Expandable tissue engagement apparatus and method

Information

  • Patent Grant
  • 11672520
  • Patent Number
    11,672,520
  • Date Filed
    Friday, September 20, 2019
    5 years ago
  • Date Issued
    Tuesday, June 13, 2023
    a year ago
Abstract
A system and associated method for manipulating tissues and anatomical or other structures in medical applications for the purpose of treating diseases or disorders or other purposes. In one aspect, the system includes an expandable structure for enhancing engagement with median lobe prostate tissue.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to medical devices and methods, and more particularly to systems and associated methods for manipulating or engaging tissues and anatomical or other structures within the body of human or animal subjects for the purpose of treating diseases or disorders.


One example of a condition where it is desirable to lift, compress, or otherwise remove a pathologically enlarged tissue is Benign Prostatic Hyperplasia (BPH). BPH is one of the most common medical conditions that affect men, especially elderly men. It has been reported that, in the United States, more than half of all men have histopathologic evidence of BPH by age 60 and, by age 85, approximately 9 out of 10 men suffer from the condition. Moreover, the incidence and prevalence of BPH are expected to increase as the average age of the population in developed countries increases.


The prostate gland enlarges throughout a man's life. In some men, the prostatic capsule around the prostate gland may prevent the prostate gland from enlarging further. This causes the inner region of the prostate gland to squeeze the urethra as a result of the gland enlarging. This pressure on the urethra increases resistance to urine flow through the region of the urethra enclosed by the prostate. Thus, the urinary bladder has to exert more pressure to force urine through the increased resistance of the urethra. Chronic over-exertion causes the muscular walls of the urinary bladder to remodel and become stiffer. This combination of increased urethral resistance to urine flow and hypertrophy and stiffness of urinary bladder walls leads to a variety of lower urinary tract symptoms (LUTS) that may severely reduce the patient's quality of life. These symptoms include weak or intermittent urine flow while urinating, straining when urinating, hesitation before urine flow starts, feeling that the bladder has not emptied completely even after urination, dribbling at the end of urination or leakage afterward, increased frequency of urination particularly at night, and urgent need to urinate.


In addition to being present in patients with BPH, LUTS may also be present in patients with prostate cancer, prostate infections, and chronic use of certain medications (e.g. ephedrine, pseudoephedrine, phenylpropanolamine, and antihistamines such as diphenhydramine or chlorpheniramine) that cause urinary retention especially in men with prostate enlargement.


Although BPH is rarely life threatening, it can lead to numerous clinical conditions including urinary retention, renal insufficiency, recurrent urinary tract infection, incontinence, hematuria, and bladder stones.


In developed countries, a large percentage of the patient population undergoes treatment for BPH symptoms. It has been estimated that by the age of 80 years, approximately 25% of the male population of the United States will have undergone some form of BPH treatment. At present, the available treatment options for BPH include watchful waiting, medications (phytotherapy and prescription medications), surgery, and minimally invasive procedures.


For patients who choose the watchful waiting option, no immediate treatment is provided to the patient, but the patient undergoes regular exams to monitor progression of the disease. This is usually done on patients who have minimal symptoms that are not especially bothersome.


Medical procedures for treating BPH symptoms include Transurethal Resection of the Prostate (TURP), Transurethral Electrovaporization of the Prostate (TVP), Transurethral Incision of the Prostate (TUIP), Laser Prostatectomy, Open Prostatectomy, Transurethral Microwave Thermotherapy (TUMT), Transurethral Needle Ablation (TUNA), Interstitial Laser Coagulation (ILC), and Prostatic Stents.


The most effective current methods of treating BPH in terms of relieving the symptoms of BPH also carry a high risk of adverse effects. These methods may require general or spinal anesthesia and/or may have potential adverse effects that dictate that the procedures be performed in a surgical operating room, followed by a hospital stay for the patient. The methods of treating BPH that carry a lower risk of adverse effects are also associated with a lower reduction in the symptom score. While several of these procedures can be conducted with local analgesia in an office setting, the patient does not experience immediate relief and, in fact, often experiences worse symptoms for weeks after the procedure until the body begins to heal. Additionally, many surgical or minimally invasive approaches require a urethral catheter to be placed in the bladder, and in some cases left in the bladder for weeks. In some cases, catheterization is indicated because the therapy actually causes obstruction during a period of time post operatively, and in other cases it is indicated because of post-operative bleeding and the potential for the formation of occlusive clots. While drug therapies are easy to administer, the results are frequently suboptimal, take significant time to take effect, and often include undesirable side effects.


There have been advances in developing minimally invasive devices and methods for displacing and/or compress lobes of a prostate gland to receive pressure on and provide a less obstructed path through a urethra. These methods have focused on treating the lateral lobes of the prostate gland. There remains, however, a need for the development of new devices and methods that can be used for various procedures where it is desired to lift, compress, support, or reposition the median lobe of a prostate in a discrete procedure or in combination with treating BPH. In particular, there is a need for alternative apparatus and treatment approaches for the purpose of manipulating the median lobe of a prostate.


Still further, there is an ongoing need in the field of minimally invasive medical devices for devices and methods for the manipulation of tissue in other parts of the anatomy.


The present disclosure addresses these and other needs.


SUMMARY

Embodiments of the invention include a treatment device for engaging and manipulating a median lobe of a prostate gland. The treatment device includes an elongate tissue access assembly coupled to a handle assembly, wherein the elongate tissue access assembly is configured to be inserted within an introducer sheath, and a tissue engagement structure attached to a distal end portion of the elongate tissue access assembly, wherein the tissue engagement structure can transition from a contracted state to an expanded state when the elongate tissue access assembly exits a distal end of the introducer sheath.


In another embodiment of the invention, the tissue engagement structure comprises a first expandable portion having an asymmetrical cross-section. In another embodiment of the invention, a proximal portion of the first expandable portion is attached to the elongate tissue access assembly. In another embodiment of the invention, the tissue engagement structure comprises a channel to receive the distal end portion of the elongate tissue access assembly. In another embodiment of the invention, movement of the tissue engagement structure relative to the elongate tissue access assembly is constrained to be along a longitudinal axis of the elongate tissue access assembly. In another embodiment of the invention, movement of the tissue engagement structure relative to the elongate tissue access assembly transitions the tissue engagement structure from the contracted state to the expanded state. In another embodiment of the invention, the elongate tissue access assembly further comprises an aperture and a needle assembly that is extendable through the aperture. In another embodiment of the invention, the tissue engagement structure further comprises a first visual marker indicating a tissue entry position for the needle assembly. In another embodiment of the invention, the tissue engagement structure further comprises a second expandable portion having an asymmetrical cross-section. In another embodiment of the invention, wherein the elongate tissue access assembly further comprises an aperture and a needle assembly that is extendable through the aperture.


