1. Technical Field
The present disclosure relates generally to devices and techniques for performing surgical procedures. More particularly, the present disclosure relates to an expandable access device for minimally invasive surgery.
2. Background of the Related Art
In an effort to reduce trauma and recovery time, many surgical procedures are performed through small openings in the skin, such as an incision or a natural body orifice. For example, these procedures include laparoscopic procedures, which are generally performed within the confines of a patient's abdomen, and thoracic procedures, which are generally performed within a patient's chest cavity.
Specific surgical instruments have been developed for use during such minimally invasive surgical procedures. These surgical instruments typically include an elongated shaft with operative structure positioned at a distal end thereof, such as graspers, clip appliers, specimen retrieval bags, etc.
During minimally invasive procedures, the clinician creates an opening in the patient's body wall, oftentimes by using an obturator or trocar, and thereafter positions an access assembly within the opening. The access assembly includes a passageway extending therethrough to receive one or more of the above-mentioned surgical instruments for positioning within the internal work site, e.g. the body cavity.
During minimally invasive thoracic procedures, an access assembly is generally inserted into a space located between the patient's adjacent ribs that is known as the intercostal space, and then surgical instruments can be inserted into the internal work site through the passageway in the access assembly.
In the interests of facilitating visualization, the introduction of certain surgical instruments, and/or the removal of tissue specimens during minimally invasive thoracic procedures, it may be desirable to spread the tissue adjacent the ribs defining the intercostal space. Additionally, during these procedures, firm, reliable placement of the access assembly is desirable to allow the access assembly to withstand forces that are applied during manipulation of the instrument(s) inserted therethrough. However, reducing patient trauma during the procedure, discomfort during recovery, and the overall recovery time remain issues of importance. Thus, there exists a need for thoracic access ports which minimize post operative patient pain while enabling atraumatic retraction of tissue and which do not restrict access to the body cavity, as well as facilitate retrieval of tissue specimens from the body cavity.
In accordance with one aspect of the present disclosure, a surgical access assembly for positioning within an opening in tissue is provided. The surgical access assembly comprises an outer member positionable outside a patient and defining an opening therein to receive a surgical instrument therethrough. The outer member includes first and second portions, at least one of the first and second portions movable with respect to the other portion. The access assembly further includes an inner member positionable within a patient and a flexible member extending between the inner member and outer member and operatively associated with the outer member. A locking mechanism locks the outer member in a plurality of select expanded positions, wherein movement of one of the first and second portions adjusts tension on the flexible member to retract tissue. The locking mechanism includes first engagement structure on the first portion engageable with the second portion and a slidable member movable to a locking position to retain the first and second portions in the select expanded position.
In some embodiments, the outer member is substantially rectangular in configuration. The access assembly in some embodiments includes a nerve protecting member extending from the inner member, the nerve protecting member extending in a direction toward the outer member.
In one embodiment, the engagement structure includes a substantially rigid projecting member having a sharp tip embeddable within a softer material. In an alternate embodiment, the engagement structure comprises a first textured surface on the first portion engageable with a second textured surface on the second portion. In another alternate embodiment, the engagement structure includes a first set of projections formed on the first portion and engageable with a second set of projections formed on the second portion, and the second set of projections can be out of phase with the first set of projections. In another alternate embodiment, the engagement structure includes a row of raised bars.
In some embodiments, the engagement structure is biased to a non-engaging position and the slidable member moves the engagement structure to an engaged position.
In some embodiments, the slidable member of the locking mechanism includes first and second collars connected by a bridge.
In some embodiments, a pivoting arm is provided having a detent positioned thereon, the slidable member biasing the pivoting arm to an engaged position when the slidable member is moved to the locking position.
