1. Field of the Invention
The present invention relates to an expandable spinal implant apparatus and a method of using the apparatus to treat a spine disorder. More particularly, the present invention relates to an intervertebral spacer arranged for expansion of one or more dimensions of the spacer without canting, tilting, or slipping, and methods of using the expandable spacer.
2. Description of the Prior Art
Back pain can be caused by anyone of several problems that affect the vertebral discs of the spine. These problems include, for example, degeneration, bulging, herniation, thinning of a disc, or abnormal movement, and the pain that is experienced generally is attributable to friction or pressure that inevitably occurs when one adjacent vertebra exerts uneven pressure, or when both adjacent vertebrae exert such pressure, on the disc. Back pain may also be attributed to neural element injury.
Whenever an individual suffers from a disc problem, a typical remedy is to perform interbody, intervertebral, cervical, thoracic or lumbar fusion (all generically referred to herein as IF) surgery on the patient for the purpose of fusing the two vertebrae that flank the defective disc to form a single, solid bone mass. Existing IF techniques generally involve removing the offending disc from the patient, adding bone graft material into the interbody space between the flanking vertebrae, and also inserting a spinal implant device into that space to hold the graft material in place and to support the flanking vertebrae while solid bone mass forms.
Existing IF techniques fail to enable fine positioning or stable expansion of an implant device with respect to the vertebrae. A brief discussion of the basic anatomy of the human spine, and specifically, the lumbar vertebrae of the spine, will help better illustrate this limitation.
Referring to
Existing IF procedures are further limited in other ways. During IF surgery, the surgeon must navigate the spinal implant device through a region that is densely packed with neural elements, muscle, ligaments, tendons and bone to access the top surface 331 of the inferior vertebra 330. In existing IF techniques, this requires extensive cutting and/or manipulation of this region, which can extend patient recovery time and subject the patient to other side effects, such as, for example, inflammation, which can be discomforting. Worse, in some patients, the patient must be entered in two or three of three possible body areas (i.e., the patient's posterior region in a posterior interbody fusion technique, the patient's anterior region in an anterior interbody fusion technique, laterally in a lateral interbody fusion technique and/or the patient's transforaminal region in a transforaminal interbody fusion technique) for the purpose of positioning the spinal implant device. It is also to be noted that existing IF techniques are substantially invasive and can be difficult to perform.
One aspect of the limitation of the existing tools used in the IF process relates to the design of the spacer. In some IF procedures, locating the spacer in the position of interest cannot be done by hand alone. Instead, a tool is required to push the spacer to the position of interest, particularly when promoting lordosis is the goal. Present spacers are configured so that the interface with the positioning tool occurs only on the primary longitudinal axis, one of the orthogonal axes, of the spacer. For example, the spacers are rectangular and include a port that is centrally aligned with the primary longitudinal axis of the spacer used to releasably receive the positioning tool therein.
Some spacers include a mechanism for changing the dimensions of the spacer, such as the height dimension. The mechanism permits dimension change after the spacer has been placed at or near the location of interest. The ability to change the height dimension of the spacer improves the chance of achieving desired intervertebral space height as well as coronal and sagittal balance. The present mechanisms may not produce uniform expansion of the spacer. As a result, the spacer may get caught on itself along one side, in a comer, etc., and will end up with a non-uniform height. The spacer is less effective than desired in such a canted state. It can cause pain for the patient and extend the recovery period, possibly with less than complete fusion established.
Another problem with existing expansion mechanisms relates to spacer rocking. That is, for a two-piece spacer in which one part extends from a base piece, the tolerances between the two pieces may be significant enough that the extension piece will rock or pivot on the base piece when in an extended position. This, too, produces a spacer of non-uniform height. The spacer is less effective in producing the desired intervertebral space height and/or coronal/sagittal alignment.
What is needed therefore is an expandable spinal implant apparatus configured to ensure uniform expansion with minimal or no rocking, canting, tilting, or slipping during and after the expansion process. Such an apparatus would decrease patient risk, speed recovery and substantially improve success rates in terms of restoration of normal spinal confirmation (i.e., intervertebral space height as well as coronal and sagittal alignment) and neurological decompression.
