The present invention relates to an expandable stent.
Stents are generally known. Indeed, the term “stent” has been used interchangeably with terms such as “intralurminal vascular graft” and “expansible prosthesis”. As used throughout this specification the term “stent” is intended to have a broad meaning and encompasses any expandable prosthetic device for implantation in a body passageway (e.g. a lumen or artery).
In the past six to eight years, the use of stents has attracted an increasing amount of attention due the potential of these devices to be used, in certain cases, as an alternative to surgery. Generally, a stent is used to obtain and maintain the patency of the body passageway while maintaining the integrity of the passageway. As used in this specification, the term “body passageway” is intended to have a broad meaning and encompasses any duct (e.g. natural or iatrogenic) within the human body and can include a member selected from the group comprising: blood vessels, respiratory ducts, gastrointestinal ducts and the like.
Initial stents were self-expanding, spring-like devices which were inserted in the body passageway in a contracted state. When released, the stent would automatically expand and increase to a final diameter dependent on the size of the stent and the elasticity of the body passageway. An example of such a stent is known in the art as the Wallstent™.
The self-expanding stents were found by some investigators to be deficient since, when deployed, they could place undue, permanent stress on the walls of the body passageway. Further, upon expansion, the stent would shorten in length in an unpredictable fashion thereby reducing the reliability of the stent. This led to the development of various stents which were controllably expandable at the target body passageway so that only sufficient force to maintain the patency of the body passageway was applied in expanding the stent.
Generally, in these later systems, a stent, in association with a balloon, is delivered to the target area of the body passageway by a catheter system. Once the stent has been properly located (for example, for intravascular implantation the target area of the vessel can be filled with a contrast medium to facilitate visualization during fluoroscopy), the balloon is expanded thereby expanding the stent by plastic deformation so that the latter is urged in place against the body passageway. As indicated above, the amount of force applied is at least that necessary to maintain the patency of the body passageway. At this point, the balloon is deflated and withdrawn within the catheter, and subsequently removed. Ideally, the stent will remain in place and maintain the target area of the body passageway substantially free of blockage (or narrowing).
A stent which has gained some notoriety in the art is known as the Palmaz-Schatz™ Balloon Expandable Stent (hereinafter referred to as “the Palmaz-Schatz stent”). This stent is discussed in a number of patents including U.S. Pat. Nos. 4,733,665, 4,739,762, 5,102,417 and 5,316,023, the contents of each of which are hereby incorporated by reference.
Another stent which has gained some notoriety in the art is known as the Gianturco-Roubin Flex-Stent™ (hereinafter referred to as “the Gianturco-Roubin stent”). This stent is discussed in a number of patents, including U.S. Pat. Nos. 4,800,882, 4,907,336 and 5,041,126, the contents of each of which are hereby incorporated by reference.
Other types of stents are disclosed in the following patents:
While these prior art stents have achieved a varying degree of success, the art is constantly in need of new stents having improved flexibility and stability while being able to be readily implanted with little or no trauma to the target lumen.
In our Canadian patent application number 2,134,997 (Penn et al.), the contents of which are hereby incorporated by reference, there is described an improved expandable stent. The stent comprises a tubular wall disposed between the proximal end and the distal end. The tubular wall has a longitudinal axis and a porous surface defined by a plurality intersecting members arranged to define a first repeating pattern. The first repeating pattern comprises a polygon having a pair of side walls substantially parallel to the longitudinal axis. A first concave-shaped wall and a second convex-shaped wall connect the side walls. The first wall and the second wall are equidistant along an axis which is parallel to the longitudinal axis. The stent is expandable from a first, contracted position to a second, expanded position upon the application of a radially outward force exerted on the stent.
As disclosed in the '997 application, the first repeating pattern can be implemented in, inter alia, a mono-tubular expandable stent and a bifurcated expandable stent.
While the stent disclosed in the '997 application is an advance in the art, in certain cases, a significant force is required to achieve expansion in the target body passageway. Further, implantation of the stent disclosed in the '997 application can be difficult in certain situations where the unexpanded stent must travel through a significantly curved pathway to the target body passageway.