In another aspect of the present disclosure, a surgical access assembly for positioning within an opening in tissue is provided. The surgical access assembly comprises an outer member having an opening dimensioned and configured to receive a surgical instrument therethrough and including first and second portions, at least one of the first and second portions being movable relative to the second portion. The first portion has a first engagement structure and the second portion has a second engagement structure. A flexible member extends distally with respect to the outer member, the flexible member being spread upon movement of the first portion away from the second portion to retract soft tissue adjacent the opening in tissue. A locking or retention mechanism retains the first and second portions of the outer member in a plurality of spread positions, the locking mechanism having a first position wherein the first engagement structure is out of locking engagement with the locking second engagement structure and a second position wherein the first engagement structure is in locking engagement with the second engagement structure to retain the first and second portions in a select spread position.
In some embodiments, the first engagement structure extends from a pivoting arm normally biased to a non-engaged position.
In some embodiments, the locking mechanism includes a member positionable over the first and second engagement structures to lock the first and second portions in a select spread position.
In some embodiments, the first engagement structure is positioned on first and second sides of the first portion and the second engagement structure is positioned on third and fourth sides of the second portion, and the locking mechanism includes first and second collars joined by a bridge member, the first collar slidable over the engagement structures on the first and third sides and the second collar slidable over the engagement structures on the second and fourth sides.
The present disclosure also provides in another aspect a method of accessing an internal cavity of a patient comprising the steps of:
forming an opening in a patient's tissue;
providing an access assembly including:
inserting the inner member of the access assembly through the opening in tissue within an intercostal space of the patient and the flexible member extending proximally through the opening in tissue;
moving the first portion of the outer member to a select unlocked spread position to enlarge the opening in tissue and the passageway through the flexible member; and
subsequently moving a locking member to lock the first portion in the select spread position.
The method may further comprise the step of introducing at least one of surgical instrumentation and tissue specimen through the passageway and opening in the tissue. In preferred embodiments, the first and second portions frictionally engage when the locking member is moved to lock the first portion.
The method can further include the step of folding the inner member for insertion within the intercostal space into an internal cavity.
Various embodiments of the subject access port are described herein with reference to the drawings wherein:
Various embodiments of the presently disclosed access assembly, or access port, and methods of using the same, will now be described in detail with reference to the drawings wherein like references numerals identify similar or identical elements. In the drawings, and in the following description, the term “proximal” refers to the end of the access port, or component thereof, that is closer to the clinician and the term “distal” refers to the end that is further from the clinician, as is traditional and conventional in the art. It should be also be understood that the term “minimally invasive procedure” is intended to include surgical procedures through small openings/incisions performed within a confined space such as the thoracic cavity. Note the use of the terms upper and lower are with reference to the orientation shown in the Figures.
Referring now to
The access port 100 is configured and dimensioned to extend into a body cavity, e.g., the thoracic cavity “T” (
As shown, the outer frame 110 is substantially rectangular in shape with a substantially rectangular opening. As can be appreciated, other shape frames and openings are also contemplated. Note also that preferably the shape is elongated, e.g. has a length greater than its width.
Inner member 150 has an elongated opening 155 therethrough for passage of surgical instrumentation. The member 150 also has a nerve protecting wall or lip 152 extending along the opening 155, and preferably substantially surrounding the opening. Lip 152 extends upwardly toward outer frame 110. The member 150 is preferably composed of a substantially rigid material to provide anchoring of the access port while of sufficient flexibility to be bent or reconfigured for insertion as described below.
Flexible membrane 170 is generally funnel shaped, is coupled at its distal end 174 to lip 152 of inner member 150 and extends proximally therefrom. Proximal end 172 of flexible membrane 170 is coupled to end walls 113, 115 to isolate tissue surrounding access port 100 from the passageway 190 extending therethrough, thus reducing the risk of tissue damage and/or infection during the surgical procedure. It can be attached by various methods such as welding or gluing. It is envisioned that flexible membrane 170 is configured for soft tissue retraction. It is also envisioned that flexible membrane 170 can be of sufficient elasticity to permit retraction of a wide range of tissue thicknesses since there may be a wide range of tissue thicknesses among different patients. It is also envisioned that flexible membrane 170 is of sufficient strength to prevent accidental tearing and/or puncture by surgical instrumentation inserted through access port 100. Additionally, it is envisioned that flexible membrane 170 be made from a bio-compatible material to reduce the incidents of adverse reaction by a patient upon contact with the patient's tissue. Flexible membrane 170 may also be made of a transparent material to allow the surgeon to better visualize the surgical site and surrounding tissue.
