1. Technical Field
The present invention relates to expandable shoes that may be adjusted longitudinally.
2. Discussion of Related Art
Some attempts have been made to provide expandable shoes, which can purportedly withstand day-to-day use. U.S. Pat. No. 3,389,481, for example, discloses a shoe in which a two plate assembly is disposed between an inner and a disjointed outer sole, having overlapping front and back portions. One of the plates includes a spring tongue, and the other plate includes two apertures to receive the spring tongue, each aperture corresponding to a shoe size. To adjust the shoe size, a screw which extends through the heel and into the disjointed soles is removed. The shoe may then be pulled apart allowing the disjointed sole to separate until the spring tongue engages the next aperture. Thus the shoe size may be lengthened by one size, but apparently the size cannot be controlled finely or reduced. The shoe includes two crinkled leather portions 34, one on each side of the shoe, to facilitate expansion of the shoe.
Under one aspect of the present invention, a shoe includes a front outer assembly and a rear outer assembly. A flexible, expandable segment is attached to the front and rear outer assemblies to define a shoe outer shell. The flexible segment extends at least partially along each side of the outer shell and transversely across the bottom of the outer shell. Within the outer shell an adjustable inner assembly is disposed and attached to the front and rear outer assembly. The inner assembly has a control to adjust a dimension of the inner assembly and thereby a corresponding dimension of the shoe.
Under another aspect of the invention related to the above aspect, the inner assembly may be in the form of a last board, or as a combination of a last board and other portions of the shoe, for example, a portion of a midsole.
Under one aspect of the invention, a visualization window provides a view port to the inner assembly. The inner assembly may include size markings or other indicia representative of a shoe adjustment, and these markings may be placed on the inner assembly to allow them to be visible through the view port.
Under another aspect of the invention, the inner assembly includes a first sole portion, a second sole portion, and a screw drive. The screw drive has an externally accessible screw passing through a screw insert mounted to one of the first and second sole portions and a screw-receiving portion attached to the other of the first and second sole portions. In this fashion, turning the screw causes the first and second portions to move relative to one another, thereby adjusting a dimension of the shoe.
Under still another aspect of the invention, the inner assembly includes a first sole portion and a second sole portion. The first portion is shaped for relative slidable engagement with the second portion. A manually urgable member is accessible from the outer shell, and it is in engageable and releasable communication with an engagement member, fixed to one of the first and second sole portions. When the urgable member is released from the engagement member, the first and second sole portions may be moved to adjust a dimension of the shoe and when the urgable member is in engagement with the engagement member the first and second portions resist slidable movement relative to one another.
Under another aspect of the invention related to the above, the urgable member includes a deformable biasing segment, which biases a toothed member attached to the urgable member into engagement with the engagement member, which has teeth facing the toothed member. When the urgable member is released, the toothed member and the teeth of the engagement member interlock causing the shoe portions to attain a locked state. When the urgable member is urged against the biasing forces of the biasing segment, the teeth release with respect to one another and the shoe portions attain an unlocked state allowing slidable movement and thereby adjustment of a shoe dimension.
The principles of the invention may be realized in hiking shoes, dress shoes, sandals, biking shoes, Nordic and cross-country ski-boots and the like.
Under another aspect of the invention, an expandable hooked eyelet assembly includes two relatively movable pieces.
In the Drawing,
FIGS. 6A-C, show a plan and cross-sectional views of a first portion of an inner sole assembly according to another embodiment of the invention;
FIGS. 7A-C, show a plan and cross-sectional views of a second portion of an inner sole assembly according to another embodiment of the invention;
FIGS. 8A-B, show a plan and cross-sectional view of a control feature of an inner sole assembly according to another embodiment of the invention; and
FIGS. 9A-B show exemplary embodiments of the invention in which a view port may be used to show indicia of a shoe adjustment.
FIGS. 1A-B show an exemplary embodiment in perspective and exploded views. Shoe 10 includes a front outer sole 12 and a front upper 18 to form a front outer assembly 13, and a rear outer sole 16 and a rear upper 20 to form a rear outer assembly 17. The front outer assembly 13 is attached to one edge 15B of a bellows segment 14, and the rear outer assembly 17 is attached to a second edge 15A, in each case using conventional techniques, such as by using stitching to the uppers 18, 20 and glue along the outer soles 12, 16. The combination of front outer assembly 13, rear outer assembly 17, and bellows segment 14 forms an outer shell 21.
