° C. or greater. Exemplary thermally-expandable materials include elastomers such as silicones materials. Silicone materials can have a coefficient of thermal expansion of from 5.9×10−4/° C. to 7.9×10−4/° C.
A mandrel similar to the mandrel 118 of
The open end 208 of the vessel 202 can be closed with a cap 212. The vessel 202 can then be heated by the heating system 214. Heating by the heating system 214 can cause the material 210 to expand within the chamber 204 and apply radial pressure against the layers of material on the mandrel 118. The combination of the heat and pressure can cause the layers on the mandrel 118 to bond or adhere to each other to form a sheath. In certain embodiments, it is possible to apply radial pressure of 100 MPa or more to the mandrel 118 using the apparatus 200. The amount of radial force applied to the mandrel can be controlled by, for example, the type and quantity of the material 210 selected and its coefficient of thermal expansion, the thickness of the material 210 surrounding the mandrel 118, the temperature to which the material 210 is heated, etc.
In some embodiments, the heating system 214 can be an oven into which the vessel 202 is placed. In some embodiments, the heating system can include one or more heating elements positioned around the vessel 202. In some embodiments, the vessel 202 can be an electrical resistance heating element or an induction heating element controlled by the heating system 214. In some embodiments, heating elements can be embedded in the thermally-expandable material 210. In some embodiments, the material 210 can be configured as a heating element by, for example, adding electrically conductive filler materials, such as carbon fibers or metal particles.
The apparatus 200 can provide several advantages over known methods of sheath fabrication, including uniform, highly controllable application of radial force to the mandrel 118 along its length, and high repeatability. The apparatus 200 can also facilitate fast and accurate heating of the thermally-expandable material 210, and can reduce or eliminate the need for heat-shrink tubing and/or tape, reducing material costs and labor. The amount of radial force applied can also be varied along the length of the mandrel by, for example, varying the type or thickness of the surrounding material 210. In certain embodiments, multiple vessels 202 can be processed in a single fixture, and/or multiple sheaths can be processed within a single vessel 202. The apparatus 200 can also be used to produce other devices, such as shafts or catheters.
In one specific method, the sheath 100 can be formed by placing layers 102, 104, 106, 108 on the mandrel 118 and placing the mandrel with the layers inside of the vessel 202 with the thermally-expandable material 210 surrounding the outermost layer 108. If desired, one or more inner layers 120 of ePTFE (or similar material) and one or more outer layers 122 of ePTFE (or similar material) can be used (as shown in
Referring to
Referring to
The vessel dilator 300 can include a variety of active and/or passive mechanisms for engaging and retaining the sheath 100. For example, in certain embodiments, the retaining member 306 can comprise a polymeric heat-shrink layer that can be collapsed around the distal end portion of the sheath 100. In the embodiment illustrated in
Referring to
Referring to
In another embodiment, an expandable sheath configured as described above can further comprise a shrinkable polymeric outer cover, such as a heat-shrink tubing layer 400 shown in
In some embodiments, the heat-shrink tubing layer 400 can extend distally beyond the distal end portion 140 of the sheath as the distal overhang 408 shown in
In some embodiments, the heat-shrink tubing layer can be configured to split open as a delivery apparatus such as the delivery apparatus 10 is advanced through the sheath. For example, in certain embodiments, the heat-shrink tubing layer can comprise one or more longitudinally extending openings, slits, or weakened, elongated scorelines 406 such as those shown in
In other embodiments, splitting or tearing of the heat-shrink tubing layer may be induced in a variety of other ways, such as by forming weakened areas on the tubing surface by, for example, applying chemical solvents, cutting, scoring, or ablating the surface with an instrument or laser, and/or by decreasing the wall thickness or making cavities in the tubing wall (e.g., by femto-second laser ablation).
In some embodiments, the heat-shrink tubing layer may be attached to the body of the sheath by adhesive, welding, or any other suitable fixation means.