Accordingly, it would be desirable to have an improved stent which overcomes these disadvantages. It would be further desirable if the improved stent could be readily adapted, inter alia, to mono-tubular expandable stents and bifurcated expandable stents. The latter type of stents would be useful in treating aneurysms, blockages and other ailments. It would also be desirable if such a stent was relatively easy to implant. It would be further desirable if such a stent were capable of being uniformly expanded at relatively low pressure while obviating or mitigating longitudinal shrinkage thereof. It would be further desirable if such a stent were not susceptible to asymmetric internal coverage of the body passageway, a problem associated with “coil”-type stents—see, for example, U.S. Pat. No. 5,282,824 (Gianturco). It would be further desirable if such a stent was not susceptible to movement along the longitudinal axis of the body passageway during or after implantation. It would be further desirable if such a stent was characterized by a desirable balance of lateral flexibility in the unexpanded state and radial rigidity in the expanded state.
It is an object of the present invention to provide a novel expandable stent which obviates or mitigates at least one of the above-mentioned disadvantages of the prior art.
Accordingly, in one of its aspects, the present invention provides an expandable stent comprising a proximal end and a distal end in communication with one another, a tubular wall disposed between the proximal end and the distal end, the tubular wall having a longitudinal axis and a porous surface defined by a plurality of intersecting members comprising a series of longitudinal struts disposed substantially parallel to the longitudinal axis of the stent, each of the longitudinal struts comprising flexure means for substantially complementary extension and compression of a diametrically opposed pair of the longitudinal struts upon flexure of the stent, the stent being expandable from a first, contracted position to a second, expanded position upon the application of a radially outward force on the stent.
Thus, in this aspect of the present invention, we have now discovered that the use of flexure means in the series of longitudinal struts leads to a very desirable balance of lateral flexibility of the unexpanded stent and radial rigidity of the expanded stent. Practically, the flexure means confers lateral flexibility to the unexpanded stent by allowing diametrically opposed pairs of the longitudinal struts to undergo substantially complementary extension and compression. If one considers a stent in a flexed state, a first longitudinal strut disposed at the tangent of the bend (i.e. in two dimensions) will expand in response to the bending moment. In contrast, a second longitudinal strut disposed diametrically opposite (this can mean above, below or in the same radial plane as) the first longitudinal strut will compress in response to the bending bend moment. Generally, the degree of extension and compression will be substantially complementary. In other words, in most cases, the first longitudinal strut will expand and lengthen a first distance and the second longitudinal strut will compress and shorten a second distance. Preferably, the first distance is greater than the second distance and most preferably, the sum of the first distance and the second distance is substantially equal to the sum of the original lengths of the first longitudinal strut and the second longitudinal strut.
The specific shape of the flexure means disposed in the longitudinal strut is not particularly restricted provided that it confers lateral flexibility to the unexpanded stent by allowing diametrically opposed pairs of the longitudinal struts to undergo substantially complementary extension and compression The term “diametrically opposed pairs of the longitudinal struts”, as used in this specification, is intended to have a broad meaning. Thus, the “pair” can include opposed struts in the same horizontal plane (i.e. the same ring of polygons) or in different horizontal planes (e.g. one strut in a first ring of polygons and the other diametrically opposed strut in a second ring of polygons above or below the first ring). Preferably, the flexure means comprises at least one lateral section disposed in the longitudinal strut, more preferably at least a first lateral section and a second lateral section disposed in the longitudinal strut. By “lateral section” is meant a section of the longitudinal strut which is bowed in or out of (i.e. radially from) the strut. The apex of the lateral section may be pointed, rounded or substantially flat When the flexure means comprises a first lateral section and a second lateral section, the two sections may be symmetric or asymmetric (in the case of asymmetric this includes two sections of the same shape but different size and two sections of different and size). Further, when the flexure means comprises a first lateral section and a section lateral section, the sections may be bowed in the same or opposite direction.
A particularly preferred embodiment of the flexure means comprises a sinusoidal or S-shaped section (various examples of such a section are illustrated herein and discussed below). Preferably, the sinusoidal or S-shaped section is adjacent the second apex of the polygon and the remaining portion of the strut is substantially straight. This feature improves the lateral flexibility of the stent thereby facilitating implantation thereof and may further mitigate longitudinal shortening of the stent upon expansion.