Embodiments of the invention include, a system for engaging and manipulating a median lobe of a prostate gland such that the system includes an anchor delivery device comprising an elongate tissue access assembly, wherein the elongate tissue access assembly is configured to be inserted within an introducer sheath, a tissue anchor housed within the anchor delivery device, and a tissue engagement structure attached to a distal end portion of the elongate tissue access assembly, wherein the tissue engagement structure can transition from a contracted state to an expanded state. In another embodiment of the invention, the tissue engagement structure comprises a first expandable portion having an asymmetrical cross-section. In another embodiment of the invention, a proximal portion of the first expandable portion is fixedly attached to the elongate tissue access assembly. In another embodiment of the invention, the tissue engagement structure comprises a slidable portion coupled to the elongate tissue access assembly. In another embodiment of the invention, movement of the tissue engagement structure relative to the elongate tissue access assembly transitions the tissue engagement structure from the contracted state to the expanded state. In another embodiment of the invention, the anchor delivery device further comprises a needle assembly. In another embodiment of the invention, the needle assembly is configured to deliver the tissue anchor. In another embodiment of the invention, the tissue engagement structure comprises a first expandable portion. In another embodiment of the invention, the first expandable portion further comprises a first visual marker indicating a tissue entry position for the needle assembly. In another embodiment of the invention, the tissue engagement structure further comprises a second expandable portion.


Other features and advantages of the present disclosure will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view, depicting anatomy in the area surrounding a prostate in a human subject.



FIG. 2 is an enlarged cross-sectional view of an area of FIG. 1, depicting anatomy immediately surrounding and adjacent a prostate.



FIG. 3 is a schematic view, depicting prostatic anatomy zones.



FIG. 4 is a schematic cross-sectional view, depicting further details of the anatomy zones shown in FIG. 3.



FIG. 5 is a cross-sectional view, depicting a normal prostate.



FIG. 6 is a cross-sectional view, depicting a prostate with enlarged lateral lobes.



FIG. 7 is a cross-sectional view, depicting a prostate with enlarged lateral lobes and an enlarged median lobe.



FIG. 8A is a side view, depicting an embodiment of a delivery device;



FIG. 8B is an enlarged perspective view, depicting the distal end of an embodiment of a delivery device.



FIG. 9A is a top view, depicting an embodiment of an expandable structure that can be employed to engage and manipulate tissue.



FIG. 9B is a perspective view, depicting an embodiment of an expandable structure that can be employed to engage and manipulate tissue.



FIG. 9C is an enlarged view, depicting an embodiment of an expandable engagement and manipulation device mounted on the distal end of an embodiment of a delivery device.



FIG. 10 is a perspective view, depicting another embodiment of an expandable structure that can be employed to engage and manipulate tissue.



FIG. 11 is a perspective view, depicting another embodiment of an expandable structure that can be employed to engage and manipulate tissue.



FIG. 12A is a top perspective view, depicting an embodiment of an expandable engagement and manipulation device.



FIG. 12B is an enlarged top perspective view, depicting a distal end portion of an expandable engagement and manipulation device.



FIG. 12C is a perspective view, depicting another embodiment of an expandable structure that can be employed to engage and manipulate tissue.



FIG. 12D is an enlarged bottom perspective view, depicting a distal end portion of an embodiment of an expandable engagement and manipulation device.



FIG. 12E is an enlarged bottom view, depicting a distal end portion of an embodiment of an expandable engagement and manipulation device.



FIG. 12F is an enlarged side view, depicting a distal end portion of an embodiment of an expandable engagement and manipulation device.



FIG. 12G is a cross-sectional view, depicting a distal end portion of an embodiment of an expandable engagement and manipulation device.



FIG. 13A is a top view, depicting an embodiment of an expandable structure with telescoping arms that can be employed to engage and manipulate tissue.



FIGS. 13B-D are various partial perspective views, depicting telescoping arms of an expandable structure that can be employed to engage and manipulate tissue.



FIGS. 14A-B are cross-sectional views, depicting alternative configurations for telescoping arms.



FIGS. 15A-D are various cross-sectional views, depicting details of an approach to engaging, compressing and manipulating a median prostate lobe of a prostate.



FIG. 16A is a perspective view, depicting a distal end portion of an expandable structure that can be employed to engage and manipulate tissue housed in a sheath.



FIG. 16B is a perspective view, depicting the distal end portion of the expandable structure of FIG. 16A in an expanded state after exiting the sheath.



FIG. 17A is a perspective view, depicting the distal end of a sheath.



FIG. 17B is a perspective view, depicting an expanded structure that can be employed to engage and manipulate tissue attached to a sheath.



FIG. 18A is a perspective view, depicting an embodiment of an expandable wire structure that can be employed to engage and manipulate tissue, in a contracted state.



FIG. 18B is a perspective view, depicting an embodiment of an expandable wire structure that can be employed to engage and manipulate tissue, in an expanded state.



FIG. 19A is a perspective view, depicting another embodiment of an expandable wire structure that can be employed to engage and manipulate tissue, in a contracted state.



FIG. 19B is a perspective view, depicting another embodiment of an expandable wire structure that can be employed to engage and manipulate tissue, in an expanded state.



FIGS. 20A-C are enlarged perspective views, depicting a distal end portion of an expandable engagement and manipulation device incorporating various supplemental tissue engagement structures.



FIGS. 20D-F are enlarged perspective views, depicting a distal end portion of a tissue access and a device incorporating various supplemental tissue engagement structures.



FIGS. 20G-H are enlarged views, depicting structures that can be incorporated into the distal end portion of a tissue engagement and manipulation device.



FIG. 21 is a partial cross-sectional view, depicting yet another approach to engaging and manipulating target tissue.



FIG. 22 is an enlarged view, depicting further structure incorporated into an engagement and manipulation device.



FIG. 23 is an enlarged view, depicting supplemental structure forming part of an engagement and manipulation device.



FIGS. 24A-B are enlarged views, depicting structures that can be incorporated into the distal end portion of a tissue engagement and manipulation device and methods for engaging and manipulating tissue.



FIGS. 25A-B are enlarged views, depicting structures that can be incorporated into the distal end portion of a tissue engagement and manipulation device.



FIGS. 26A-B are enlarged views, depicting structures that can be incorporated into the handle portion of a tissue engagement and manipulation device.



FIGS. 27A-B are enlarged views, depicting other structures that can be incorporated into the distal end portion of a tissue engagement and manipulation device.





DETAILED DESCRIPTION OF THE SEVERAL DRAWINGS

Turning now to the figures, which are provided by way of example and not limitation, the present disclosure is directed to a device configured to engage and manipulate tissue within a patient's body for treatment purposes. The disclosed apparatus can be employed for various medical purposes including but not limited to retracting, lifting, compressing, approximating, supporting, and/or repositioning tissues, organs, anatomical structures, grafts, or other material found within a patient's body. Such tissue manipulation is intended to facilitate the treatment of diseases or disorders, including, but not limited to, the displacement, compression and/or retraction of the median lobe of a prostate.