In another embodiment, the expandable sheath can have a distal end or tip portion comprising an elastic thermoplastic material (e.g., Pebax), which can be configured to provide an interference fit or interference geometry with the corresponding portion of the vessel dilator 300. In certain configurations, the outer layer of the sheath may comprise polyamide (e.g., nylon) in order to provide for welding the distal end portion to the body of the sheath. In certain embodiments, the distal end portion can comprise a deliberately weakened portion, scoreline, slit, etc., to allow the distal end portion to split apart as the delivery apparatus is advanced through the distal end portion.
In other embodiments, the entire sheath could have an elastomeric outer cover that extends longitudinally from the handle to the distal end portion 140 of the sheath, optionally extending onward to create an overhang similar to overhang 408 shown in
In another embodiment, the distal end portion of the expandable sheath can comprise a polymer such as Dyneema®, which can be tapered to the diameter of the vessel dilator 300. Weakened portions such as dashed cuts, scoring, etc., can be applied to the distal end portion such that it will split open and/or expand in a repeatable way.
Crimping of the expandable sheath embodiments described herein can be performed in a variety of ways, as described above. In additional embodiments, the sheath can be crimped using a conventional short crimper several times longitudinally along the longer sheath. In other embodiments, the sheath may be collapsed to a specified crimped diameter in one or a series of stages in which the sheath is wrapped in heat-shrink tubing and collapsed under heating. For example, a first heat shrink tube can be applied to the outer surface of the sheath, the sheath can be compressed to an intermediate diameter by shrinking the first heat shrink tube (via heat), the first heat shrink tube can be removed, a second heat shrink tube can be applied to the outer surface of the sheath, the second heat shrink tube can be compressed via heat to a diameter smaller than the intermediate diameter, and the second heat shrink tube can be removed. This can go on for as many rounds as necessary to achieve the desired crimped sheath diameter.
Crimping of the expandable sheath embodiments described herein can be performed in a variety of ways, as described above. A roller-based crimping mechanism 602, such as the one shown in
Each disc-shaped roller 606 is held in place in the radially arranged configuration by a connector 608 that is attached to crimping mechanism 602 via one or more fasteners 619, such that the location of each of the plurality of connectors is fixed with respect to the first end surface of the crimping mechanism 602. In the depicted embodiment, fasteners 619 are positioned adjacent an outer portion of the crimping mechanism 602, radially outwardly of the disc-shaped rollers 606. Two fasteners 619 are used to position each connector 608 in the embodiment shown, but the number of fasteners 619 can vary. As shown in
During use, an elongated sheath is advanced from the first side 604 of the crimping mechanism 602, through the axial passage between the rollers, and out the second side 605 of the crimping mechanism 602. The pressure from the circular edge 610 of the disc shaped rollers 606 reduces the diameter of the sheath to a crimped diameter as it rolls along the outer surface of the elongated sheath.
The first tapered portion 713 of the narrowing lumen 714 opens toward a second end piece 711 of the holding mechanism 708, such that the widest side of the taper is located on an inner surface 722 of the first end piece 710. In the embodiment shown, the first tapered portion 713 narrows to a narrow end 715 that connects with a narrow cylindrical portion 716 of the narrowing lumen 714. In this embodiment, the narrow cylindrical portion 716 defines the narrowest diameter of the narrowing lumen 714. The cylindrical end portion 724 of the mandrel 706 may nest loosely within the narrow cylindrical portion 716 of the narrowing lumen 714, with enough space or clearance between the cylindrical end portion 724 and the narrow cylindrical portion 716 of the lumen to allow for passage of the elongated sheath. The elongated nature of the narrow cylindrical portion 716 may facilitate smoothing of the crimped sheath after it has passed over the conical end portion 712 of the mandrel. However, the length of the cylindrical portion 716 of the narrowing lumen 714 is not meant to limit the invention, and in some embodiments, the crimping mechanism 702 may only include first tapered portion 713 of the narrowing lumen 714, and still be effective to crimp an elongated sheath.