It is an object of the present invention to provide an apparatus for treating a patient in need of IF surgery. The present apparatus is an expandable spacer including a top component, a base component in engagement with the top component, and an expansion mechanism arranged to change the top component's position with respect to the base component or vice versa, which results in a change in the size, dimension, and/or shape of the spacer. The top and base components remain in engagement with each other throughout and after the position changing process.
When in position, the top component of the spacer is in contact with the bottom surface of the end plate portion of the superior vertebra, and the base component is in contact with the top surface of the inferior vertebra. The expandable spacer is arranged such that the top component's position may be changed with respect to the base component, or vice versa. The base component and the top component include configurations to keep the two components in substantial contact and alignment with one another throughout the dimension changing process. The two components remain in engagement with one another, either along some or all of their respective perimeters and/or within their interior regions, during the dimension change. This arrangement eliminates the possibility of spacer cant during expansion and when in an expanded state.
The spacer of the present invention includes a configuration that permits the surgeon to expand at least one of its dimensions subsequent to placement at the selected position of interest. While referred to herein as a mechanism to expand a dimension or change the position of the components, it is to be understood that the mechanism causes a change of size, dimension and/or shape of the spacer. The expansion mechanism can be a screw, wedge, cam or any other type of distracting device capable of causing movement of one component of the spacer with respect to another component of the spacer. This is referred to as the position changing process.
Three embodiments of the expandable spacer with configurations designed to increase the engagement of their contacting surfaces in order to minimize or eliminate slipping, tilting, and/or canting during and after the position changing process are disclosed herein. The interfaces and/or surfaces of either or both of the top component and the base component (both external and internal) may be smooth, textured, ribbed, sawtoothed or otherwise modified to optimize the frictional engagement between the components. The expandable spacer of the present invention may include interior spaces therethrough which promote bone packing and/or bone growth.
In addition, at least a portion of one or more of the exterior surfaces of the top and/or base component may be modified to optimize frictional engagement with the vertebrae between which the spacer is positioned. The spacer may be configured so that it has a higher frictional engagement at the one end. For example, the front end may have a higher frictional engagement and engage tightly with the vertebral end plate whereas the back end of the spacer may have a lower frictional engagement with the vertebral end plate. This configuration enables a desirable type of sliding or positioning of the spacer during insertion.
The expandable spacer may also include one or more off-axis positioning interface sites and/or one or more on-axis positioning interface sites. For purposes of description of the present invention, “off-axis” means a steerage, directional and/or expansion contact location that is anywhere part of the spacer except at a location that is aligned with the primary longitudinal axis of the spacer. An off-axis location may include any non-orthogonal locations as well as orthogonal locations except for the primary longitudinal axis (on axis). The contact sites are arranged for releasable interfacing with a steering and/or expansion tool and enable fine and minimally invasive manipulation within the patient for positioning the spacer at the desirable location.
The spacer includes, for the ease of description, a generally rectangular body shape with one or more curved surfaces, but is not limited thereto. In one or more embodiments it may include one or more chamfered comers of the rectangular shape suitable for including at such comers an off-axis positioning interface, such as a port arranged to allow releasable insertion of a tool insert. For an expandable spacer of the present invention including such off-axis interface port, one or more of the one or more chamfered comers may include a nodule or pin that may be releasably joined to a tool interface. The off-axis version of the spacer is thus configured to enable its steerage from a starting location to the desirable location at more than just straight-line movements using a positioning tool of interest. Such a spacer may be moved at 30°, 45°, or any other angles of interest including orthogonal angles other than on the primary longitudinal axis of the spacer.
The present invention also encompasses a method of inserting, positioning, and expanding the expandable spacer in the intervertebral disc space between two adjacent vertebrae, including the steps of providing an expandable spacer including a top component, a base component in engagement with the top component, and an expansion mechanism arranged to change the top component's position with respect to the base component. The spacer may include one or more off-axis positioning interface sites and/or one or more on-axis positioning sites, the on-axis interface being coincident with or parallel to the longitudinal axis of the spacer, and the off-axis interface being angled with respect to the longitudinal axis. The method further includes the steps of inserting the spacer at least partially into the intervertebral disc space.