In an aspect of the present disclosure, the tissue engagement or manipulation forms the primary interventional procedure. In other aspects, the tissue engagement or manipulation forms one portion of an interventional procedure, such as the treatment of BPH or for the purpose of retracting, lifting, compressing, approximating, supporting or repositioning other anatomy or for the purpose of retracting, lifting, compressing, approximating, supporting, or repositioning a first section of anatomy with respect to a second section of anatomy.


With reference to FIGS. 1-4, various features of urological anatomy of a human male subject are presented. The prostate gland PG is a walnut-sized gland located adjacent the urinary bladder UB. The urethra UT runs through the prostate gland PG and the penis P. The prostate gland PG secretes fluid that protects and nourishes sperm. The prostate gland PG also contracts during ejaculation to expel semen and to provide a valve to keep urine out of the semen. A capsule C surrounds the prostate gland PG.


The urinary bladder UB holds urine. The vas deferentia VD define ducts through which semen is carried, and the seminal vesicles SV secrete seminal fluid. The rectum R is the end segment of the large intestine through which waste is dispelled. The urethra UT carries both urine and semen out of the body. Thus, the urethra is connected to the urinary bladder UB and provides a passageway to the vas deferentia VD and seminal vesicles SV. The verumontanum VM is a crest in the wall of the urethra UT where the seminal ducts enter. The prostatic urethra is the section of the urethra UT which extends through the prostate. The trigone T (see FIG. 3) is a smooth triangular region of the bladder. It is sensitive to expansion and signals the brain when the urinary bladder UB is full.


The prostate gland can be classified by zones or described by referring to its lobes (See FIG. 4). Whereas the zone classification is typically used in pathology, the lobe classification is more often used in anatomy. The central zone (a) of a prostate gland PG is about 25% of a normal prostate and this zone surrounds the ejaculating ducts. There is some prevalence of benign prostate hyperplasia in the transition zone. The fibromuscular zone (b) is usually devoid of glandular components and, as its name suggests, is composed of muscle tissue and fibrous tissue. The transitional zone (c) generally overlays the proximal urethra and is the region of the gland that grows throughout life. This zone is often associated with the condition of benign prostatic enlargement. Finally, the peripheral zone (d) is the sub-capsular portion of the posterior aspect of the prostate gland that surrounds the distal urethra.


The lobe characterization is different from the zone characterization, but there is some overlap. The anterior lobe is devoid of glandular tissue and is formed of fibromuscular tissue. The anterior lobe roughly corresponds to the anterior portion of the transitional zone (c). The posterior lobe roughly corresponds to the peripheral zone (d) and can be palpated through the rectum during a digital rectal exam. The posterior lobe is the site of 70-80% of prostatic cancers. The lateral lobes are the main mass of the prostate and are separated by the urethra. All pathological zones may be present in the lateral lobes. Lastly, the median lobe roughly corresponds to part of the central zone. It varies greatly in size from subject to subject and in some cases is devoid of glandular tissue.


A large or enlarged median lobe can act as a ball valve, blocking the bladder neck, or opening, into the urethra. Various approaches are contemplated to address such a condition. It is contemplated that the median lobe can be compressed, displaced and/or retracted to eliminate or decrease the blocking of the bladder neck opening.


Turning now to FIGS. 5-7, there are shown various prostate glands in cross-section. FIG. 5 depicts the urinary bladder UB and prostate gland PG of a healthy subject. FIG. 6 illustrates an individual with a prostate having enlarged lateral lobes LL and FIG. 7 depicts a subject suffering from both enlarged lateral lobes LL and an enlarged median lobe ML. It is to be appreciated that such enlarged anatomy impinges on the urethra UT and affects normal bladder functioning. The following devices and approaches can be employed to access and manipulate prostatic tissue during an interventional or diagnostic procedure.


Referring now to FIGS. 8A & 8B, an embodiment of a treatment device 100 is shown. Treatment device 100 can include a handle assembly 102 and an elongate tissue access assembly 104. Elongate assembly 104 can be configured to access an interventional site as well as engage and manipulate target tissue. Treatment device 100 can be configured to assemble and implant one or more anchor assemblies or implants within a patient's body. The device is further contemplated to be compatible for use with minimally invasive techniques (such as cystoscopy) such that a patient can tolerate a procedure while awake or under light sedation rather than under general anesthesia. The device additionally includes structures configured to receive a conventional remote viewing device (e.g., an endoscope) so that the steps being performed at the interventional site can be observed by the physician.


The elongate assembly 104 can house members to manipulate target tissue including, but not limited to, a needle assembly 106. Elongate assembly 104 can also be equipped with features to manipulate target tissue and/or stabilize the device at its interventional site. Elongate assembly 104 can be inserted through a sheath of a size compatible with conventional cystoscopy, including sizes such as 19F or 21F. Elongate assembly 104 can be rigid or flexible. In some preferred embodiments, elongate assembly 104 is sufficiently rigid (or can be made sufficiently rigid when at the interventional site) to allow manual compression of tissue at an interventional site by leveraging or pushing handle assembly 102. Various embodiments of treatment device 100 can include subassemblies and components to dissect, resect, or otherwise alter a prostatic lobe.


In one particular, non-limiting use in treating a prostate, the elongate tissue access assembly of a delivery device is placed within a urethra leading to a urinary bladder of a patient. In one approach, the delivery device can be placed within an introducer sheath previously positioned in the urethra or alternatively, the delivery device can be inserted directly within the urethra. When employing an introducer sheath, the sheath can be attached to a sheath mount assembly. The sheath is advanced within the patient until a leading end thereof reaches a prostate gland. In a specific approach, a first side (i.e., lateral lobe) of the prostate to be treated is chosen while the device extends through the bladder and the device is turned accordingly. The distal end of the elongate tissue access assembly can be used to depress the urethra into the prostate gland by compressing the inner prostate tissue. The inside of the prostate gland (i.e., adenoma) is spongy and compressible and the outer surface (i.e., capsule) of the prostate gland is firm. By pivoting the elongate tissue access assembly laterally about the pubic symphysis PS relative to the patient's midline, the physician can depress the urethra into the prostate gland compressing the adenoma and creating the desired opening through the urethra. Further details and background concerning related and complementary interventional procedures are described in various U.S. Patents, including U.S. Pat. Nos. 8,491,606 and 8,758,366, the entirety of the contents of which are hereby incorporated by reference.


When the treatment device is used at an interventional site, such as the median lobe of the prostate, prior to deployment of an implant or alteration of prostatic tissue the median lobe often requires manipulation into a position conducive to receiving an implant. Embodiments of a device and method of use that can position and stabilize a treatment device to better engage and manipulate target tissue, including the median lobe of the prostate, are described below. In a preferred embodiment, such a device can include a winged, expandable/collapsible structure that increases the distal surface area of the device to engage and manipulate tissue.



FIGS. 9A-9C illustrate an expandable member 200 that can be configured for attachment to the distal end of an elongate member. Expandable member 200 can include arms 202a and 202b situated in parallel (or substantially in parallel) and connected by a distal connecting member 206 at the distal end of member 200. Each arm can have a portion that expands outward past the longitudinal axis of arms 202a and 202b. Such expandable portions can be wings 208a and 208b. In some embodiments, wings 208a and 208b can connect to form a closed loop (not shown) in place of distal connecting member 206. Distal connecting member 206 can be grooved, channeled, or otherwise hollowed to create an opening 210 formed therein.