In another preferred embodiment, at least one, more preferably both, of the side walls (i.e. longitudinal struts) of the polygon comprises the sinusoidal or S-shaped section. Preferably, the sinusoidal or S-shaped section is disposed at an end of the side wall. This feature improves the lateral flexibility of the stent thereby facilitating implantation thereof and may further mitigate longitudinal shortening of the stent upon expansion.
When a sinusoidal or S-shaped portion is disposed in the side walls and/or the strut connecting the first apex and the second apex (if present), the precise shape of the portion is not particularly restricted and generally takes the form of an “S”. Thus, the sinusoidal or S-shaped portion may be comprised of a pair of joined curved sections wherein each curved section has an arc of about 180°—i.e. this is illustrated in
Preferably, the series of longitudinal struts containing the flexure means comprises all substantially longitudinal struts comprised in the plurality of intersecting members making up the porous surface of the stent.
Preferably, for this aspect of the present invention, the intersecting members are arranged to define a first repeating pattern comprised of a polygon having a pair of side walls substantially parallel to the longitudinal axis (i.e. a pair of the above-mentioned longitudinal struts comprising flexure means), a concave-shaped first wall having a first apex and a convex-shaped second wall having a second apex connecting the side walls. As used throughout this specification, the terms “concave-shaped” and “convex-shaped” are intended to have a broad meaning and a shape having apex. Thus, the first wall has a first apex and the second wall has a second apex. Thus, the first apex (i.e. of the concave-shaped first wall) is directed into the polygon whereas the second apex (i.e. of the convex-shaped second wall) is directed away from the polygon.
In another of its aspects, the present invention provides an expandable stent comprising a proximal end and a distal end in communication with one another, a tubular wall disposed between the proximal end and the distal end, the tubular wall having a longitudinal axis and a porous surface defined by a plurality intersecting members arranged to define a first repeating pattern comprised of a polygon having a pair of side walls substantially parallel to the longitudinal axis, a concave-shaped first wall having a first apex and a convex-shaped second wall having a second apex, the first wall and the second wall connecting the side walls, at least one of the first apex and the second apex being substantially flat, the stent being expandable from a first, contracted position to a second, expanded position upon the application of a radially outward force on the stent.
In this aspect of the invention, it is has been discovered that the use of such a first repeating pattern (including at least one of the first apex and second apex being substantially flat), with or without the flexure means present in the side walls of the polygon in the first repeating pattern, results in an improved stent. The advantages associated with the use of such a such a first repeating pattern include the following:
The provision of at least one of the first apex and the second apex being substantially flat usually results in the apex of the concave-shaped first wall and/or the convex-shaped second wall having a pair of shoulders. Preferably, these shoulders are rounded. The provision of such round shoulders results in the following additional advantages:
When the stent of the present invention includes the above-mentioned first repeating pattern, it is preferred to provide a connecting strut between the first apex and the second apex. Generally, the connecting strut will be substantially longitudinal (i.e. it will be parallel to the longitudinal axis of the stent). This feature mitigates lifting of the shoulders referred to above as the stent is flexed, for example, when passing the stent through a curved body passageway. The result of this is that potential trauma to the body passageway is mitigated since scraping of the body passageway by the shoulders is mitigated.
In a preferred embodiment, the connecting strut is curved with respect to the longitudinal axis (this is described and illustrated hereinbelow). Preferably, the strut is sufficiently curved to have a length of up to about 35%, more preferably up to about 15%, even more preferably in the range of from about 2% to about 8%, most preferably in the range of from about 3% to about 7%, greater than the distance between the first apex and the second apex. This feature improves the lateral flexibility of the stent thereby facilitating implantation thereof. In some cases, the curvature may be designed to comprise the flexure means discussed above. In other words, the shape of the curvature may be designed substantially complementary extension and compression of the connecting strut upon flexure of the stent.
Yet another preferred feature of the stent of the present invention is the provision of one or both of the side walls of the polygon of the repeating pattern being curved. Preferably, both side walls are curved. More preferably the curvature serves as flexure means as described above. Ideally, the curved side wall has length of up to about 35%, more preferably up to about 15%, even more preferably in the range of from about 2% to about 8%, most preferably in the range of from about 3% to about 7%, greater than the distance between the termini of the concave-shaped first wall and the concave-shaped second wall. This feature improves the lateral flexibility of the strut thereby facilitating implantation thereof.