The method may further include the steps of engaging a tool to any off-axis or on-axis interface sites of the spacer, and inserting the spacer further into the intervertebral disc space by moving the tool substantially along the insertion direction. The combination of the inserting steps may result in the longitudinal axis of the spacer being perpendicular to the insertion direction. The longitudinal axis of the spacer may be substantially parallel to a medial-lateral axis of the intervertebral disc space. The inserting steps may result in the spacer being positioned in an anterior aspect of the intervertebral disc space. The inserting steps may include allowing the spacer to rotate with respect to the insertion direction. The spacer may further include a front end having frictional properties that are greater than frictional properties of a rear end of the spacer, and the inserting steps may include allowing the front end to turn within the intervertebral disc space as it frictionally engages one or both of the adjacent vertebrae. The on-axis and off-axis interfaces may be ports, the tool may include a retractable member, and the engaging steps may include placing the retractable member in the respective ports. The combination of the inserting steps may result in the longitudinal axis of the spacer being rotated approximately 90 degrees with respect to the insertion direction. The method further includes the step of expanding the spacer. The method may further include the step of packing bone grafting material in one or more openings of the spacer before and/or after expansion has occurred.
The present invention is applicable in any type of spinal surgery. While the focus of the discussion of a preferred embodiment of the invention is directed to lumbar IF surgery, it is to be understood that the invention may be employed in cervical and thoracic spinal procedures as well from any direction, i.e., anterior, posterior and lateral.
The present invention is constructed to decrease patient risk, speed recovery and substantially improve success rates in terms of restoration of normal spinal confirmation and neurological decompression. This is achieved by providing the surgeon with an expandable spacer that is best suited for the patient's condition and alterable in size, dimension and/or shape to further improve the implant's clinical result. These and other advantages of the present invention will become apparent upon review of the following description and accompanying drawings.
A first embodiment of an expandable spacer 10 of the present invention is shown in
The spacer 10 includes a base component 12, a top component 14 and a height adjuster 16. The base component 12 includes a receiver 18 with dimensions and shape suitable to receive and removably retain the top component 14 there. That is, at least a portion of the external dimensions of the top component 14 are less than the internal dimensions of the receiver 18 of the base component 12. In this embodiment the external dimensions of the top component 14 are arranged to fit entirely within the receiver 18. In this embodiment, the receiver 18 of the base component 12 further includes a height adjuster port 20, a height adjuster slot 22 and a plurality of cant minimizing towers such as, for example, first tower 24 and second tower 26. Each tower includes a perimeter wall 28 and may include an interior space 30. The effects of a plurality of silos and towers can be achieved with other configurations of the top and base components of the spacer and are included within the scope of the invention.
In this embodiment, the top component 14 includes a height adjuster port 32, a height adjuster slot 34 and a plurality of cant minimizing silos such as, for example, first silo 36 and second silo 38. Each silo includes a perimeter wall 40 and may include an interior space 42. Each of silos 36 and 38 has dimensions and shape to receive and removably retain therein the towers 24 and 26 of the receiver 18 of the base component 12. That is, the external dimensions of the towers 24 and 26 are less than the internal dimensions of the silos 36 and 38. The base component 12 and the top component 14 as shown in
The combination of the height adjuster 16, the height adjuster slot 22 of the base component 22 and the height adjuster slot 34 of the top component 14, enables the surgeon to raise the top component 14 with respect to the base component 12, as shown in
The height adjuster 16 may be any means suitable for use in an IF procedure. It must be accessible by the surgeon when the spacer 10 is positioned between vertebrae. When the spacer 10 has been positioned in the location of interest, the height adjuster 16 may be moved into the combination of slots 22 and 34 in a manner that causes the top component 14 to extend upwardly from the base component 12. As shown in
The height adjuster 16 is an expansion mechanism configured to enable the movement of one component of the spacer 10 with respect to another to cause the expansion/change in shape of the spacer 10. Other expansion mechanisms may be employed for that purpose without deviating from the scope of the invention. For example, in addition to a screw-type mechanism such as the height adjuster 16 shown in the figures, the expansion mechanism may be a cam, a wedge, or other type of distracting device capable of advancement into the combination of slots 22 and 34 or some other form of port arrangement and capable of displacing the top component 14 with respect to the base component 12, or the base component 12 with respect to the top component 14.