Outer frame 110 is preferably sufficiently rigid to retain membrane 170 in a tensioned configuration. As frame 110 is expanded (spread) in the direction of the arrow of
Several alternate embodiments of a locking mechanism for outer frame 110 are disclosed herein. Each of the locking mechanisms includes a first engagement structure on the first portion and a second engagement structure on the second portion of the outer frame and a slidable locking member which locks the first and second portions in the selected spread position. In this manner, the first and second portions of the outer frame are moved apart to a desired spread position to expand and stretch the flexible membrane 170 and then retained or locked in the select position. Such engagement structure is preferably positioned on both sides of the frame 110.
The locking mechanism of
In the embodiment of
A second pivoting locking arm 162a (see
The pivoting arm 162 (and 162a) is preferably biased to a position away from the second portion 112 so in its normal position its lower surface 165 does not engage the first portion 112. That is, in the orientation of
In the
In a preferred embodiment, the first and second collars 167, 167a are substantially identical and each have an opening 169, 169a for sliding reception of the frame 114. Other configurations of collars then that shown in the various embodiments herein are also contemplated as long as it achieves its function of movement to clamp the respective pivoting arm 162, 162a into locking arrangement.
In the embodiment of
The difference between
It should also be appreciated that although the collars 290, 291 are pulled to lock portions 112, 114 because of their initial position (between arms 262, 262a and wall 213), it is also contemplated that in their initial position the collars can be on the other side of pivoting arms 262, 262a, i.e. closer to the wall 215. In this version, the bridge 291 would be pushed in a direction away from wall 215 to ride over and cam arms 262, 262a into engagement with lower portion 212 to lock the frame portions 212, 214 in a select position.
Turning now to other alternate embodiments, and turning first to
Pivoting locking arm 362 has a bottom surface 365 with an engagement structure in the form of a textured surface 383, preferably molded thereon. A second engagement structure in the form of a high friction textured surface 319 is preferably molded onto the top surface 318 of lower portion 314 (as viewed in the orientation of
In the alternate embodiment of
Locking arm 462 includes a bottom surface 465 with two detents 464a, 464b. These detents 464a, 464b are configured and dimensioned to be received in locking engagement within two of the plurality of recesses 466 (only a few are labeled for clarity) in the bottom portion 412. Note the number of recesses 466 preferably exceeds the number of detents 464a, 464b to enable locking in a number of different select positions of the frame portion 412, 414. It should be appreciated that the number of detents and recesses can be different than that shown.
A second locking arm (not shown), identical to locking arm 462, is positioned on the other side of the second (upper) portion 414. As with locking arm 462, the second locking arm has two (or more) detents engageable with two of the recesses on a second side of the second portion 412, depending on the relative position of the first and second portions.
A locking member in the form of a sliding collar 467 is slid over the ramped surface 468 of arm 462 to force it downwardly against its normal bias into engagement with the recesses 466. Thus, in use, after spreading the lower and upper portions 412, 414 to the desired position to tension the membrane and retract tissue around the incision in the same manner as in the embodiment of
In the illustrated embodiment, two rows of domes 569 are positioned on pivoting arm 562 of frame portion 514. Preferably, a greater number of rows of similar configured domes/balls 561 are positioned on lower portion 512. When the collar 567 is slid in the direction of the arrow of
A second pivoting arm (not shown) identical to pivoting arm 562 is provided on the other side of the outer frame portion 514 to frictionally engage a corresponding series of projections, e.g. domes/balls (not shown) identical to domes 561 upon movement of a second collar (not shown) identical to collar 567. Thus, as in the embodiments of
It should be appreciated that a different number of balls/domes can be provided in order to achieve retention of the dome structures.