Preferably, both the strut and the side walls are curved. More preferably, each of the curved members are of substantially the same length.
Yet another preferred feature of the stent of the present invention is, in addition to the strut and side walls of the polygon being curved, the provision of all longitudinal walls of the polygon of the repeating pattern being curved. Thus, in this embodiment of the invention, the concave-shaped first wall comprises a pair of curved first apex walls connecting the first apex and the side walls of the polygon, and the convex-shaped second wall comprises a pair of curved second apex walls connecting the second apex and the side walls of the polygon. Again, in some cases, the curvature may be designed to comprise the flexure means discussed above. Ideally, the curved first apex walls and the curved second apex walls each have a length of up to about 35%, more preferably up to about 15%, even more preferably in the range of from about 2% to about 8%, most preferably in the range of from about 3% to about 7%, greater than the straight (i.e. non-curved) distance between the first apex and the side walls, and the second apex and the side walls, respectively. In this embodiment, it is further preferred to have substantially all adjacent curved walls in an annular section of the repeating pattern (i.e. of the struts, first apex wall, second apex wall and side walls) are substantially equidistant from one another. This preferred feature of the stent of the present invention even further enhances the lateral flexibility of the stent thereby further facilitating implantation thereof.
Yet another preferred feature of the stent of the present invention is provision of a porous surface comprising multiple designs. Specifically, in certain cases, it may be desirable to design the stent to varying degrees of relative flexibility and rigidity along the length thereof. Thus, the relatively flexible portion(s) of such a stent would facilitate delivery of the stent to a target body passageway through a relatively tortuous route, while the relatively rigid portion(s) of the stent serves facilitate maintaining the patency of the body passageway. As will be discussed in more detail hereinbelow, this may be achieved by varying the repeating pattern design along the longitudinal length of the stent.
An aspect of the present invention relates to the provision of an expandable bifurcated stent. As used throughout this specification, the term “bifurcated stent” is intended to have a broad meaning and encompasses any stent having a primary passageway to which is connected at least two secondary passageways. Thus, trifurcated stents are encompassed herein. Further, one of the secondary passageways can be a continuation of the primary passageway with the result that the other secondary passageway is essentially a side branch to the primary passageway.
The stent of the present invention (bifurcated or mono-tubular) can further comprise coating material thereon. The coating material can be disposed continuously or discontinuously on the surface of the stent. Further, the coating may be disposed on the interior and/or the exterior surface(s) of the stent. The coating material can be one or more of a biologically inert material (e.g. to reduce the thrombogenicity of the stent), a medicinal composition which leaches into the wall of the body passageway after implantation (e.g. to provide anticoagulant action, to deliver a pharmaceutical to the body passageway and the like) and the like.
The stent is preferably provided with a biocompatible containing, in order of minimize adverse interaction with the walls of the body vessel and/or with the liquid, usually blood, flowing through the vessel. The coating is preferably a polymeric material, which is generally provided by applying to the stent a solution or dispersion of preformed polymer in a solvent and removing the solvent. Non-polymeric coating material may alternatively be used. Suitable coating materials, for instance polymers, may be polytetraflouroethylene or silicone rubbers, or polyurethanes which are known to be biocompatible. Preferably however the polymer has zwitterionic pendant groups, generally ammonium phosphate ester groups, for instance phosphoryl choline groups or analogues thereof. Examples of suitable polymers are described in International application number WO-A-93116479 and WO-A-93/15775. Polymers described in those specifications are hemo-compatible as well as generally biocompatible and, in addition, are lubricious. It is important to ensure that the surfaces of the stent are completely coated in order to minimize unfavourable interactions, for instance with blood, which might lead to thrombosis.
This good coating can be achieved by suitable selection of coating conditions, such as coating solution viscosity, coating technique and/or solvent removal step.
In another embodiment of the invention, the stent may be joined to a polymer material. Specifically, a polymer material may be extruded onto the stent in such a manner that it envelops at least a portion of the stent. This technique may be used to join two or more stents with a flexible polymeric tube. This technique may also be used to join a stent to another prosthetic device such as a tube, a graft and the like. Thus, in this embodiment of the invention, the stent is incorporated into an endoluminal prosthesis.
