This invention relates in general to wellhead equipment for oil and gas wells, and in particular to a solid load ring used with a casing hanger.
A typical subsea wellhead assembly includes a wellhead housing that supports one or more casing hangers. One type of wellhead housing has a conical load shoulder machined within its bore. The casing hanger lands on and is supported by the load shoulder. In this type, the diameter of the housing bore below the load shoulder is less than the diameter of the housing above the load shoulder by a dimension equal to a radial width of the load shoulder.
In another type, referred to as “full bore”, the wellhead housing has a groove with substantially the same diameter above and below the groove. The load shoulder is a split ring that is installed subsequently in the groove. The casing hanger is supported by the load shoulder. This procedure allows a larger diameter bore to be employed during drilling operations. The load shoulder may be installed on a special running tool or it may be run with the casing hanger.
Active casing hangers may be used to transfer the casing load to the wellhead housing via a loading mechanism that includes an activation ring, shear pins that prevent premature movement of the activation ring, and a load ring on the casing hanger. This mechanism is typically designed to be activated by the weight of the string when a reaction point, such as a shoulder, formed on the interior of the wellhead housing is reached during lowering of the hanger. At this point, the shear pins on the activation ring break to allow it to slide relative to the downward movement of the hanger, thereby allowing the load ring on the hanger to align with the housing to transfer casing load to the housing. This also increases the bearing area of the casing hanger. However, if the hanger snags or the pins load up unevenly and break prematurely, the activation ring may be activated prematurely. This is costly and time consuming as the hanger and casing would have to be pulled out and re-tripped.
A technique is thus desirable that correctly and reliably activates the loading mechanism on a casing hanger to prevent premature activation.
In an example embodiment a wellhead housing has a bore containing at least one generally upward facing load shoulder that inclines relative to an axis of the bore. A housing or landing sub load ring with a corresponding downward facing shoulder is supported by the load shoulder on the wellhead housing. The housing load ring has a generally upward facing shoulder that inclines relative to the bore axis. A casing hanger landed in the housing has a at least one conical downward facing load shoulder that inclines relative to the axis of the bore. A hanger load ring is carried by the hanger for supporting the hanger on the upward facing load shoulder. The hanger load ring in this example is solid, with the critical part of the load ring being its ability to elastically expand when energized by the weight of casing supported by the hanger. This elastic expansion of the hanger load ring occurs between a differential angle of the hanger and the housing load ring. Thus, elastic expansion occurs if there exists a differential angle between the mating surfaces of the hanger load ring.
The load ring has an inner profile that slidingly engages the downward facing load shoulder of the hanger at an angle and an outer profile that slidingly engages the upward facing load shoulder of the housing load ring at a second angle. The hanger load ring may be carried by the hanger for movement between a retracted position, wherein the outer profile is spaced radially overlapping a portion of the upward facing shoulder of the housing load ring, and an expanded position wherein the outer profile expands radially outward until it is stopped by a retainer ring located within a pocket formed in the housing. The retainer ring prevents the hanger load ring from radially expanding past the elastic zone for a given material. The hanger can thus be rated to a higher load carrying capability due to extra bearing contact made available as the casing weight is increased.
When set, the load rings and shoulders provide a path for the casing load to be transferred to the wellhead housing. This invention gives some of the benefit of a traditional expanding load shoulder without the major drawback of having a mechanism that can trigger unexpectedly. Because the load shoulder is a solid ring, with no interruptions or weakened points, it should remain as reliable as a solid casing hanger. However, because the hanger load ring is allowed to expand with increased casing hanger loads, it can achieve higher capacities than a simple load shoulder.
During operation, the downward casing weight W is greater then the normal force N and frictional resistance Fn and the angle θ1 i.e. the angle between the load ring and casing hanger is greater than angle θ2 i.e. angle between the casing hanger load ring and housing load ring. The hanger load ring will begin to elastically expand when energized by the casing weight and provided that the mating surface is in complete contact with the landing surface.
The apparatus and method of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. This subject of the present disclosure may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. For the convenience in referring to the accompanying figures, directional terms are used for reference and illustration only. For example, the directional terms such as “upper”, “lower”, “above”, “below”, and the like are being used to illustrate a relational location.
It is to be understood that the subject of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments of the subject disclosure and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the subject disclosure is therefore to be limited only by the scope of the appended claims.
Referring to
Continuing to refer to
The hanger load ring 42 in this embodiment is carried by the hanger 10 for movement between a retracted position, wherein the outer surface 48 is spaced radially overlapping the upward facing shoulder 20 of the housing load ring, and an expanded position, shown in
During setting operations, the hanger load ring 42 begins to expand radially outward as the weight “W” of the casing supported by the casing hanger 10 increases, as shown in
When set, the load rings 42, 18 and shoulders 40, 16 provide a path for the casing load to be transferred to the wellhead housing 12. This invention provides some of the benefit of a traditional expanding load shoulder without the major drawback of having a mechanism that can trigger unexpectedly. Because the load shoulders 43, 44 are part of the solid hanger load ring 42, with no interruptions or weakened points, it should remain as reliable as a solid casing hanger. However, the hanger load ring 42 also advantageously expands with increased casing hanger loads. The hanger 10 can thus be rated to a higher load carrying capability due to the increase in bearing contact area between load shoulders 43, 44 made available as the casing weight is increased.
As previously explained, the inner surface 32 of the retainer ring 26 acts to stop the hanger load ring 42 from expanding past its elastic properties by contacting the exterior surface 48 of hanger load ring 42 before inelastic or permanent deformation occurs. The width or thickness 50 of the retainer ring 26 may be tuned to match the amount of elastic expansion desired for the hanger load ring 42. When the weight W of the casing is removed from the hanger 10, the hanger load ring 42 is deenergized and returns to its retracted position. The casing load ring 42 along with the hanger 10 may then be retrieved if desired.
The invention has significant advantages. Premature activation of the activation ring is prevented and integrity of load shoulders is increased due to solid load ring. Further, the hanger load ring is weight energized, eliminating the need for an additional, external activation mechanism. This design may further be applied to any set of casing hangers to allow greater load carrying capability. Additionally, the invention allows the hanger load ring to drift through tag shoulders rather than getting caught and sticking at that incorrect point.
While the invention has been shown in only two of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3457992 | Brown | Jul 1969 | A |
3472530 | Fowler | Oct 1969 | A |
4460042 | Galle, Jr. | Jul 1984 | A |
4528738 | Galle, Jr. | Jul 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4595063 | Jennings et al. | Jun 1986 | A |
4836579 | Wester et al. | Jun 1989 | A |
4842307 | Sweeney et al. | Jun 1989 | A |
5209521 | Osborne | May 1993 | A |
5421407 | Thornburrow | Jun 1995 | A |
6516887 | Nguyen et al. | Feb 2003 | B2 |
7134490 | Nguyen | Nov 2006 | B2 |
7380607 | Thomas | Jun 2008 | B2 |
7441594 | Vanderford et al. | Oct 2008 | B2 |
8066064 | Minassian et al. | Nov 2011 | B2 |
20120160511 | Gette | Jun 2012 | A1 |
Entry |
---|
GB Search Report dated Aug. 30, 2012 from corresponding Application No. GB1210078.0 |
Number | Date | Country | |
---|---|---|---|
20120312542 A1 | Dec 2012 | US |