At the opposite end of the first end piece 710 shown in
The holding mechanism 708 further includes a second end piece 711 positioned opposite the elongated base 704 from the first end piece 710. The second end piece 711 is movable with respect to elongated base 704, such that the distance between the first end piece 710 and the second end piece 711 is adjustable and, therefore, able to support mandrels of varying sizes. In some embodiments, elongated base 704 may include one or more elongated sliding tracks 728. The second end piece 711 can be slidably engaged to the sliding track 728 via at least one reversible fastener 730, such as, but not limited to, a bolt that extends into or through the second end piece 711 and the elongated sliding track 728. To move the second end piece 711, the user would loosen or remove the reversible fastener 730, slide the second end piece 711 to the desired location, and replace or tighten the reversible fastener 730.
In use, a sheath in an uncrimped diameter can be placed over the elongated mandrel 706 of the crimping device 700 shown in
In some embodiments, the crimping mechanism 602 shown in
The distal end portion 902 may have a smaller collapsed diameter than the more proximal portions of the sheath, giving it a tapered appearance. This smooths the transition between the introducer/dilator and the sheath, ensuring that the sheath does not get lodged against the tissue during insertion into the patient. The smaller collapsed diameter can be a result of multiple folds (for example, 1, 2, 3, 4, 5, 6, 7, or 8 folds) positioned circumferentially (evenly or unevenly spaced) around the distal end portion. For example, a circumferential segment of the distal end portion can be brought together and then laid against the adjacent outer surface of the distal end portion to create an overlapping fold. In the collapsed configuration, the overlapping portions of the fold extend longitudinally along the distal end portion 902. Exemplary folding methods and configurations are described in U.S. application Ser. No. 14/880,109 and U.S. application Ser. No. 14/880,111, each of which are hereby incorporated by reference in their entireties. Scoring can be used as an alternative, or in addition to folding of the distal end portion. Both scoring and folding of the distal end portion 902 allow for the expansion of the distal end portion upon the passage of the delivery system, and ease the retraction of the delivery system back into the sheath once the procedure is complete. In some embodiments, the distal end portion of the sheath (and/or of the vessel dilator) can decrease from the initial diameter of the sheath (e.g., 8 mm) to 3.3 mm (10F), and may decrease to the diameter of a guidewire, allowing the sheath and/or the vessel dilator 300 to run on a guidewire.
In some embodiments, a distal end portion can be added, the sheath and tip can be crimped, and the crimping of the distal end portion and sheath can be maintained, by the following method. As mentioned above, the distal end portion 902 can be an extension of the outer layer of the sheath. It can also be a separate, multilayer tubing that is heat bonded to the remainder of the sheath prior to the tip crimping processing steps. In some embodiments, the separate, multilayer tubing is heat bonded to a distal extension of the outer layer of the sheath to form the distal end portion 902. For crimping of the sheath after tip attachment, the sheath is heated on a small mandrel. The distal end portion 902 can be folded around the mandrel to create the folded configuration shown in
This method advantageously avoids risks that a tear initiated at a score or split line (such as perforation 813 shown in
The crimping of the inner and outer polymeric layers 513, 517 and the external covering layer 561 can be, for example, from a pre-compressed diameter of about 8.3 mm to a compressed diameter of about 3 mm.
The method of compressing the distal portion of the expandable sheath can further include a step of covering the expandable sheath 501 and the external covering layer 561 with a heat-shrink tube (HST) prior to, during or following the heating to the second temperature, wherein the second temperature further acts to shrink the HST in order to retain the external covering layer 561 and the expandable sheath 501 in a compressed state. The HST can be removed from the expandable sheath 501 and the external covering layer 561 after the folds 563 of the covering layer 563 are sufficiently attached to each other in the desired compressed state, and cooled down for a sufficient period of time.
According to some embodiments, the HST is further utilized as a heat shrink tape, to apply the external radial pressure by wrapping and heating it over the external covering layer 561 and the expandable sheath 501.
According to some embodiments, a non-heat-shrink tape can be used instead of a heat shrink tube.