An advantage of the expandable spacer 10 of the present invention is the minimizing of any canting, slipping or tilting during and after expansion. This is achieved by the top and base components remaining in engagement with each other during expansion of the spacer. In this first embodiment this is achieved by the combination of the towers 24 and 26 of the base component 12 and the silos 36 and 38 of the top component 14. In another embodiment, this is achieved by texturing at least a portion of the top and base components that are in contact with each other.
Expandable spacers have been provided in the past; however, as noted, they can be unsuitable for use when the expanded portion extends at an angle so that there is limited contact between the spacer and the vertebra above it. This can cause the patient pain and slow bone growth through the spacer, which can cause delayed recovery for the patient. The spacer 10 eliminates that limitation. When the height adjuster 16 is progressed into the slots 22 and 34, the top component 14 rises uniformly because the top component 14 remains in substantial contact with the base component 12 at the towers/silos interface, or at the textured area of the at least a portion of the top and base components that are in contact with each other. The towers 24/26 and the silos 36/38 or the top and base components, of which at least a portion may be textured, are arranged for close sliding engagement with one another. The tolerance between those structures should be sufficiently close so that there is very little gap between them and, therefore, little or no opportunity for canting, tilting, or unintended slipping to occur.
The spacer 10 further optionally includes means to enable bone growth therethrough to facilitate the fusion process. In one embodiment, each of the towers 24 and 26 of the base component 12 preferably includes interior space 30. Additionally, each of the silos 36 and 38 includes interior space 42. When the base component 12 and the top component 14 are engaged with one another, the interior spaces 30 and 42 are aligned so that there exists a complete passageway from the top surface 44/46 of the spacer 10 to the bottom surface 60. Bone fusion material may be packed into those passageways. That is, more generally, the spacer 10 is configured to include one or more through and through passageways, which passageways allow bone packing in the post-expanded spacer. It is to be noted that the passageways may not be completely through and through. It is also to be noted that the passageways may be filled with the bone grafting material after the spacer 10 has been expanded. In that situation, the passageways may not be completely through and through and/or they may be offset with respect to the top component 14 and the base component 12.
The expandable spacer 10 of the present invention may include on-axis and/or off-axis insertion arrangements such as interface ports 62 and 64 as shown in
One or more surfaces of the base component 12 and/or the top component 14 may be textured, sawtoothed, dovetailed and/or otherwise modified to optimize frictional engagement with the vertebrae between which the spacer 10 is positioned to reduce any undesired slipping. The spacer may be configured so that it has a higher frictional engagement at the one end than the other end to enable a desirable type of sliding or positioning of the spacer during insertion.
In addition or alternatively, the portions of the base and top components that are in contact with one another may be textured, sawtoothed, dovetailed, stepped and/or otherwise modified to optimize surface area contact between those components. Doing so reduces any slippage or canting problems associated with the height dimension of the spacer that may occur when the spacer is an expanded state, including when expanded in the desired intervertebral position.
A second embodiment of an expandable spacer 100 depicting this configuration is shown in
The top component 104 includes a height adjuster port 118, a height adjuster slot 120 and an exterior perimeter wall 122. The top component 104 also includes one or more top packing ports 124 extending entirely therethrough and configured to align with the one or more base packing ports 116 so that when the base component 102 and the top component 104 are engaged with one another, there is at least one port extending entirely through the spacer 100 to permit bone packing therein. It is to be understood that the bone packing ports can be arranged in other configurations and remain within the scope of the invention. The dimensions of the top component 104 are selected to ensure that the top component fits snugly within the receiver 108 of the base component 102. It is to be noted that the bone packing ports may be employed to pack bone grafting material after the spacer 100 has been expanded. In that situation, passageways from one side of the spacer 100 to the other may not be completely direct but may have one or more offset aspects.