In yet another embodiment of the invention, the stent may be secured (e.g. by suturing) to an existing endoluminal prosthesis such as Gortex™ material or to biological material such as basilic vein. In this regard, securing of the stent to the existing endoluminal prosthesis or biological material may be facilitated by designing the stent such that an end of the stent comprises an annular row of the above-mentioned polygons is having a convex-shaped wall with a flat apex.
Embodiments of the present invention will be described with reference to the accompanying drawings wherein like numerals designate like parts and in which:
a-12i illustrate various embodiments of flexure means (in two dimensions) which may be disposed in the longitudinal struts of preferred embodiments of the present stent.
With reference to
As illustrated and with further reference to
As illustrated, concave-shaped wall 50 is made up of a trio of segments 52,54,56. In the illustrated embodiment, segment 54 is the apex of concave-shaped wall 54. As is evident, segment 54 is a flat apex and results in the provision of a pair of substantially square shoulders 57,58 Convex-shaped wall 60 is made up of a trio of segments 62,64,66. In the illustrated embodiment, segment 64 is the apex of convex-shaped wall 60.
It will be appreciated by those of skill in the art that the provision of first repeating pattern A, as illustrated, necessarily defines and provides for a second repeating pattern B. It will also be appreciated by those of skill in the art that second repeating pattern B is a mirror image of first repeating pattern A taken along an axis (not shown) substantially normal to longitudinal axis 45. Thus, in the illustrated embodiments, adjacent rows of repeating pattern A and repeating pattern B may be considered to by interlocking polygons or “arrowheads”.
It will be further appreciated by those of skill in the art that the shape of concave-shaped wall 50 and/or convex-shaped wall 60 can be modified without departing from the function and performance of the stent provided that at least one of concave-shaped wall 50 and convex-shaped wall 60 retain a substantially flat apex. For example, the trio of segments can be replaced by a suitably curved or arcuate wall. Alternatively, more than three segments can be used to define concave-shaped wall 50 and/or convex-shaped wall 60. Other modifications will be apparent to those of skill in the art.
It will be further appreciated by those of skill in the art that various walls of first repeating pattern A and second repeating pattern B may be omitted (and even desired) at selected points along the body of the stent without departing from the spirit and scope of the invention. For example, it is possible to omit one or both of side walls 35 and 40 at selected points along the body of the stent with a view to improving the longitudinal flexibility of the stent. Further, it is possible to omit one or more of segments 62,64,66 at selected points along the body of the stent with a view to improving the lateral flexibility of the stent.
Still further, the stent depicted in
With reference to
Thus, as illustrated in
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
As will be apparent to those of skill in the art, sinusoidal (or S-shaped) portion 971 is offset with respect to sinusoidal (or S-shaped) portions 936,941 in a panel horizontal to the longitudinal axis of repeating pattern A. The offset nature of these sinusoidal (or S-shaped) portions serves to increase the bending points in the stent allowing the stent to bend while avoiding buckling thereof. Thus, the staged distribution of the sinusoidal (or S-shaped) portions over a large portion of the surface area of the stent serves to improve the flexibility of the stent.
The advantages of the various alternate embodiments illustrated in
As discussed above, the use of flexure means, such as the sinusoidal (or S-shaped) portions in the design of the stents illustrated in
Accordingly the provision of such flexure means in the longitudinal struts of an otherwise general stent design is another feature of invention. With reference to
Those of skill in the art will recognize that it is possible to combine various of the alternate embodiments illustrated in
F-R
F-R-F
R-F-R
wherein F is a relatively flexible region and R is a relatively rigid region. With reference to the embodiments illustrated in
Another technique by which the relative flexibility/rigidity may be varied along the length of the stent involves varying the thickness of the segments making up the polygon discussed hereinabove. Specifically, the thickness of the segments may be varied in the range of from about 0.0015 to about 0.0045 inches, preferably from about 0.0020 to about 0.0040 inches. The lower the thickness in this range, the more flexible the resulting stent design. Conversely, the higher the thickness in this range, the less flexible the resulting stent design. Thus, by judicious selection of segment thickness, the relative flexibility/rigidity of the stent may be varied along its length.