The external covering layer 561 is chosen such that its melting temperature TM1 is lower than the melting temperature TM2 of the polymeric layers of the expandable sheath 100, in order to promote folds 563 formation with moderate attachment in the external covering layer 561, while avoiding melting and attaching similar folds in the polymeric layers 513 and 517 of the expandable sheath 501.
According to some embodiments, the external covering layer 561 is low density polyethylene. Other suitable materials, as known in the arts, such as polypropylene, thermoplastic polyurethane, and the like, may be utilized to form the external covering layer 561.
According to some embodiments, the external covering layer 561 is attached different attachment regions, such as along a longitudinally oriented attachment line, to the external surface of the expandable sheath 501 (e.g., the outer polymeric layer). According to some embodiments, the external covering layer 561 is attached to the external surface of the expandable sheath 501 by a plurality of circumferentially spaced attachment regions wherein the circumferential distance between adjacent attachment regions is chosen to allow formation of folds 563 therebetween. Attachment regions, such as 569, ensure that the external covering layer 561 always remains attached to the expandable sheath 501, either during the compressed or expanded states thereof.
According to some embodiments, the covering with an external covering layer 561 is performed after crimping the expandable sheath 501, such that the external layer 561 covers pre-formed folds of inner 513 and/or outer 517 layers of the sheath 501.
According to some embodiments, the bond between the folds 563 is based on an adhesive with moderate adhesion strength.
Embodiments of the sheaths described herein may comprise a variety of lubricious outer coatings, including hydrophilic or hydrophobic coatings, and/or surface blooming additives or coatings.
In other embodiments, the scorelines 504 can be configured as openings or cutouts, having various geometrical shapes, such as rhombuses, hexagons, etc., or combinations thereof. In the case of hexagonal openings, the openings can be irregular hexagons with relatively long axial dimensions to reduce foreshortening of the sheath when expanded.
The sheath 500 can further comprise an outer layer (not shown), which can comprise a relatively low durometer, elastic thermoplastic material (e.g., Pebax, polyurethane, etc.), and which can be bonded (e.g., by adhesive or welding, such as by heat or ultrasonic welding, etc.) to the inner nylon layer. Attaching the outer layer to the inner layer 502 can reduce axial movement of the outer layer relative to the inner layer during radial expansion and collapse of the sheath. The outer layer may also form the distal tip of the sheath.
The expandable sheath 601 is configured for advancement in a pre-compressed state up to a target area, for example, along the abdominal aorta or the aortic bifurcation, at which point the clinician should cease further advancement thereof and introduce the DS through its lumen, to facilitate expansion thereof. For that end, the clinician should receive a real-time indication of the expandable sheath's position during advancement thereof. According to an aspect of the invention, there is provided at least one radio-opaque marker at or along at least one region of the expandable braided layer 621, configured to enable visualization of the expandable sheath's position under radio fluoroscopy.
According to one embodiment, at least one of the distal crowns 633 comprises a radio-opaque marker. According to some embodiments, the distal crowns 633 comprise at least one gold-plated crown 635 (
Since the expandable sheath 601 comprises an expandable braided layer 621 having a plurality of crossing struts 623 disposed along its length, this structure can be advantageously utilized for more convenient incorporation of radio-opaque elements.
According to some embodiments, the struts 623 further comprise at least one radio-opaque strut 625, having a radio-opaque core. For example, a drawn filled tubing (DFT) wire comprising a gold core (as may be provided by, for example, Fort Wayne Metals Research Products Corp.) may serve as a radio-opaque strut 625.
Since radio-opaque wires, such as a DFT wire, can be costly, the expandable braided layer 621 can comprise a plurality of non-radio-opaque or less radio-opaque struts 623, for example, made of a shape-memory alloy such as Nitinol and polymer wire such as PET, respectively, intertwined with at least one radio-opaque strut 625 (
According to some embodiments, radio-opaque wires are embedded within the polymer braid, such as the outer polymeric layer 617 or the inner polymeric layer 615, which are made of less-opaque materials.
Advantageously, the expandable braid embedded within the expandable sheath is utilized according to the invention, for incorporating radio-opaque markers along specific portions thereof to improve visualization of the sheath's position in real-time under radio fluoroscopy.