The interior perimeter wall 114 of the base component 102 and the exterior perimeter wall 122 of the top component 104 are configured to increase the surface contact area between those two components and are textured, sawtoothed, dovetailed and/or otherwise modified to optimize frictional engagement with these components to reduce any undesired tilting, canting, or slipping during and after expansion of the spacer 100. The modification may be located on the entirety of the component surfaces in engagement with each other or a portion thereof. For example, the modification may be located at the opposite ends of the longitudinal axis of the spacer. In the embodiment depicted, the entirety of the interior perimeter wall 114 and the exterior perimeter wall 122 are not smooth. In this embodiment of the expandable spacer 100, the interior perimeter wall 114 of the base component 102 includes a plurality of tiers of interior steps 126 and the exterior perimeter wall 122 of the top component 104 includes a plurality of tiers of exterior steps 128. The interior steps 126 and the exterior steps 128 are configured in mirror opposing orientations so that when the spacer 100 is expanded, the steps 126/128 interlock with one another, thereby increasing the engagement of the top component 104 with the base component 102 so that the two remain in secure contact with one another, minimizing any height slippage or canting of the spacer 100 when in an expanded state. As shown in
The steps 126/128 may be of sawtooth configuration as shown, or they may be rectangular, triangular or other suitable configuration. The steps 126/128 may be located on all component surfaces or portions thereof. In alternative embodiments of the expandable spacer 100, the interior perimeter walls 114 of the base component 102 and the exterior perimeter walls 122 of the top component 104 may be textured, dovetailed or otherwise surface modified to enhance the frictional engagement therebetween. The step arrangement provides a ratcheting or ladder-like mechanism to enable expansion while eliminating or minimizing toggling or settling of the spacer 100.
The steps 126 and 128 of the expandable spacer 100 may be elastically deformable in one direction so that when the spacer 100 is expanded, the steps 126 of the base component 102 may give as the steps 128 of the top component 104 are pushed pass them with the insertion of the height adjuster 16 into slots 20 and 32. Once a set of steps 128 of a particular tier engages a set of steps 126 of a tier above, there is resistance to a return of that set of steps 128 to a lower tier of the set of base component steps 126. Further, the spacing between tiers of steps 126/128 may be established in specific increments so that the surgeon is able to adjust the height increase of the spacer 100 very specifically by counting the number of tiers of step engagement that occurs. For example, each tier may be spaced from adjacent tiers by one millimeter. Making three incremental changes in stepped tier engagements would correspond to a three millimeter spacer expansion.
Relatedly, the height adjuster 106 may be arranged with coding such that its rotation by some selected value corresponds to a tier change. Ie., a quarter-turn culminating with a click can be used to signify that a tier change has been made. Those of skill in the art will recognize that other arrangements for linking height adjuster changes with expansion values may be established without deviating from this concept.
The embodiment of the expandable spacer 100 shown in
Although not depicted in this embodiment, the spacer 100 can be made with steering ports or interface sites to enable a surgeon to position the spacer in a desired position. The expandable spacer 100 of the present invention may include on-axis and/or off-axis insertion arrangements or ports as shown in
A third embodiment of an expandable spacer 200 is shown in
As shown in
The top component 204 includes bone packing ports 214 on the side wall of the top component 204, and also includes one or more top packing ports 224 extending entirely therethrough and configured to align with the one or more base packing ports 216 so that when the base component 202 and the top component 204 are engaged with one another, there is at least one port extending entirely through the spacer 200 to permit bone packing therein. It is to be understood that the bone packing ports can be arranged in other configurations and remain within the scope of the invention. The dimensions of the top component 204 are selected to ensure that the top component fits snugly within the receiver 208 of the base component 202.