In the alternate embodiment of
In the illustrated embodiment, two bars 669 are positioned on pivoting arm 662 of frame portion 614. Preferably, a greater number of bars 664 are positioned on lower portion 612. When the collar 667 is slid in the direction of the arrow of
A second pivoting arm (not shown) identical to pivoting arm 662 is provided on the other side of the upper frame portion 614 to engage bars (not shown) identical to bars 664 positioned on the other side of lower frame portion 612 upon movement of a second collar (not shown) identical to collar 667.
The use of the access port will now be described in conjunction with the embodiment of
The use of the access port is described for thoracic surgery, it being understood that it can be utilized in other minimally invasive procedures.
Initially, an opening, or incision, is made in the patient's outer tissue wall of the thoracic body cavity by conventional means. The incision is made between adjacent ribs “R” (
For insertion through the incision, the inner member 150 is bent or reconfigured to reduce its transverse dimension for insertion through the patient's incision and into the body cavity. Note different sizes of access ports can also be used to accommodate different patients.
With access port 100 in the placement position, the inner frame (member) 150 is positioned within the body cavity adjacent the inner portion of the incision, flexible membrane 170 extends through the incision to outside the patient's body, and outer frame (member) 110 rests on the patient's skin. The outer frame 110 can now be expanded (see
In the initial position of access port 100, flexible member, e.g. membrane 170, defines a funnel shape with outer frame 110 retaining proximal end 172 of flexible membrane 170 while distal end 174 of flexible membrane 170 defines a smaller diameter due to the engagement of distal end 174 with the smaller inner frame 150. That is, since the width and length of outer member 110 is greater than the width and length of inner member 150 to which the membrane 170 is attached at its distal end, a funnel shape is formed. In this initial position, lip 152 of inner member 150, is configured to seat a rib “R” of a patient therein to protect the rib “R,” the intercostal nerve, and surrounding tissue. That is, lip 152 extends upwardly into the opening in tissue adjacent the ribs “R,” i.e., within the thoracic cavity “T”. Additional cushioning (not shown) may be provided to provide further protection to ribs “R” and to surrounding tissue. Outward flexion of flexible membrane 170 expands the intercostal space, thus maximizing passageway 190, and giving access port 100 the maximum length.
In use, to spread the first and second portions or sections 112 and 114 of outer frame 110 to stretch (radially tension) the flexible membrane 170 to retract tissue adjacent the ribs and incision and widen the incision passageway 190 for instrumentation, the end wall 115 of the second portion 114 and the end wall 113 of the first portion 112 are grasped by the surgeon and pulled away from each other, thereby expanding the distance between end walls 113 and 115. Note the tissue is spread transverse to the long axis of the incision. When the desired spread position, i.e. desired tissue retraction, is achieved, the surgeon slides locking collar 167 along frame 110 and over the pivoting arm 162 (see
With access port 100 secured in the desired expanded position, surgical instrumentation may be inserted through opening 170, passageway 190, and opening 155 to perform the surgical procedure within the body cavity. The low-profile configuration of access port 100, along the external surface of tissue, allows for greater access to the thoracic cavity “T” and for greater manipulation of instrumentation disposed through passageway 190.
Note that in the embodiments described herein, the engagement structures can be configured to provide sufficient frictional engagement to restrict movement, with the collars securely locking the engagement structures, or alternatively, configured to slightly frictionally engage with a slight retention force and mostly to prevent slippage, relying mainly on the collars to restrict any movement.
Upon completion of the surgical procedure, locking collars 167, 167a are moved toward their original position, to release the pivoting arms 162 and 162a to allow them to move to their unlocked non-engaged position, thereby allowing the frame portions 110, 112 to be moved toward each other toward their initial position to untension flexible membrane 170. Next, the surgeon may grasp inner member 150 to fold or reconfigure it to reduce its transverse dimension to remove it from the body cavity and through the incision.