According to yet another aspect of the invention, radiopaque tubes can be threaded on the distal crowns or loops 633, or radiopaque rivets can be swaged on the distal crowns or loops 633 to improve their visibility under fluoroscopy.
In order to mitigate uneven surface formations, cushioning polymeric layers 61a, 61b are added between the inner 31 and outer 41 layers of the sheath 11, configured to evenly spread the forces acting in the radial direction during sheath compression. A first cushioning layer 61a is placed between the inner polymeric layer 31 and the braided layer 21, and a second cushioning layer 61b is placed between the outer polymeric layer 41 and the braided layer 21.
The cushioning layers 61a, 61b can comprise a porous material having a plurality of micropores of nanopores 63 (
However, when cushioning layers comprise a plurality of micropores of nanopores 63 (
While advantageous for the reasons described above, the addition of the cushioning and sealing can increase the complexity and time required to assemble the sheath 11. Advantageously, providing a single sealed cushioning member, configured to provide both cushioning and sealing functionalities (instead of providing two separate cushioning and sealing layers, each configured to provide one functionality) reduces sheath assembly time and significantly simplifies the process. According to an aspect of the invention, there is provided a single sealed cushioning member, configured for placement between the inner and outer polymeric layers of the sheath and the central braided layer. The single sealed cushioning member includes a cushioning layer and a sealed surface configured to prevent leakage/melting into the pores in the radial direction.
According to another aspect of the invention, and as mentioned above, with respect to
The sheath does not necessarily return to an initial diameter, but may rather remain in an expanded diameter upon passage of the valve, in the absence of the elastic layer.
Thus, there is provided an expandable sheath for deploying a medical device, comprising a first polymeric layer, a braided layer radially outward of the first polymeric layer, and a second polymeric layer radially outward of the braided layer. The braided layer includes a plurality of filaments braided together. The second polymeric layer is bonded to the first polymeric layer such that the braided layer is encapsulated between the first and second polymeric layers. When a medical device is passed through the sheath, the diameter of the sheath expands from a first diameter to a second diameter around the medical device, while the first and second polymeric layers resist axial elongation of the sheath such that the length of the sheath remains substantially constant. However, according to some embodiments, the first and second polymeric layers are not necessarily configured to resist axial elongation.
According to another aspect of the invention, the expandable sheath does include an elastic layer. But, unlike elastic layer 106 shown in
In another optional embodiment, the elastic layer can be applied by dip coating in an elastic material (such as, but not limited to) silicone or TPU. The dip coating can be applied to the polymeric outer layer, or to the braided layer.
Thus, there is provided an expandable sheath for deploying a medical device, comprising a first polymeric layer, a braided layer radially outward of the first polymeric layer, an elastic layer radially outward of the braided layer, and a second polymeric layer radially outward of the braided layer. The braided layers comprise a plurality of filaments braided together. The elastic layer is configured to provide the expandable sheath with sufficient column strength to resist buckling of spontaneous expansion due to friction forces applied thereto by a surrounding anatomical structure during the sheath's movement in an axial direction. The second polymeric layer is bonded to the first polymeric layer such that the braided layer is encapsulated between the first and second polymeric layers. When a medical device is passed through the sheath, the diameter of the sheath expands from a first diameter to a second diameter around the medical device, optionally while the first and second polymeric layers resist axial elongation of the sheath such that the length of the sheath remains substantially constant.
According to an aspect of the invention, there is provided a three-layered expandable sheath, comprising an inner polymeric layer, an outer polymeric layer bonded to the inner polymeric layer and a braided layer encapsulated between the inner and outer polymeric layers, wherein the braided layer comprises an elastic coating.
In some embodiments, the second, outer polymeric layer 209 is bonded to the first, inner polymeric layer 203 such that the braided layer 205 and the elastic coating 207 are encapsulated between the first and second polymeric layers. Moreover, the elastic coating applied directly to the braided filaments is configured to serve the same function as that of the elastic layer 106 (that is, to apply radial force on the braided layer and the first polymeric layer).