Wings 208a and 208b can be configured to be biased to an expanded position. In this embodiment, wings 208a and 208b are moved to a retracted position by moving distal connecting member 206 and/or arms 202a and 202b in a longitudinal direction away from wings 208a and 208b. In another embodiment, wings 208a and 208b are configured in a retracted position and are moved to an expanded position by moving distal connecting member 206 and/or arms 202a and 202b in a longitudinal direction toward wings 208a and 208b. In some embodiments, each wing can be expanded or retracted independently by moving the arm on the same side as the wing in a longitudinal direction away from or toward the wing as the configuration requires.


The proximal end of expandable member 200 can be attached to an elongate tissue access assembly 204 by connecting arms 202a and 202b to the shaft of the elongate assembly. In some embodiments, elongate assembly 204 is inserted through expandable member 200 such that the inwardly-facing side 212a of arm 202a and inwardly-facing side 212b of arm 202b are flush with a portion of the outwardly-facing sides 214a and 214b of elongate assembly 204 and secured via welding or other conventional means of attachment. The distal end of expandable member 200 can interact with a portion of the distal end of elongate assembly 204. For example, opening 210 can be configured to snap into, or be otherwise secured by, elongate assembly 204. As illustrated in FIG. 9C, elongate assembly 204 can include tabs 216a and 216b removably fastened over distal connecting member 206 thereby holding the distal end of expandable member 200 in place. In some embodiments, such as when elongate assembly 204 includes an aperture 220, wings 208a and 208b can be positioned in any plane relative to the aperture. Further, wings 208a and 208b may be in the same plane with respect to each other or may be positioned at an angle with respect to each other. In some embodiments, the angle between the plane of the wings is adjustable. In some embodiments, the elongate assembly is configured such that a treatment assembly, such as a needle assembly, is extendable through the aperture.


In some embodiments, expandable member 200 can be delivered using a sheath. The sheath functions to house expandable member 200 and collapse or compress wings 208a and 208b as the device is delivered to an interventional site of a patient. Once the target site is reached, extension of expandable member 200 through the distal opening of the sheath can be actuated by the handle assembly of the treatment device. As expandable member 200 exits the sheath, wings 208a and 208b expand or spring open, move away from the midline, to contact and manipulate target tissue. This delivery maintains wing alignment while preventing tissue trauma due to the wing edges. According to one embodiment, arms 202a and 202b are fixedly secured to elongate assembly 204 and distal connecting member 206 is free to move longitudinally with respect to wings 208a and 208b to enable expansion and retraction of wings 208a and 208b as they exit the sheath. According to another embodiment, arms 202a and 202b are free to move longitudinally with respect to wings 208a and 208b and distal connecting member 206 is fixedly secured to elongate assembly 204 to enable expansion and retraction of wings 208a and 208b as they exit the sheath.



FIG. 10 shows another embodiment of an expandable member that can be attached to the distal end of a treatment device. Expandable member 300 can include arms 302a and 302b situated in parallel or substantially in parallel. Each arm can include a portion that is capable of expanding outward past the longitudinal axis of arms 302a and 302b. Wings 308a and 308b can be connected to a distal attachment piece 306 at the distal end of expandable member 300. In one embodiment, distal attachment piece 306 is horseshoe-shaped. Distal attachment piece 306 can be situated in a substantially perpendicular configuration with respect to wings 308a and 308b. Distal attachment piece 306 can include tabs 310a and 310b. Attachment piece 306 can be configured to receive and form a secure connection with a portion of the distal end of a treatment device.



FIG. 11 shows another embodiment of an expandable member. Expandable member 400 can include arms 402a and 402b situated in parallel or substantially in parallel. Each arm can include a portion that is capable of expanding outward past the longitudinal axis of arms 402a and 402b. Wings 408a and 408b can terminate with curved ends 410a and 410b, respectively, that connect to create channel 406. Channel 406 can be configured to receive and secure a portion of the distal end of a treatment device.



FIGS. 10 and 11 illustrate configurations of the distal end of the expandable member that facilitate attachment of the expandable member to a treatment device. Other configurations that facilitate attachment of the expandable member to a treatment device are contemplated and the disclosure herein is not limited to the attachment configurations depicted in FIGS. 10 and 11.


Referring again to the embodiment of a treatment device depicted in FIGS. 8A-B, the device is configured such that the needle actuator 108 and the needle retracting lever 110 are in a ready position capable of providing treatment, such as delivery of a tissue anchor. Upon depression of the needle actuator 108, the needle assembly 106 is advanced from within the elongate tissue access assembly 104 (See FIG. 8B). The needle assembly can be configured so that it curves back toward the handle as it is ejected. In use in a prostate intervention, the needle assembly is advanced through and beyond a prostate gland. Spring deployment helps to ensure the needle passes swiftly through the tough outer capsule of the prostate without “tenting” the capsule or failing to pierce the capsule.


After depression of the needle actuator 108 and the unlocking of the needle retraction lever 110, the needle retraction lever 110 can be actuated. Such action results in a withdrawal of the needle assembly 106. In some embodiments, the needle assembly 106 is withdrawn further than its original position within the device pre-deployment. In a prostatic interventional procedure, this action can be used to deliver an implant or various activatable members, such as a tissue anchor, to facilitate modification of prostatic tissue.


The expandable member can be used to position elongate tissue access assembly 104 such that it engages the median lobe prior to and during deployment of an implant and/or modification of prostatic tissue by increasing the surface area of the distal end of assembly 104. The expandable member can also be used to displace and widen the urethral wall.


As shown in FIGS. 12A-G, an elongate assembly 450 can include a distal end 452 with an expandable member 460. Expandable member 460 can include arms 462a and 462b situated in parallel and secured to the shaft of distal end 452. Each arm can include an expandable portion, wings 464a and 464b, that expand outward past the longitudinal axis of arms 462a and 462b. The distal end of expandable member 400 can include channel 466 to receive and secure a portion of the distal end of elongate assembly 450. FIGS. 12F & 12G illustrate a cross-section of channel 466 with tabs 468a and 468b that fasten over a portion of the distal end 452 of elongate assembly 450. Insertion of the elongate assembly 450 into channel 466 allows the distal end of expandable member 460 to slide along the shaft of the assembly and facilitate wing position from a “closed” (compressed toward the midline) to an “open” (displaced away from the midline) configuration. Additionally, movement of expandable member 460 relative to the treatment device is constrained to the longitudinal axis of the treatment device. Furthermore, such an alignment presents no additional obstruction to cystoscope or endoscope view when such viewing devices are used during a procedure.