As will be appreciated, access port 100 is easily inserted, manipulated, and removed from a patient's body. Further, the access port 100 is minimally intrusive, flexible to conform to a patient's anatomy, and provides good visibility into the thoracic cavity “T” (
The flexible membrane 170 may be coated with a lubricant, or gel, to aid in the insertion and removal of surgical instrumentation and/or tissue specimens from access port 100.
In the embodiments described herein, the pivoting arms move from a “non-engaged” to an “engaged” position by the sliding collar. It should be appreciated that such “non-engaged” position can include a “non-locking” position wherein the engagement structures are in partial engagement, e.g. in contact, but not yet in full engagement, and then they would be moved by the collars to an engaged retention position where movement would be restricted.
Although described for use in thoracic procedures, it should also be understood that the access ports described herein can be used in other minimally invasive surgical procedures.
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
This application is a division of U.S. patent application Ser. No. 13/166,878, filed on Jun. 23, 2011, which claims the benefit of, and priority to, U.S. Provisional Patent Application Ser. No. 61/372,939, filed on Aug. 12, 2010, now expired, the entire content of each application being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1780912 | Gau | Nov 1930 | A |
1810466 | Deutsch | Jun 1931 | A |
2313164 | Nelson | Mar 1943 | A |
2541516 | Ivory et al. | Feb 1951 | A |
2812758 | Blumenschein | Nov 1957 | A |
2893378 | Cooper | Jul 1959 | A |
3782370 | McDonald | Jan 1974 | A |
3807393 | McDonald | Apr 1974 | A |
3965890 | Gauthier | Jun 1976 | A |
4130113 | Graham | Dec 1978 | A |
4263899 | Burgin | Apr 1981 | A |
4337762 | Gauthier | Jul 1982 | A |
4553537 | Rosenberg | Nov 1985 | A |
4924857 | Mahmoodian | May 1990 | A |
5007900 | Picha et al. | Apr 1991 | A |
5052374 | Alvarez-Jacinto | Oct 1991 | A |
5080088 | LeVahn | Jan 1992 | A |
5125396 | Ray | Jun 1992 | A |
5169387 | Kronner | Dec 1992 | A |
5231974 | Giglio et al. | Aug 1993 | A |
5232451 | Freitas et al. | Aug 1993 | A |
5269754 | Rydell | Dec 1993 | A |
5279575 | Sugarbaker | Jan 1994 | A |
5330501 | Tovey et al. | Jul 1994 | A |
5346484 | Van Lindert | Sep 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5460170 | Hammerslag | Oct 1995 | A |
5480410 | Cuschieri | Jan 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5503617 | Jako | Apr 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5524644 | Crook | Jun 1996 | A |
5556385 | Andersen | Sep 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5653705 | De la Torre et al. | Aug 1997 | A |
5697891 | Hori | Dec 1997 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5728103 | Picha et al. | Mar 1998 | A |
5755660 | Tyagi | May 1998 | A |
5755661 | Schwartzman | May 1998 | A |
5772583 | Wright et al. | Jun 1998 | A |
5776110 | Guy et al. | Jul 1998 | A |
5779629 | Hohlen | Jul 1998 | A |
5788630 | Furnish | Aug 1998 | A |
5803921 | Bonadio | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5846193 | Wright | Dec 1998 | A |
5849005 | Garrison et al. | Dec 1998 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5879291 | Kolata et al. | Mar 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5908382 | Koros et al. | Jun 1999 | A |