While the embodiment of
Alternatively, or additionally, an elastic coating can be applied to other layers of the sheath.
In some embodiments, a braided layer such as the one shown in
According to another aspect, an expandable sheath can include a braided expandable layer attached to at least one expandable sealing layer. In some embodiments, the braided layer and the sealing layer are the only two layers of the expandable sheath. The braided layer is passively or actively expandable relative to a first diameter, and the at least one expandable sealing layer is passively or actively expandable relative to a first diameter. An expandable sealing layer can be useful with any of the embodiments described above and may be particularly advantageous for braids having self-contracting frames or filaments.
The braided layer can be attached or bonded to the expandable sealing layer along its entire length, advantageously decreasing the risk of the polymeric layer being peeled off the braided layer due to frictional forces that may be applied thereon either during entry or exit through the surgical incision. The at least one sealing layer can comprise a lubricious, low-friction material, so as to facilitate passage of the sheath within the blood vessels, and or to facilitate passage of the delivery apparatus carrying a valve through the sheath.
A sealing layer is defined as a layer which is not permeable to the blood flow. The sealing layer can comprise a polymeric layer, a membrane, a coating and/or a fabric, such as a polymeric fabric. According to some embodiments, the sealing layer comprises a lubricious, low-friction material. According to some embodiments, the sealing layer is radially outward to the braided layer, so as to facilitate passage of the sheath within the blood vessels. According to some embodiments, the sealing layer is radially inward to the braided layer, so as to facilitate passage of the medical device through the sheath.
According to some embodiments, the at least one sealing layer is passively expandable and/or contractible. In some embodiments, the sealing layer is thicker at certain longitudinal positions of the sheath than at others, which can hold a self-contracting braided layer open at a wider diameter than at other longitudinal positions where the sealing layer is thinner.
Attaching the braided layer to at least one expandable sealing layer, instead of encapsulating it between two polymeric layers bonded to each other, may simplify the manufacturing process and reduce costs.
According to some embodiments, the braided layer can be attached to both an outer expandable sealing layer and an inner expandable sealing layer, so as to seal the braided layer from both sides, while facilitating passage of the sheath along the blood vessels, and facilitating passage of a medical device within the sheath. In such embodiments, the braided layer can be attached to a first sealing layer, while the other sealing layer may also be attached to the first sealing layer. For example, the braided layer and the inner sealing layer can be each attached to the outer sealing layer, or the braided layer and the outer sealing layer can be each attached to the inner sealing layer.
According to some embodiments, the braided layer is further coated by a sealing coating. This may be advantageous in configurations of a braided layer being attached only to a single expandable layer, wherein the coating ensures that the braided layer remains sealed from the blood flow or other surrounding tissues, even along regions which are not covered by the expandable layer. For example, if a braided layer is attached to a sealing layer on one side, the other side of the braided layer may receive a sealing coating. In some embodiments, the sealing coating can be used instead of, or in addition to, one or both of the sealing layers.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or a combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may, in some cases, be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow,” respectively. Thus, for example, the lower end of a valve is its inflow end, and the upper end of the valve is its outflow end.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
Unless otherwise indicated, all numbers expressing dimensions, quantities of components, molecular weights, percentages, temperatures, forces, times, and so forth, as used in the specification or claims, are to be understood as being modified by the term “about.” Accordingly, unless otherwise indicated, implicitly or explicitly, the numerical parameters set forth are approximations that can depend on the desired properties sought and/or limits of detection under test conditions/methods familiar to those of ordinary skill in the art. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word “about” is recited. Furthermore, not all alternatives recited herein are equivalents.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims. We, therefore, claim all that comes within the scope and spirit of these claims.
This application is a continuation of International Application No. PCT/US2020/054594, filed Oct. 7, 2020, which claims benefit of U.S. Provisional Application No. 62/912,569, filed on Oct. 8, 2019, the contents of each of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62912569 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/054594 | Oct 2020 | US |
Child | 17716882 | US |