When elongate assembly 450 is inserted into a sheath (not shown), such as when the device is delivered to an interventional site of a patient, wings 464a and 464b reduce in profile by collapsing toward the midline of the longitudinal axis of the distal end the treatment device. Once the target site is reached, wings 464a and 464b can expand away from the midline of the treatment device when the elongate assembly 450 is extended through the distal opening of the sheath. Wings 464a and 464b are then available to engage and manipulate tissue.


In some embodiments, expandable member 460 is made from stainless steel having a 0.006-inch (0.015 cm) thickness. It can be advantageous for the cross-section of the arms and or wings of the expandable member to be asymmetrical. For example, the cross-section can be rectangular or elliptical such that one axis is substantially longer then its orthogonal axis. The purpose of this asymmetry is to provide flexibility in one direction and stiffness in the orthogonal direction. The stiffness facilitates capture and manipulation of tissue, while flexibility facilitates expansion and retraction of the expandable member. In some or the same embodiments, the arms and/or wings are configured with rounded edges to minimize tissue trauma during use. In some embodiments, the internal face of wings 464a and 464b can include visual line marker(s) 470 that indicate an entry position for a needle assembly (not shown) that exits from the side of elongate assembly 450.


Other embodiments of structures that can be used to better engage and manipulate target tissue, including the median lobe of the prostate, are contemplated below. In some embodiments, wings 508a and 508b can be deployed from an expandable member 500 using a pair of telescopic arms. As shown in FIGS. 13A-13D, wing 508a is attached to or continuous with arm 502b. Arms 502a and 502b can be coupled within sleeve 522a such that arm 502b glides along stationary arm 502a (indicated by the dashed arrow in FIG. 13C) to transition from a contracted to an expanded state while simultaneously transitioning wing 508a outward from the longitudinal axis of member 500 from a compressed (“closed”) to an expanded (“open”) state. Expandable member 500 can be inserted into a sheath for placement at an interventional site. Once the device is positioned at the target site, the delivery device can be actuated to deploy arms 502b and 502d from sleeves 522a and 522b, respectively, to engage target tissue.


Alternative embodiments of telescopic arms are illustrated in FIGS. 14A & 14B. In FIG. 14A, interlocking arms 550a and 550b are shown. Arm 550a can house arm 550b and include rounded ends 552 that cover the top and bottom edges of arm 550b. In FIG. 14B, each of interlocking arms 560a and 560b have a rounded end and a flat end. When interlocked, the rounded end of each arm covers the flat end of the opposite arm.


In the telescopic arm design of FIGS. 13A-13D and FIGS. 14A & 14B, the stationary arms can be secured to the shaft of the elongate assembly of the delivery device. Such a design provides guided, stabilized alignment and delivery of wings, or a similarly looped distal end, to an interventional site.


Turning now to FIGS. 15A-D, an approach to engaging and manipulating an enlarged median lobe ML is presented. Such an approach can be used as a complementary therapy with treatments for lateral lobes or can be employed solely to treat a median lobe ML. Because an enlarged median lobe ML can extend into the urinary bladder UB and may act as a ball valve interfering with normal function (See FIGS. 15A and 15B; FIG. 13B is a view through the prostatic urethra and into the urinary bladder), moving tissue away from a ball valve location (that is, away from the bladder neck) may be desired. By avoiding such invasive approaches (such as TURP), there is significantly less risk of disrupting the nerve tissue and/or the smooth muscle of the bladder neck. With less disruption to these tissues, ejaculating function and continence complications will likely be lower.


Accordingly, an approach involving inserting a device into the prostatic urethra UT transurethrally to compress and/or displace the median lobe ML is contemplated. Once the lobe is compressed or displaced, other procedures such as implanting tissue anchors or implants in a specific direction to maintain the compression/displacement of the median lobe.


As an initial step, sagittal views of a patient's bladder and prostate can be taken using transabdominal or transrectal ultrasonography. In this way, the patient's anatomy can be assessed. In this regard, an intravesical prostate measurement is taken to determine the vertical distance from a tip of the median lobe protrusion to the base of the bladder. As shown in FIGS. 15C-D, after assessing the anatomy, the elongate tissue access assembly 104 of an anchor delivery device (See FIGS. 8A and 8B) is advanced within the urethra UT and into apposition with the median lobe ML. FIG. 15D is a view through the urethra UT depicting the compression and displacement of the median lobe ML.


One specific series of actions is to position the tissue access assembly 104 so that its terminal end 112 is anterior to a prominent portion of the median lobe ML and then displace the surface in the posterior direction to move the median lobe ML away from a centerline of the urethra lumen UT. The median lobe consequently forms a tissue fold (See FIG. 15D) about the delivery instrument. In embodiments in which an expandable member is used to engage and manipulate the median lobe, the expandable member provides increased surface area as compared to tissue access assembly 104 in FIG. 15D, which facilitates temporary capture of the median lobe so that it can be displaced. In some embodiments, tissue of the median lobe can be captured in the space between the wings of the expandable member and the distal end of the elongate tissue treatment device. Thus, the wings of the expandable member can be configured to promote such capture, including by varying the amount of expansion that the wings undergo during deployment and retraction.



FIGS. 16A & 16B illustrate another embodiment of a looped or expandable member. In this embodiment, a looped member 608 can be housed in the distal end of a sheath 610 such that the expandable wing portion of looped member 608 is compressed. When an elongate assembly is passed through sheath 610, it contacts the proximal end of looped member 608 (not shown) and pushes the wing portion out of sheath 610, allowing it to expand and manipulate target tissue.


In some embodiments, a looped member 708 can be attached to the distal end of a sheath 710, as shown in FIGS. 17A & 17B. In these embodiments, looped member 708 can expand and/or manipulate tissue at an interventional site prior to deployment of an elongate assembly. In some embodiments, looped member 708 can be made of a level ribbon, that is, having a linear cross-section. In other embodiments, looped member 708 can be made of a semi-circular ribbon having a c-shaped cross-section to prevent the edges of the device from contacting patient tissue during delivery.


Alternative embodiments of an expandable member are shown in FIGS. 18A & 18B and 19A & 19B. Expandable member 800 can include a pair of tubes 802 and 812 attached to opposite sides of the shaft of an elongate assembly of a delivery device (not shown). Such tubes can be biased to the distal end of the elongate assembly. Tubes 802 and 812 can house wires 804 and 806, respectively, which are threaded through the lumen of the tube and then exit the distal end of each tube. The wire that exists the tube is positioned substantially parallel to the outer length of each tube and is bent, bowed, arced, or otherwise curved. As shown in FIGS. 18A & 16B, wire 804 includes a pair of expandable portions 804a and 804b with a cinched waist 808 therebetween and wire 806 includes a pair of expandable portions 806a and 806b with a cinched waist 810 therebetween. In some embodiments, the cinched waist of each wire can be a compression spring coil that allows the expandable portions to collapse toward or expand from the midline of the elongate assembly. FIG. 18A illustrates expandable member 800 in a compressed or collapsed state, such as when the elongate assembly is housed within a sheath (not shown). FIG. 18B illustrates expandable member 800 in an expanded state, such as when the elongate assembly exits the distal end of a sheath (not shown) freeing the springs to lengthen and, in turn, move the expandable portion of each wire away from the midline of the treatment device. FIGS. 19A and 19B illustrate another embodiment of expandable wire structures that function similar to expandable member 800, but expandable member 900 includes three expandable portions.