5931778 | Furnish | Aug 1999 | A |
5935107 | Taylor et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5951466 | Segermark et al. | Sep 1999 | A |
5951467 | Picha et al. | Sep 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5967972 | Santilli et al. | Oct 1999 | A |
5993385 | Johnston et al. | Nov 1999 | A |
6024736 | De la Torre et al. | Feb 2000 | A |
6033362 | Cohn | Mar 2000 | A |
6033425 | Looney et al. | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6063021 | Hossain et al. | May 2000 | A |
6074380 | Byrne et al. | Jun 2000 | A |
6113535 | Fox et al. | Sep 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6142935 | Flom et al. | Nov 2000 | A |
6159231 | Looney et al. | Dec 2000 | A |
6162172 | Cosgrove et al. | Dec 2000 | A |
6231506 | Hu et al. | May 2001 | B1 |
6254533 | Fadem et al. | Jul 2001 | B1 |
6254534 | Butler et al. | Jul 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277136 | Bonutti | Aug 2001 | B1 |
6283912 | Hu et al. | Sep 2001 | B1 |
6309349 | Bertolero | Oct 2001 | B1 |
6312377 | Segermark et al. | Nov 2001 | B1 |
6331158 | Hu et al. | Dec 2001 | B1 |
6332468 | Benetti | Dec 2001 | B1 |
6354995 | Hoftman et al. | Mar 2002 | B1 |
6361492 | Santilli | Mar 2002 | B1 |
6382211 | Crook | May 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6450983 | Rambo | Sep 2002 | B1 |
6458079 | Cohn et al. | Oct 2002 | B1 |
6500116 | Knapp | Dec 2002 | B1 |
6517563 | Paolitto et al. | Feb 2003 | B1 |
6547725 | Paolitto et al. | Apr 2003 | B1 |
6585442 | Brei et al. | Jul 2003 | B2 |
6599240 | Puchovsky et al. | Jul 2003 | B2 |
6599292 | Ray | Jul 2003 | B1 |
6616605 | Wright et al. | Sep 2003 | B2 |
6652454 | Hu et al. | Nov 2003 | B2 |
6723044 | Pulford et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6730022 | Martin et al. | May 2004 | B2 |
6746396 | Segermark et al. | Jun 2004 | B1 |
6746467 | Taylor et al. | Jun 2004 | B1 |
6814078 | Crook | Nov 2004 | B2 |
6814700 | Mueller et al. | Nov 2004 | B1 |
6840951 | De la Torre et al. | Jan 2005 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6958037 | Ewers et al. | Oct 2005 | B2 |
7033319 | Pulford et al. | Apr 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7144368 | Larson et al. | Dec 2006 | B2 |
7147599 | Phillips et al. | Dec 2006 | B2 |
7179225 | Shluzas et al. | Feb 2007 | B2 |
7195592 | Ravikumar et al. | Mar 2007 | B2 |
7220228 | Hu et al. | May 2007 | B2 |
7226451 | Shluzas et al. | Jun 2007 | B2 |
7229408 | Douglas et al. | Jun 2007 | B2 |
7238154 | Ewers et al. | Jul 2007 | B2 |
7261688 | Smith et al. | Aug 2007 | B2 |
7270632 | Santilli | Sep 2007 | B2 |
7300399 | Bonadio et al. | Nov 2007 | B2 |
7344495 | Ravikumar et al. | Mar 2008 | B2 |
7387126 | Cox et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7473222 | Dewey et al. | Jan 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7537564 | Bonadio et al. | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7559893 | Bonadio et al. | Jul 2009 | B2 |
7566302 | Schwer | Jul 2009 | B2 |
7585277 | Taylor et al. | Sep 2009 | B2 |
7594888 | Raymond et al. | Sep 2009 | B2 |
7650887 | Nguyen et al. | Jan 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
8043212 | Bae et al. | Oct 2011 | B1 |
20010002429 | Hu et al. | May 2001 | A1 |
20010020121 | Hu et al. | Sep 2001 | A1 |
20010041827 | Spence et al. | Nov 2001 | A1 |