An interior perimeter wall 230 of the base component 202 and an exterior perimeter wall 222 of the top component 204 are configured to increase the surface contact area between those two components and are textured, sawtoothed, dovetailed and/or otherwise modified to optimize frictional engagement with these components to reduce any undesired tilting, canting, or slipping during and after expansion of the spacer 200. The modification may be located on the entirety of the component surfaces in engagement with each other or a portion thereof. For example, the modification may be located at the opposite ends of the longitudinal axis of the spacer 200. In the embodiment depicted, the modification is located at two discrete locations at opposite ends of the longitudinal axis of the spacer 200. That is, a portion the interior perimeter wall 230 and the exterior perimeter wall 222 are textured. In this embodiment of the expandable spacer 200, the interior perimeter wall 230 of the base component 202 includes directional locking teeth 226 and the exterior perimeter wall 222 of the top component 204 includes complimentary teeth 228 (see
As shown in
The teeth 226/228 may be of sawtooth configuration as shown, or they may be rectangular, triangular or other suitable configuration. The teeth 226/228 may be located on all component surfaces or portions thereof. In alternative embodiments of the expandable spacer 200 the interior perimeter wall 230 of the base component 202 and the exterior perimeter wall 222 of the top component 204 may be textured, dovetailed or otherwise surface modified to enhance the frictional engagement therebetween. The teeth arrangement provides a ratcheting or ladder-like mechanism to enable expansion while eliminating or minimizing canting, tilting, or settling of the spacer 200.
The teeth 226 and 228 of the expandable spacer 200 may be elastically deformable in one direction so that when the spacer 200 is expanded, the teeth 226 of the base component 202 may give as the teeth 228 of the top component 204 are pushed past them. Once a set of teeth 228 engages the teeth 226 of a tier above, there is resistance to a return of that set of teeth 228 to a lower tier of the set of base component teeth 226. Further, the spacing between tiers of teeth 226/228 may be established in specific increments so that the surgeon is able to adjust the height increase of the spacer 200 very specifically by counting the number of tiers of engagement of the teeth that occurs. For example, each tier may be spaced from adjacent tiers by one millimeter. Making three incremental changes in stepped tier engagements would correspond to a three millimeter spacer expansion.
Relatedly, the height adjuster 206 may be arranged with coding such that its rotation by some selected value corresponds to a tier change. I.e., a quarter-turn culminating with a click can be used to signify that a tier change has been made. Those of skill in the art will recognize that other arrangements for linking height adjuster changes with expansion values may be established without deviating from this concept.
The configuration of the expandable spacer 200 shown in
Although not depicted in this embodiment, the spacer 200 can be made with steering ports or interface sites to enable a surgeon to position the spacer in a desired position. The expandable spacer 200 of the present invention may include on-axis and/or off-axis insertion arrangements or ports as shown in
The present invention also encompasses a method of inserting and positioning the expandable spacers described above into the intervertebral disc space between two adjacent vertebrae comprising the steps of providing an expandable spacer including a top component, a base component in engagement with the top component, and an expansion mechanism arranged to change the top component's position with respect to the base component. The spacer may include one or more off-axis positioning interface sites and/or one or more on-axis positioning sites, the on-axis interface being coincident with or parallel to the longitudinal axis of the spacer, and the off-axis interface being angled with respect to the longitudinal axis. The method may comprise the steps of engaging a tool to the on-axis interface if present, inserting the spacer at least partially into the intervertebral disc space by moving the tool substantially along an insertion direction, engaging the tool to the off-axis interface if present, and inserting the spacer further into the intervertebral disc space by moving the tool substantially along the insertion direction, such that the longitudinal axis of the spacer is angled with respect to the insertion direction. The method may further include the steps of engaging the tool to a second off-axis interface of the spacer if present, and inserting the spacer further into the intervertebral disc space by moving the tool substantially along the insertion direction. The spacer may further include a front end having frictional properties that are greater than frictional properties of a rear end of the spacer, and the inserting steps may include allowing the front end to turn within the intervertebral disc space as it frictionally engages one or both of the adjacent vertebrae. The method may further include the step of packing bone grafting material into at least one of the on-axis interface, the off-axis interface, and an opening in the spacer. The method further includes the step of expanding the spacer. The method further includes the optional step of packing bone grafting material into one or more ports of the spacer after expansion has occurred.
The expandable spacers 10, 100, and 200 of the present invention have been described with respect to three specific embodiments and methods of using the same. Nevertheless, it is to be understood that various modifications may be made without departing from the spirit and scope of the invention. All equivalents are deemed to fall within the scope of these descriptions of the invention.