The provision of a stent with a variable relative flexibility/rigidity along its length is believed to be novel, especially a stent comprising a single relatively flexible portion and a single relatively rigid portion (i.e. the F-R embodiment discussed above). Such a stent would find immediate use in a number of applications. For, example, such a stent would very desirable for implantation in an ostial stenosis (these typically occur in coronary arteries, vein grafts and renal arteries). In this regard, an ostial stenosis is illustrated in
The manner by which the present stent is manufactured is not particularly restricted. Preferably, the stent is produced by laser cutting techniques applied to a tubular starting material. Thus, the starting material could be a thin tube of a metal or alloy (non-limiting examples include stainless steel, titanium, tantalum, nitinol, Elgiloy, NP35N and mixtures thereof) which would then have sections thereof cut out to leave repeating pattern A discussed above. Thus, the preferred design of the present stent is one of a tubular wall which is distinct from prior art wire mesh designs wherein wire is conformed to the desired shape and welded in place. The preferred tubular wall design of the present stent facilitates production and improves quality control by avoiding the use of welds and, instead, utilizing specific cutting techniques.
Preferably, the stent is coated with a solution of 1:2 (mole) copolymer of (methacryloyloxy ethyl)-2-(trimethylammonium ethyl) phosphate inner salt with lauryl methacrylate in ethanol (as described in Example 2 of International patent application WO-A-93/01221) as follows. The non-expanded stent may be placed in a tube having a slightly larger diameter than the stent. The tube may then be filled with coating solution and the solution allowed to drain steadily from the tube to form a completely coated stent. Immediately thereafter a stream of warm air or nitrogen may be directed through the tube at a linear velocity of 0.1.5 m/s at room temperature to 50° C. for a period of 30 seconds to 5 minutes to dry the coating by evaporation of the ethanol solvent.
As an alternative or in addition (on top or underneath) to this coating, a cross-linkable coating may be used consisting of a polymer of 23 mole % (methacryloyloxy ethyl)-2-(trimethylammonium ethyl) phosphate inner salt, 47 mole % lauryl methacrylate, 5 mole % γtrimethoxysilylpropyl methacrylate and 25 mole % of γhydroxypropyl methacrylate. This may be applied to the sent by the above described technique from a 5 mg/ml ethanoic solution. The solution may be dried as described above and then cured by heating at 70 to 75° C. for a period of at least about 1 hour, for instance overnight. This curing generally results in substantially complete reaction of the methoxy silyl groups, either with other methoxylsily groups or with hydroxy groups derived from the hydroxypropyl methacrylate monomer, driving off methanol. In one preferred embodiment the crosslinkable coating is applied to the cleared stent, cured and then a further coating of the lauryl methacrylate copolymer described above is applied.
The coated stent may be sterilised by ethylene oxide, gamma radiation or electron beam and subsequently mounted onto a balloon catheter for delivery.
Stent 10 can be implanted using a conventional system wherein a guidewire, catheter and balloon can be used to position and expand the stent. Implantation of mono-tubular stents such as stent 10 is conventional and within the purview of a person skilled in the art. See, for example, any one of U.S. Pat. Nos. 4,733,665, 4,739,762, 5,035,706, 5,037,392, 5,102,417, 5,147,385, 5,282,824, 5,316,023 and any of the references cited therein or any of the references cited hereinabove. When the present stent is constructed as a bifurcated stent, it may be implanted using the procedure outlined in the '997 patent application incorporated herein by reference. Such a bifurcated stent may be manufactured, inter alia, by any of the methods disclosed in the Canadian patent application number 2,175,720 filed in Applicant's name on May 3, 1996, the contents of which are hereby incorporated by reference.
It will be apparent to those of skill in the art that implantation of stent 10 can be accomplished by various other means. For example, it is contemplated that the stent can be made of a suitable material which will expand when a certain temperature is reached. In this embodiment, the material may be a metal alloy (e.g. nitinol) capable of self-expansion at a temperature of at least about 30° C., preferably in the range of from about 30° to about 40° C. In this embodiment, the stent could be implanted using a conventional catheter and the radially outward force exerted on the stent would be generated within the stent itself. Further, stent 10 can be designed to expand upon the application of mechanical forces other than those applied by a balloon/catheter. For example, it is possible to implant stent 10 using a catheter equipped with a resisting sleeve or retaining membrane which may then be removed with the catheter once the stent is in position thereby allowing the stent to expand. Thus, in this example, the stent would be resiliently compressed and would self-expanded once the compressive force (i.e. provided by the sleeve or membrane) is removed.