An adjustable inner sole assembly 22 is placed within outer shell 21 so that a screw 26 extends through a screw port opening 31 of the rear outer sole 16. The inner assembly 22 is firmly attached to the front and rear outer assemblies 13,17 but not to bellows 14. In this fashion, once the shoe is assembled and in use, a wrench 28 (e.g., with an allen-head design) may be used to turn a screw 26 to adjust the length of the inner sole assembly 22 (and correspondingly the entire shoe 10) in the direction A. A control feature 24 (more below) is positioned within guide slot 27 to facilitate the directional control of the shoe 10 as it is caused to expand or contract. Screw port plug 30 may be used to fit within screw port opening 31 to cover the screw 26 when the shoe is not being adjusted. To adjust the size of this embodiment, only the screw 26 needs to be turned. The size may be lengthened or shortened in fine increments corresponding to the pitch of the screw 26.
The front and rear outer soles 12, 16 may be made with conventional techniques and material to obtain popular shoe constructions. The front sole 12 may be made so that it is roughly only a front half of a shoe sole, and the rear outer sole 16 may be made so that it is only approximately a rear half of a sole. The rear outer sole, unlike conventional soles, is also made to define a screw port opening 31 and a generally rectangular recess 33 (see
Bellows segment 14 is made of a stretchable material, e.g., rubbers, press coated fabrics, etc., and fashioned (e.g., molded or extruded) as a bellows in a generally rectangular segment, which is then shaped into the U-shape, extending along the sides and bottom of the shoe 10 as shown in
A front adjustment member 42 may be attached to or integrated with front section 40. Front adjustment member 42 includes a generally flat section 43 and includes an elongated section 44 having a generally rectangularly shaped top portion 45 with wing-like extensions 46A and B. As will be explained below, wing-like extensions 46 A and B are shaped to fit corresponding grooves 47A and B, within rear section 50. On the underside of elongated section 44 is a threaded screw-receiving section 48 that extends parallel to the longitudinal centerline of the front section 40, but which is offset from the top surface of front section 40. On the top side of the elongated section 44 is a control guide 24 protruding slightly upward and substantially on the longitudinal centerline of the front section 40. This guide 24 may be made in numerous ways, including for example, using rivets or integrating the shape into the design of member 42.
The rear section 50 is shaped on its underside to have a first hollowed segment 52 and a second hollow segment 54, more rearward than the first. The first segment 52 mates with flat section 43 of the front section 40, and the second segment 54 is
FIGS. 4A-B show an expandable eyelet assembly 35 in a closed state (
FIGS. 4C-D show another embodiment in which belt sections 90,91 are connected with buckle 92. Buckle 92 includes a curved portion 93 which may act as an eyelet. Another embodiment (for which a figure is not necessary) does not use eyelet assembly 35 and instead simply uses ringed eyelets within bellows 14 or within a stretchable material attached to bellows 14.
Referring to FIGS. 6A-C, the front section 140 is shown in more detail with an underside view. Front section 140 defines a front portion of a conventionally-shaped sole, extending from a toe portion 148 to arcuate portions 143 and then to heel section 144. The front section 140 is generally planar, except that a first heel section 144 is offset below top surface 141 by vertical members 147 and in substantially parallel relation to top surface 141. Section 144 includes raised, wing-like members 146 A,B extending transversely along the edges of section 144 and defines a chamber 149 with toothed longitudinal walls 142. Slot 127 is defined in each wall 142 and, as will be explained below, allows a portion of control mechanism 126 (see
FIGS. 7A-C show a bottom, plan view of the rear section 150 in more detail. Rear section 150 defines a rear portion of a conventionally-shaped inner sole, extending from a heel portion 158 to edge 133. Rear section 150 defines a cavity 152 which receives rectangular portion 144 so that grooves 156 A,B receive wing-like edges 146 A,B, and so that curved ridge section 158 receives heel portion 145 of front section 140. When the front section 140 is fully received in rear section 150, a top portion 151 of rear section 150 will lay on top of the received portion of the front section 140, and the arcuate sections 153 of the rear section 150 will mate with the arcuate sections 143 of the front section 140. The underside surface 136 of the top portion 151 is shaped to also mate with the upper surface 135 of the front section 140 (see
FIGS. 8A-B show the control mechanism 126 in more detail. The mechanism includes two pin portions 128A,B. At a proximal end of each is a crescent-shaped section 129A,B with outward facing teeth. A rectangular recess (shown by dashed lines 137) is defined into a proximal end of the pin, crescent combination. The recess 137 is shaped to receive a corner of rhombus-shaped biasing member 130. The rhombus shape and the orientation of biasing member 130 along with its reduced thickness walls 131 and polymeric construction allow the member 130 to be deformed and compress when rod members 128A, B are urged inward toward one another. In a preferred embodiment, a pin, e.g., 128A, and a toothed-crescent, e.g., 129A, are one piece of molded polymeric material, and biasing member 130 is a separate piece. This facilitates the placement and assembly of the control mechanism 126 within chamber 149 of front section 140 with the pins extending through grooves 127 and openings 154. Once so placed, extension caps 128C,D are placed over rods 128A,B to facilitate usage thereof.