The present application is continuation of U.S. patent application Ser. No. 14/700,554, filed Apr. 30, 2015, which is a continuation of U.S. patent application Ser. No. 12/774,429, filed May 5, 2010, which relates to, and claims priority in, U.S. Provisional Patent Application Ser. No. 61/175,918, entitled “EXPANDABLE SPINAL IMPLANT APPARATUS” filed May 6, 2009 by the same inventor. The contents of all of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4863476 | Shepperd | Sep 1989 | A |
5390683 | Pisharodi | Feb 1995 | A |
5665122 | Kambin | Sep 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5782832 | Larsen et al. | Jul 1998 | A |
6083225 | Winslow et al. | Jul 2000 | A |
6117174 | Nolan | Sep 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6245075 | Betz et al. | Jun 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6517544 | Michelson | Feb 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6524341 | Lang et al. | Feb 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6592625 | Cauthen | Jul 2003 | B2 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6770074 | Michelson | Aug 2004 | B2 |
6773460 | Jackson | Aug 2004 | B2 |
6814737 | Cauthen | Nov 2004 | B2 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6830589 | Erickson | Dec 2004 | B2 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6883520 | Lambrecht et al. | Apr 2005 | B2 |
6905512 | Paes et al. | Jun 2005 | B2 |
6936072 | Lambrecht et al. | Aug 2005 | B2 |
6984247 | Cauthen | Jan 2006 | B2 |
6997956 | Cauthen | Feb 2006 | B2 |
7004970 | Cauthen, III et al. | Feb 2006 | B2 |
7033395 | Cauthen | Apr 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7094258 | Lambrecht et al. | Aug 2006 | B2 |
7118579 | Michelson | Oct 2006 | B2 |
7124761 | Lambrecht et al. | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7144397 | Lambrecht et al. | Dec 2006 | B2 |
7189235 | Cauthen | Mar 2007 | B2 |
7198047 | Lambrecht et al. | Apr 2007 | B2 |
7211112 | Baynham et al. | May 2007 | B2 |
7220281 | Lambrecht et al. | May 2007 | B2 |
7258700 | Lambrecht et al. | Aug 2007 | B2 |
7691147 | Gutlin et al. | Apr 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7744649 | Moore | Jun 2010 | B2 |
7753958 | Gordon et al. | Jul 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7819920 | Assaker | Oct 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8118870 | Gordon et al. | Feb 2012 | B2 |
8118871 | Gordon et al. | Feb 2012 | B2 |
8216317 | Thibodeau | Jul 2012 | B2 |
8425559 | Tebbe | Apr 2013 | B2 |
8435296 | Kadaba et al. | May 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
20020045944 | Muhanna et al. | Apr 2002 | A1 |
20030018389 | Castro et al. | Jan 2003 | A1 |
20030065396 | Michelson | Apr 2003 | A1 |
20030135275 | Garcia et al. | Jul 2003 | A1 |
20030199874 | Michelson | Oct 2003 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040054412 | Gerbec et al. | Mar 2004 | A1 |
20040068259 | Michelson | Apr 2004 | A1 |
20040127994 | Kast et al. | Jul 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040153160 | Carrasco | Aug 2004 | A1 |
20040162618 | Mujwid et al. | Aug 2004 | A1 |
20040167536 | Errico et al. | Aug 2004 | A1 |
20040236331 | Michelson | Nov 2004 | A1 |
20040254643 | Jackson | Dec 2004 | A1 |
20050021041 | Michelson | Jan 2005 | A1 |
20050149197 | Cauthen | Jul 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050171541 | Boehm et al. | Aug 2005 | A1 |
20050203625 | Boehm et al. | Sep 2005 | A1 |
20050209697 | Paponneau et al. | Sep 2005 | A1 |
20050216085 | Michelson | Sep 2005 | A1 |
20050278026 | Gordon et al. | Dec 2005 | A1 |
20060004450 | McKay | Jan 2006 | A1 |