As will be appreciated by those of skill in the art, repeating pattern A has been described hereinabove and illustrated in
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2171047 | Mar 1996 | CA | national |
2175722 | May 1996 | CA | national |
2185740 | Sep 1996 | CA | national |
2192520 | Dec 1996 | CA | national |
This application is a continuation of U.S. patent appln. Ser. No. 09/672,767, filed Sept. 29, 2000 (incorporated herein by reference), now U.S. Pat. No. 6,375,677, issued Apr. 23, 2002, which is a continuation of U.S. Pat. appln. Ser. No. 09/142,508, filed Feb. 16, 1999, now U.S. Pat. No. 6,217,608, issued Apr. 17, 2001, (incorporated herein by reference), which is a 371 of PCT/CA97/00151, filed Mar. 5, 1997 (designating the U.S.; and which published in English in WO 97/32543 on Sept. 12, 1997), which claims the benefit of Canadian Patent No. 2,171,047, filed Mar. 5, 1996, Canadian Patent No. 2,175,722, filed May 3, 1996, Canadian Patent No. 2,185,740, filed Sept. 17, 1996, and Canadian Patent No. 2,192,520, filed Dec. 10, 1996.
Number | Name | Date | Kind |
---|---|---|---|
3657774 | Reynolds | Apr 1972 | A |
3993078 | Bergentz et al. | Nov 1976 | A |
4503569 | Dotter | Mar 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4681110 | Wiktor | Jul 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4795458 | Regan | Jan 1989 | A |
4800882 | Gianturco | Jan 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4907336 | Gianturco | Mar 1990 | A |
4954126 | Wallstén | Sep 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5019085 | Hillstead | May 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5041126 | Gianturco | Aug 1991 | A |
5061275 | Wallstén et al. | Oct 1991 | A |
5102417 | Palmaz | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5116365 | Hillstead | May 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5135536 | Hillstead | Aug 1992 | A |
5139480 | Hickle et al. | Aug 1992 | A |
5147385 | Beck et al. | Sep 1992 | A |
5161547 | Tower | Nov 1992 | A |
5192307 | Wall | Mar 1993 | A |
5195984 | Schatz | Mar 1993 | A |
5197987 | Koch et al. | Mar 1993 | A |
5201901 | Harada et al. | Apr 1993 | A |
5266073 | Wall | Nov 1993 | A |
5269802 | Garber | Dec 1993 | A |
5282823 | Schwartz et al. | Feb 1994 | A |
5282824 | Gianturco | Feb 1994 | A |
5290305 | Inoue | Mar 1994 | A |
5292331 | Boneau | Mar 1994 | A |
5314472 | Fontaine | May 1994 | A |
5316023 | Palmaz et al. | May 1994 | A |
5342387 | Summers | Aug 1994 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5395390 | Simon et al. | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5496365 | Sgro | Mar 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5522880 | Barone et al. | Jun 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5569295 | Lam | Oct 1996 | A |
5575771 | Walinsky | Nov 1996 | A |
5575817 | Martin | Nov 1996 | A |
5591197 | Orth et al. | Jan 1997 | A |
5603721 | Lau et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5623771 | Winheim | Apr 1997 | A |
5628787 | Mayer | May 1997 | A |
5634941 | Winston et al. | Jun 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643312 | Fischell et al. | Jul 1997 | A |
5643340 | Nunokawa | Jul 1997 | A |
5653743 | Martin | Aug 1997 | A |
5674278 | Boneau | Oct 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5693086 | Goicoechea et al. | Dec 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5709712 | Paul et al. | Jan 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5755734 | Richter et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5807404 | Richter | Sep 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5827321 | Roubin et al. | Oct 1998 | A |