Various approaches are contemplated for best engaging median lobe or other tissue. Additional structural features can be incorporated into the distal end of the expandable member of treatment device 100 for the purpose of increasing frictional forces between the target tissue and a distal portion of the treatment device 100, or for increasing the surface area of the treatment device. Knurled or roughened surfaces 952 can form surface components of portions or an entirety of the winged or expandable portions 950 (See FIG. 20A) of the treatment device 100. In some embodiments, as shown in FIG. 20B one or more of spikes, fangs, hooks, barbs or other protuberances 954, or a combination thereof can be configured to extend at various angles and lengths from expandable portion 950. Such protuberances can be sharp or blunted. Such structures can be one or more of retractable, flexible or fixed. Thus, in one or more approaches, these structures can be associated with a pop-up feature attached to a puller (not shown). In one aspect, control of the of the pop-up feature can be achieved with side actuators to deploy and retract extendable tissue engaging and manipulation features when slid down the sheath and a spacer to change a relationship between the sheath and shaft for controlling deployment of the side actuators. In one particular approach, the spikes, fangs, hooks, barbs, or protuberances can be angled proximally so that enhanced tissue engagement is provided when withdrawing the delivery device and is released when advancing the delivery device.


Atraumatic tape can be placed over the spikes, fangs, hooks, barbs, or protuberances 954 prior to use of the treatment device 100. The tape can be removed prior to performing a median or middle lobe procedure. It is thus contemplated that the treatment system can be provided in two configurations. A first configuration can be for normal use such that it includes atraumatic tape that covers sharp or other tissue engaging features and prevents them from interacting with the tissue. A second configuration can be for median lobe engagement and manipulation usage, where the system is assembled and shipped without atraumatic tape covering sharp or other tissue engaging features.


In some embodiments, tissue adhesive material 956 can be added to the exterior surface at various locations along expandable portion 950 (See FIG. 20C). In certain contemplated approaches, such tissue adhesive material 956 can range from adhesive tape to material that is swellable in fluid such that it changes its adhesion property when desired. Another contemplated approach to adhesion upon pressure involves scale-like projections 958 (FIGS. 20F & 20G) incorporated onto expandable portion 950. High friction is created when pulling the target tissue in a direction against the scales, but no or little or less friction after deployment or when employing the treatment device 100 with the direction of scales 958. Here also, such structure can be one or more of retractable, flexible or fixed.


Structures that provide enhanced frictional or other engagement forces also can be based upon an adhesive that responds to pressure. For example, the expandable distal portion of treatment device 100 can additionally or alternatively include micro-hooks similar to Velcro technology, the same requiring tissue to be pressed against it to create a secure engagement.


As stated, such tissue engaging structures can be placed in various locations along the expandable portion of treatment device 100. Textures or protuberances can be configured to engage tissue such that tissue will roll with the distal end of the device as it is rotated, for example, into a deployment position. In some embodiments, the structures can be located on side areas of the treatment device where there is more space. That is, these structures can be located away from the exit points for the therapeutic elements that may extend from the treatment device. It is specifically contemplated that structures can be located along a “tissue contacting fence.” That is, protuberances can be hidden from tissue contact in a “tissue contacting fence” and configured to extend beyond this protective fence via a user operated actuator.


Referring now to FIG. 20D-F, elongate tissue access assembly 104, and in particular the distal end of elongate tissue access assembly 104, can include knurled or roughened surfaces 952, spikes, fangs, hooks, barbs, or protuberances 954 (and, optionally, atraumatic tape), and/or tissue adhesive material 956. In certain embodiments, one or both of the elongate tissue access assembly and the expandable member can contain one or more of these features. That is, the embodiments described above, illustrated in FIGS. 20A-H, can be incorporated into treatment device 100 to supplement, or enhance, the tissue engagement and manipulation capacity of the expandable or winged portion of the device, of the distal end of the elongate tissue access assembly, or both.


Vacuum forces can also be employed to facilitate engaging and manipulating tissue. In this regard, a suction or vacuum source (not shown) can be incorporated into the expandable portion or attached thereto, and a channel provided to communicate with the distal end of the treatment device 100. In this way, the vacuum forces can be initiated and controlled when the treatment device 100 is positioned to engage and manipulate target tissue.


As shown in FIG. 21, in another approach, partial controlled deployment of the needle 230 can be utilized to engage and manipulate target tissue. The needle 230 can be retracted for later full deployment associated with, for example, implantation of an anchor device. Additionally or alternatively, one or more supplemental, side-projecting needles 609 (shown in dashed lines in FIG. 22) can be provided for engaging and manipulating purposes. Various approaches to reinforcing the distal portion of the needle 230 also contemplated so that a more robust structure is presented for tissue manipulation. For example, a supplemental needle tip 610 can be attached to a terminal and portion of the needle 230. In one contemplated approach, the needle tip 610 can be attached to structure that is configured to be actuated from the delivery device handle. The needle 610 can define a solid member to thereby provide sufficient mechanical strength for manipulating tissue, and be connected to any elongated member that extends within the delivery device which extends along and outside of the delivery device but within an introducer sheath or through fluid holes therein. Manual or automated approaches to control the use or removal of the needle tip 610 are both envisioned.


With reference to FIG. 22, the distal end portion 104 of the delivery device 100 can also, additionally or alternatively, include a divot or recess having a radius of curvature that matches, or generally receives, the contours of the median lobe or other target tissue. The interior of the recess can be configured with any of the described structures for engaging and manipulating tissue. For example, FIG. 22 illustrates recess 616 as including a plurality of spikes 954. Referring now to FIG. 23, a second or supplementary sheath 620 can be provided and configured about the distal portion 104 of delivery device 100. Sheath 620 itself can include one or more of the tissue engaging and manipulating features described herein. Such features can be reserved for one or more sides or portions of the sheath 620 or can be positioned completely around sheath 620. Additionally, sheath 620 itself can include recess 616 configured to match tissue anatomy. Thus, recess 616 can be included in distal end 104 of delivery device 100 by fabricating distal end 104 with a recess 616, or by using sheath 620 that have been fabricated with a recess 616.


The target tissue or median lobe specifically can be pre-treated to facilitate engagement with the treatment device 100. In this regard, it is contemplated that the target tissue can be subjected to electro-cauterization, botox or other modality to alter its mechanical profile. The target tissue can alternatively or additionally be pre-treated by making incisions therein. Finally, the target tissue can be lassoed to support the tissue or to accomplish the desired manipulations.


It is to be recognized that various materials are within the scope of the present disclosure for manufacturing the disclosed devices. Moreover, one or more components disclosed herein can be completely or partially biodegradable or biofragmentable.