20060058876 | McKinley | Mar 2006 | A1 |
20060084994 | Atkinson et al. | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060100711 | Cauthen | May 2006 | A1 |
20060129156 | Cauthen et al. | Jun 2006 | A1 |
20060129245 | Cauthen | Jun 2006 | A1 |
20060142864 | Cauthen | Jun 2006 | A1 |
20060149385 | McKay | Jul 2006 | A1 |
20060161258 | Cauthen | Jul 2006 | A1 |
20060167553 | Cauthen et al. | Jul 2006 | A1 |
20060173545 | Cauthen et al. | Aug 2006 | A1 |
20060190083 | Amin et al. | Aug 2006 | A1 |
20060190085 | Cauthen | Aug 2006 | A1 |
20060200244 | Assaker | Sep 2006 | A1 |
20060229729 | Gordon et al. | Oct 2006 | A1 |
20060241761 | Gately | Oct 2006 | A1 |
20060241770 | Rhoda et al. | Oct 2006 | A1 |
20060241773 | Cauthen | Oct 2006 | A1 |
20060241774 | Attali et al. | Oct 2006 | A1 |
20060282167 | Lambrecht et al. | Dec 2006 | A1 |
20070093897 | Gerbec et al. | Apr 2007 | A1 |
20070093906 | Hudgins et al. | Apr 2007 | A1 |
20070123989 | Gfeller et al. | May 2007 | A1 |
20070156243 | Errico et al. | Jul 2007 | A1 |
20070162138 | Heinz | Jul 2007 | A1 |
20070191954 | Hansell et al. | Aug 2007 | A1 |
20070208343 | Magerl et al. | Sep 2007 | A1 |
20070213737 | Schermerhorn et al. | Sep 2007 | A1 |
20070213826 | Smith et al. | Sep 2007 | A1 |
20070225808 | Warnick | Sep 2007 | A1 |
20070225814 | Atkinson et al. | Sep 2007 | A1 |
20070225815 | Keith et al. | Sep 2007 | A1 |
20070225816 | Keith et al. | Sep 2007 | A1 |
20070233257 | Keith et al. | Oct 2007 | A1 |
20070239277 | Beger et al. | Oct 2007 | A1 |
20070239280 | Keith et al. | Oct 2007 | A1 |
20070255408 | Castleman et al. | Nov 2007 | A1 |
20070255413 | Edie et al. | Nov 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080009880 | Warnick et al. | Jan 2008 | A1 |
20080091211 | Gately | Apr 2008 | A1 |
20080109005 | Trudeau et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080221694 | Warnick et al. | Sep 2008 | A1 |
20080243254 | Butler | Oct 2008 | A1 |
20090112325 | Refai et al. | Apr 2009 | A1 |
20090143861 | Errico et al. | Jun 2009 | A1 |
20090190083 | Lee et al. | Jul 2009 | A1 |
20090216331 | Grotz et al. | Aug 2009 | A1 |
20090234364 | Crook | Sep 2009 | A1 |
20090248092 | Bellas et al. | Oct 2009 | A1 |
20090265008 | Thibodeau | Oct 2009 | A1 |
20090292361 | Lopez | Nov 2009 | A1 |
20100145455 | Simpson et al. | Jun 2010 | A1 |
20100174371 | Errico et al. | Jul 2010 | A9 |
20100185291 | Jimenez et al. | Jul 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100222884 | Greenhalgh | Sep 2010 | A1 |
20100256759 | Hansell et al. | Oct 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100292796 | Greenhalgh et al. | Nov 2010 | A1 |
20110035011 | Cain | Feb 2011 | A1 |
20110202135 | Baek et al. | Aug 2011 | A1 |
Entry |
---|
Anulex Brochure “X-Ciose Tissue Repair System,” 2007, 2pp. |
Anulex brochure,“Inclose Surgical Mesh System,” 2007, 2pp. |
Gorensek, M. et al., “Clinical Investigation of the Intrinsic Therapeutics Barricaid, a Novel Devise for Closing Defects in the Anulus,” presented at the North American Spine Society; Sep. 27-30, 2006, 2pp. |
Humphries, S. Craig, “Clinical Evaluation and Treatment Options for Herniated Lumbar Disc,” American Family Physician, Feb. 1, 1999, 10pp. |
Intrinsic Therapeutics brochure,“The Science of Disc Repair,” undated, 2pp. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2010/033760, dated Aug. 19, 2010, 9 pp. |
Number | Date | Country | |
---|---|---|---|
20170151066 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61175918 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14700554 | Apr 2015 | US |
Child | 15429346 | US | |
Parent | 12774429 | May 2010 | US |
Child | 14700554 | US |