5836964 | Richter et al. | Nov 1998 | A |
5836966 | St. Germain | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5868783 | Tower | Feb 1999 | A |
5879370 | Fischell et al. | Mar 1999 | A |
5902332 | Schatz | May 1999 | A |
5906640 | Penn et al. | May 1999 | A |
5906759 | Richter | May 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5913895 | Burpee et al. | Jun 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5931866 | Frantzen | Aug 1999 | A |
5964770 | Flomenblit et al. | Oct 1999 | A |
5964798 | Imran | Oct 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5997703 | Richter | Dec 1999 | A |
6017362 | Lau | Jan 2000 | A |
6017365 | Von Oepen | Jan 2000 | A |
6033433 | Ehr et al. | Mar 2000 | A |
6042597 | Kveen et al. | Mar 2000 | A |
6053940 | Wijay | Apr 2000 | A |
6059811 | Pinchasik et al. | May 2000 | A |
6066169 | McGuinness | May 2000 | A |
6068656 | Von Oepen | May 2000 | A |
6083259 | Frantzen | Jul 2000 | A |
6086604 | Fischell et al. | Jul 2000 | A |
6090127 | Globerman | Jul 2000 | A |
6090133 | Richter et al. | Jul 2000 | A |
6099455 | Columbo et al. | Aug 2000 | A |
6106548 | Roubin et al. | Aug 2000 | A |
6114049 | Richter | Sep 2000 | A |
6117156 | Richter et al. | Sep 2000 | A |
6117165 | Becker | Sep 2000 | A |
6123721 | Jang | Sep 2000 | A |
6129754 | Kanesaka et al. | Oct 2000 | A |
6156052 | Richter et al. | Dec 2000 | A |
6159237 | Alt et al. | Dec 2000 | A |
6171334 | Cox | Jan 2001 | B1 |
6179867 | Cox | Jan 2001 | B1 |
6179868 | Burpee et al. | Jan 2001 | B1 |
6183507 | Lashinski et al. | Feb 2001 | B1 |
6190403 | Fischell et al. | Feb 2001 | B1 |
6190405 | Culombo et al. | Feb 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6193744 | Ehr et al. | Feb 2001 | B1 |
6193747 | Von Oepen | Feb 2001 | B1 |
6197048 | Richter | Mar 2001 | B1 |
6200334 | Jang | Mar 2001 | B1 |
6203569 | Wijay | Mar 2001 | B1 |
6231598 | Berry et al. | May 2001 | B1 |
6238401 | Richter | May 2001 | B1 |
6251133 | Richter et al. | Jun 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6299755 | Richter | Oct 2001 | B1 |
6315794 | Richter | Nov 2001 | B1 |
6355059 | Richter et al. | Mar 2002 | B1 |
6375677 | Penn et al. | Apr 2002 | B1 |
6547817 | Fischell et al. | Apr 2003 | B1 |
20010000043 | Israel et al. | Mar 2001 | A1 |
20010001317 | Duerig et al. | May 2001 | A1 |
20020052646 | Fischell et al. | May 2002 | A1 |
20030114868 | Fischell et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
1239755 | Aug 1988 | CA |
1245527 | Nov 1988 | CA |
2134997 | May 1996 | CA |
2171047 | Sep 1997 | CA |
2175722 | Nov 1997 | CA |
2185740 | Mar 1998 | CA |
295 16712 | Aug 1996 | DE |
0 045 627 | Oct 1982 | EP |
0 505 686 | Sep 1992 | EP |
0 566 807 | Oct 1993 | EP |
0 709 067 | May 1995 | EP |
0 669 114 | Aug 1995 | EP |
2678508 | Jan 1993 | FR |
6-41745 | Jun 1994 | JP |
WO 9412136 | Jun 1994 | WO |
WO 9509584 | Apr 1995 | WO |
WO 9531945 | Feb 1996 | WO |
WO 9602295 | Feb 1996 | WO |
WO 9603092 | Feb 1996 | WO |
WO 9614028 | May 1996 | WO |
WO 9704721 | Feb 1997 | WO |
WO 9732543 | Sep 1997 | WO |
WO 9732544 | Sep 1997 | WO |
WO 9733532 | Sep 1997 | WO |
WO 9822159 | May 1998 | WO |
WO 9833546 | Aug 1998 | WO |
WO 0028922 | May 2000 | WO |
WO 0049971 | Aug 2000 | WO |
WO 0053122 | Sep 2000 | WO |
WO 0100112 | Jan 2001 | WO |
WO 0115632 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020165605 A1 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09672767 | Sep 2000 | US |
Child | 10073277 | US | |
Parent | 09142508 | US | |
Child | 09672767 | US |