Further, as stated, the devices and methods disclosed herein can be used to treat a variety of pathologies in a variety of lumens or organs comprising a cavity or a wall. Examples of such lumens or organs include, but are not limited to urethra, bowel, stomach, esophagus, trachea, bronchii, bronchial passageways, veins (e.g. for treating varicose veins or valvular insufficiency), arteries, lymphatic vessels, ureters, bladder, cardiac atria or ventricles, uterus, fallopian tubes, etc.


Finally, it is to be appreciated that the disclosure has been described hereabove with reference to certain examples or embodiments of the disclosure but that various additions, deletions, alterations and modifications may be made to those examples and embodiments without departing from the intended spirit and scope of the disclosure. For example, any element or attribute of one embodiment or example may be incorporated into or used with another embodiment or example, unless to do so would render the embodiment or example unpatentable or unsuitable for its intended use. Also, for example, where the steps of a method are described or listed in a particular order, the order of such steps may be changed unless to do so would render the method unpatentable or unsuitable for its intended use. All reasonable additions, deletions, modifications and alterations are to be considered equivalents of the described examples and embodiments and are to be included within the scope of the following claims.


Briefly and in general terms, the present disclosure is directed towards an apparatus and method for engaging and manipulating internal body structures. Such engagement and manipulation can form the primary or alternatively, form a supplementary or integral part of a multi-step interventional procedure. In one aspect, the apparatus includes elongate member configured to engage tissue in order to manipulate or reposition that tissue. In some embodiments, the tissue is a prostate. In some embodiments, the tissue is the median lobe of a prostate.


In various approaches, the apparatus can include a portion that is equipped with structure that increases frictional forces between the apparatus and tissue to be manipulated. The apparatus can additionally or alternatively include an extendable needle that can be partially deployed to engage or manipulate target tissue. A retractable sheath can also additionally or alternatively be provided to facilitate engaging and manipulating tissue. Further, the surface area of a distal end portion of the apparatus can include structure(s) intended to increase surface area and thus present structure(s) specifically configured to effectively engage or manipulate tissue. Moreover, the apparatus can be configured and employed to pre-treat target tissue by subjecting the tissue to energy or substances that alter the mechanical profile or by creating incisions therein.


Thus, the delivery apparatus of the present disclosure can additionally include various subassemblies which are mobilized via an actuator or other manually accessible structure. The operation of the subassemblies is coordinated and synchronized to ensure accurate and precise navigation and placement of the tissue engaging or manipulation structure.


Referring now to FIG. 24A-B, in some embodiments expandable member 200 is adjustable. FIGS. 24A and 24B illustrate a distal end of elongate tissue access assembly 104 and expandable member 200 present on one side of elongate tissue access assembly 104. That is, in this particular embodiment there is only one set of arms or wings. FIG. 24A illustrates expandable member 200 in an expanded state, while FIG. 24B illustrates expandable member 200 in a contracted state. Median lobe ML can be captured within the space between expandable member 200 and elongate tissue access assembly 104. Then, expandable member 200 can be contracted or cinched down such that median lobe ML is secured within the space between expandable member and elongate tissue access assembly 104. In this position, median lobe ML can be manipulated and/or displaced.


Referring now to FIG. 25A-B, expandable member 200 can be adjusted from a larger size (FIG. 25A) to a smaller size (FIG. 25B) in embodiments in which expandable member 200 includes two or more sets of arms and wings. In these embodiments, expandable member 200 can be used to capture tissue in the space between expandable member 200 and elongate tissue access assembly 104, or expandable member 200 can be used to manipulate and/or displace tissue according to other embodiments disclosed herein. The individual arms of expandable member 200 can be adjusted individually or together.


In the embodiments in which expandable member 200 can be adjusted, it is contemplated that the adjustments can occur prior to putting the device in the patient (or prior to putting the device within the sheath in the embodiments in which a sheath is used) or the adjustments can occur at or near the site of tissue manipulation within the patient. A physician can set the size of expandable member 200 based on the patient's anatomy, for example. The physician may be able to determine the desired size for expandable member 200 based on measurement and/or observation of the patient's anatomy prior to and/or during a procedure.


Referring now to FIGS. 26A-B and 27A-B, the handle of device 100 can include wheel 1000 or slider 1100, each of which are coupled to expandable member 200 and configured to expand or contract expandable member 200. In certain embodiments, wheel 1000 and slider 1100 provide continuous adjustability from a “Small” expansion size to a “Medium” expansion size to a “Large” expansion size, where the extent of expansion is indicated with a tactile indicator. Optionally, a lock is provided on wheel 1000 or slider 1100 such that the size of the expandable member can be fixed. In certain other embodiments, wheel 1000 and slider 1100 provide discrete adjustability from a “Small” expansion size to a “Medium” expansion size to a “Large” expansion size. That is, there are two or more pre-set sizes for expandable member 200 and wheel 1000 or slider 1100 allow for the physician to elect between or among those sizes only.


Various alternative methods of use are contemplated. The disclosed apparatus can be used to facilitate improving flow of a body fluid through a body lumen, modify the size or shape of a body lumen or cavity, treat prostate enlargement, treat urinary incontinence, support or maintain positioning of a tissue, close a tissue wound, organ or graft, perform a cosmetic lifting or repositioning procedure, form anastomotic connections, and/or treat various other disorders where a natural or pathologic tissue or organ is pressing on or interfering with an adjacent anatomical structure. Also, the disclosure has a myriad of other potential surgical, therapeutic, cosmetic or reconstructive applications, such as where a tissue, organ, graft or other material requires approximately, retracting, lifting, repositioning, compression or support.


One aspect of the invention is a system for engaging and manipulating a median lobe of a prostate gland that includes a sheath and a tissue engaging or manipulation device housed within the sheath, the tissue engaging or manipulation device being sized and shaped to be inserted within a patient's urethra and to extend within prostate tissue, the tissue engaging or manipulation device including a moveable engagement structure that can transition from a compressed state to an expanded state to enhance contact with the median lobe, wherein the engagement structure is biased to a distal end of the tissue engaging or manipulation device.


In another aspect of the invention, the engagement structure comprises a first arm and a second arm anchored to opposite sides of a shaft of the tissue engaging or manipulation device.


In another aspect of the invention, the first arm comprises a first expandable portion and the second arm comprises a second expandable portion, wherein the first expandable portion and the second expandable portion compress toward the shaft when the tissue engaging or manipulation device is housed in the sheath.


In another aspect of the invention, the first expandable portion and the second expandable portion expand away from the shaft when the tissue engaging or manipulation device exits the sheath.


In another aspect of the invention, the engagement structure further comprises a channel to receive and secure a portion of the distal end of the tissue engaging or manipulation device.


In another aspect of the invention, when the distal end of the tissue engaging or manipulation device is secured in the channel, movement of the engagement structure is constrained to a longitudinal axis of the tissue engaging or manipulation device.


In another aspect of the invention, movement along the longitudinal axis of the tissue engaging or manipulation device confers the transition of the engagement structure from the compressed state to the expanded state.