20020004628 | Hu et al. | Jan 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099269 | Martin et al. | Jul 2002 | A1 |
20020099271 | Knapp | Jul 2002 | A1 |
20020137989 | Clem et al. | Sep 2002 | A1 |
20030032975 | Bonutti | Feb 2003 | A1 |
20030191371 | Smith et al. | Oct 2003 | A1 |
20040002629 | Branch et al. | Jan 2004 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040049099 | Ewers et al. | Mar 2004 | A1 |
20040054353 | Taylor | Mar 2004 | A1 |
20040059192 | Cartier et al. | Mar 2004 | A1 |
20040225195 | Spence et al. | Nov 2004 | A1 |
20050096508 | Valentini et al. | May 2005 | A1 |
20050171403 | Paolitto et al. | Aug 2005 | A1 |
20050228232 | Gillinov et al. | Oct 2005 | A1 |
20050241647 | Nguyen et al. | Nov 2005 | A1 |
20050267336 | Bertolero et al. | Dec 2005 | A1 |
20050283050 | Gundlapalli et al. | Dec 2005 | A1 |
20060004261 | Douglas | Jan 2006 | A1 |
20060030861 | Simonson et al. | Feb 2006 | A1 |
20060089537 | Schoellhorn | Apr 2006 | A1 |
20060106416 | Raymond et al. | May 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060149306 | Hart et al. | Jul 2006 | A1 |
20060155170 | Hanson et al. | Jul 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20070027364 | Schwer | Feb 2007 | A1 |
20070073110 | Larson et al. | Mar 2007 | A1 |
20070167980 | Figulla | Jul 2007 | A1 |
20070203398 | Bonadio et al. | Aug 2007 | A1 |
20070260125 | Strauss et al. | Nov 2007 | A1 |
20080132765 | Beckman et al. | Jun 2008 | A1 |
20080132766 | Dant et al. | Jun 2008 | A1 |
20080146884 | Beckman et al. | Jun 2008 | A1 |
20080208222 | Beckman et al. | Aug 2008 | A1 |
20080234550 | Hawkes et al. | Sep 2008 | A1 |
20090082631 | Cronin et al. | Mar 2009 | A1 |
20090105655 | Desantis | Apr 2009 | A1 |
20090204067 | Abu-Halawa | Aug 2009 | A1 |
20090265941 | Kurrus | Oct 2009 | A1 |
20090299148 | White et al. | Dec 2009 | A1 |
20090326469 | Rockrohr | Dec 2009 | A1 |
20100168522 | Wenchell | Jul 2010 | A1 |
20100210916 | Hu et al. | Aug 2010 | A1 |
20100234689 | Wagner et al. | Sep 2010 | A1 |
20100298646 | Stellon | Nov 2010 | A1 |
20110021879 | Hart et al. | Jan 2011 | A1 |
20110071473 | Rogers et al. | Mar 2011 | A1 |
20120143009 | Wilkins et al. | Jun 2012 | A1 |
20130178712 | Malkowski et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
10001695 | Feb 2001 | DE |
102009014527 | Sep 2010 | DE |
0177177 | Apr 1986 | EP |
2179699 | Apr 2010 | EP |
2228014 | Sep 2010 | EP |
2228024 | Sep 2010 | EP |
2238931 | Oct 2010 | EP |
2 422 725 | Feb 2012 | EP |
2417922 | Feb 2012 | EP |
2 462 883 | Jun 2012 | EP |
2275420 | Aug 1994 | GB |
WO9500197 | Jan 1995 | WO |
WO9515715 | Jun 1995 | WO |
WO0108563 | Feb 2001 | WO |
WO03034908 | May 2003 | WO |
WO2005089655 | Sep 2005 | WO |
WO2010042913 | Apr 2010 | WO |
WO2010136805 | Dec 2010 | WO |
WO2011079374 | Jul 2011 | WO |
Entry |
---|
EP Search Report 11 25 0163 dated Jul. 6, 2011. |
EP Search Report 11 25 0164 dated Aug. 6, 2011. |
EP Search Report 11 25 0719 dated Nov. 16, 2011. |
EP Search Report 11 18 9987 dated Feb. 15, 2012. |
EP Search Report 12160423.5 dated Jun. 25, 2012. |
EP Search Report EP 11 19 1403 dated Dec. 11, 2013. |
EP Search Report EP 12 15 4733 dated Jan. 14, 2014. |
Number | Date | Country | |
---|---|---|---|
20140058207 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61372939 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13166878 | Jun 2011 | US |
Child | 14067393 | US |