By placing the control assembly within the toothed-walled chamber of front section 140, the natural state of the biasing member 130 causes the toothed crescents 129A,B to be forced outwardly and to engage teeth of the toothed walls 142. Then by pressing the pins 128A,B inward, biasing member 130 deforms; the teeth on the crescents 129A,B disengage the toothed-walls 142; and the front section 140 may be moved relative to the rear section 150.
The alternative inner assembly 122 may be used in shoes like those described above except the screw port 31 is unnecessary with this assembly 122 and instead ports are needed to allow pin extensions 128C,D to be accessible for manual urging.
Moreover, though the alternative inner assembly 122 is shown with two oppositely placed pins, persons skilled in the art will appreciate that this number may vary. For example, only one pin may be used with the deformable member 130 being placed against a rigid wall of the chamber. Alternatively, more pins may be used, e.g., 3 or 4.
In a preferred embodiment indicia are marked on one of the sections of the inner assembly 22, 122. For example, shoe size markings (absolute or relative) may be placed in areas 190 or 200 and viewed through plastic viewports placed in the sole of the shoe. The plastic may provide magnification if desirable.
Persons skilled in the art will appreciate that the indicia may be placed in various parts of the shoe, and that the movement may be indirect. For example, a marked tape connected to the front section 140 may be shown through a view port in a vertical portion of the heal of the shoe.
In all of the embodiments described, the controls are easily accessible through the outer shell and not requiring access through the bottom portion of a sole. In some embodiments the adjustments may be made without any tools. All adjustments were relatively fine-grained, and size may be increased or decreased.
Preferred embodiments of the invention are described with particular reference to a hiking shoe design. Other embodiments entail other shoe constructions, including running shoes, biking shoes, ski boots, dress shoes, snow boarding boots, sandals and the like. Depending on the shoe type, the inner assembly may be in the form of a last board, or a combination of a last board and a midsole. Likewise, depending on the shoe type, the materials used will be selected to provide a desired amount of flexibility or rigidity. Moreover, depending on the shoe design the outer shell may differ. In the case of a sandal, for example, one of the novel last boards may be used, but the outer shell would only have strapping. Other embodiments, such as a biking shoe, might have either netting, meshing, or no material where the bellows are shown, thus providing increased ventilation. In short, the outer shell design offers wide latitude though the bellows embodiments shown are believed novel and advantageous in some embodiments.
In other embodiments, the screw ports and conduits for rod members may be positioned in many other areas. Likewise, though the embodiments included the control mechanisms, such as the screws, screw receiving sections, gears and deformable teeth in a rear portion of the shoe, these features may be positioned at other portions as well.
Moreover, the above embodiments described a flexible segment made of a bellows-shaped material, but other embodiments may use other materials, e.g., stretchable nylon, netting or meshing, or it may be omitted. Likewise all of the control features described had external features to activate the control, but other embodiment (e.g., cost-reducing embodiments or embodiments where hiding the control is desirable) may place the control mechanisms on the interior of the outer shell.
While the invention has been described in connection with certain preferred embodiments, it will be understood that it is not intended to limit the invention to those particular embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included in the appended claims. Some specific components, figures and types of materials are mentioned, but it is to be understood that such component values, dimensions and types of materials are, however, given as examples only and are not intended to limit the scope of this invention in any manner.
This application is a continuation of now pending U.S. patent application Ser. No. 10/191,682 filed on Jul. 9, 2002, which is a continuation of U.S. patent application Ser. No. 09/438,935 filed on Nov. 12, 1999, which issued as U.S. Pat. No. 6,438,872 on Aug. 27, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10191682 | Jul 2002 | US |
Child | 10989170 | Nov 2004 | US |
Parent | 09438935 | Nov 1999 | US |
Child | 10191682 | Jul 2002 | US |