In another aspect of the invention, the engagement structure is made from a ribbon with a plurality of round edges to reduce trauma to tissue, wherein the ribbon is assymetrical in cross-section.


In another aspect of the invention, the engagement structure is made from a ribbon with a c-shaped cross-section that reduces trauma to tissue.


In another aspect of the invention, the shaft of the tissue engaging or manipulation device further comprises a side aperture and a needle assembly that exits from the side aperture, wherein the side aperture is aligned between the first expandable portion and the second expandable portion of the engagement structure.


In another aspect of the invention, the first expandable portion includes an internal face with a first visual line marker and the second expandable portion includes an internal face and a second visual line marker.


In another aspect of the invention, the first visual line marker and the second visual line marker of the engagement structure indicate the tissue entry position for the needle assembly after exiting the side aperture.


In another aspect of the invention, the first arm and the second arm of the engagement structure are configured to be telescopic.


In another aspect of the invention, the engagement structure is a loop affixed to a terminal portion of a shaft of the tissue engaging or manipulation device.


In another aspect of the invention, the loop is flexible and configured to compress toward the shaft when the tissue engaging or manipulation device is housed in the sheath and expand when the tissue engaging or manipulation device exits the sheath.


In another aspect of the invention, the engagement structure is adjustable prior to or during a procedure, and the adjustment can be continuous or discrete via a control device on the handle of the system.


In another aspect of the invention, the engagement structure is configured to enhance frictional contact with the median lobe.


In another aspect of the invention, the engagement structure includes one or more of spikes, fangs, hooks, barbs or other protuberances arranged at various angles and having various lengths.


In another aspect of the invention, the engagement structure is defined by a knurled surface.


In another aspect of the invention, the engagement structure is defined by an adhesive surface, which optionally may be swellable.


In another aspect of the invention, the engagement structure is defined by scales.


In another aspect of the invention the system includes a first projectable needle and a second projectable needle.


In another aspect of the invention, a reinforcing structure is affixed to a terminal and of one or more of the first and second project of needles.


In another aspect of the invention, the engagement structure includes and atraumatic tape that is configured to cover the engagement structure.


In another aspect of the invention, the engagement structure is defined by a divot formed on a portion of the distal end of the system, the divot sized and shaped to substantially fit a contour both target tissue.


In another aspect of the invention, tissue is pre-treated prior to being manipulated by an engagement structure, and the pre-treatment includes one or more of electro-cauterizing, botox, or incisions.


Thus, it will be apparent from the foregoing that, while particular forms of the disclosure have been illustrated and described, various modifications can be made without parting from the spirit and scope of the disclosure.

Claims
  • 1. A system for engaging and manipulating a median lobe of a prostate gland, comprising: A delivery device comprising an elongate tissue access assembly, wherein the elongate tissue access assembly is configured to be inserted within an introducer sheath; anda tissue engagement structure configured to engage and manipulate a median lobe of a prostate gland, wherein the tissue engagement structure is attached to a distal end portion of the elongate tissue access assembly, wherein the tissue engagement structure includes a distal end portion with an expandable member secured to the distal end portion of the elongate tissue access assembly, wherein the expandable member comprises curved portions having connected distal ends such that the tissue engagement structure can transition from a contracted state, in which the curved portions are compressed toward a midline defined by a longitudinal axis of the tissue engagement structure, to an expanded state, in which the curved portions expand outward from the midline defined by the longitudinal axis of the tissue engagement structure.
  • 2. The system of claim 1, wherein the expandable member comprises arms with an asymmetrical cross-section such that a length along a first axis is different than a length along a second axis that is orthogonal to the first axis.
  • 3. The system of claim 2, wherein a proximal portion of the expandable member is fixedly attached to the elongate tissue access assembly.
  • 4. The system of claim 1, wherein the tissue engagement structure comprises a slidable portion coupled to the elongate tissue access assembly.
  • 5. The system of claim 1, wherein movement of the tissue engagement structure relative to the elongate tissue access assembly transitions the tissue engagement structure from the contracted state to the expanded state.
  • 6. The system of claim 1, wherein the expandable member comprises a first pair of arms.
  • 7. The system of claim 6, wherein the expandable member further comprises a second pair of arms.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT Application Serial No. PCT/US18/67229 filed Dec. 21, 2018, which claims priority to U.S. Provisional Application Ser. No. 62/610,184, filed Dec. 23, 2017, entitled “Median Lobe Engagement Apparatus and Method,” each of which is incorporated herein by reference.

US Referenced Citations (740)
Number Name Date Kind
659422 Shidler Oct 1900 A
780392 Wanamaker et al. Jan 1905 A
789467 West May 1905 A
2360164 Frank Oct 1944 A
2485531 William et al. Oct 1949 A
2579192 Alexander Dec 1951 A
2646298 Leary Jul 1953 A
2697624 Thomas et al. Dec 1954 A
2734299 Masson Feb 1956 A
2825592 Mckenzie Mar 1958 A
3326586 Frost et al. Jun 1967 A
3470834 Bone Oct 1969 A
3521918 Hammond Jul 1970 A
3541591 Hoegerman Nov 1970 A
3664345 Dabbs et al. May 1972 A
3713680 Pagano Jan 1973 A
3716058 Tanner Feb 1973 A
3756638 Stockberger Sep 1973 A
3873140 Bloch Mar 1975 A
3875648 Bone Apr 1975 A
3886933 Mori et al. Jun 1975 A
3931667 Merser et al. Jan 1976 A
3976079 Samuels et al. Aug 1976 A
4006747 Kronenthal et al. Feb 1977 A
4137920 Bonnet Feb 1979 A
4164225 Johnson et al. Aug 1979 A
4210148 Stivala Jul 1980 A
4235238 Ogiu et al. Nov 1980 A
4291698 Fuchs et al. Sep 1981 A
4409974 Freedland Oct 1983 A
4419094 Patel Dec 1983 A
4452236 Utsugi Jun 1984 A
4493323 Albright et al. Jan 1985 A
4513746 Aranyi et al. Apr 1985 A
4621640 Mulhollan et al. Nov 1986 A
4655771 Wallsten Apr 1987 A
4657461 Smith Apr 1987 A
4669473 Richards et al. Jun 1987 A
4705040 Mueller et al. Nov 1987 A
4714281 Peck Dec 1987 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4744364 Kensey May 1988 A
4750492 Jacobs Jun 1988 A
4762128 Rosenbluth Aug 1988 A
4823794 Pierce Apr 1989 A
4863439 Sanderson Sep 1989 A
4893623 Rosenbluth Jan 1990 A
4899743 Nicholson et al. Feb 1990 A
4926860 Stice et al. May 1990 A
4935028 Drews Jun 1990 A
4946468 Li Aug 1990 A
4955859 Zilber Sep 1990 A
4955913 Robinson Sep 1990 A
4968315 Gattuma Nov 1990 A
4994066 Voss Feb 1991 A
5002550 Li Mar 1991 A
5019032 Robertson May 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gattuma et al. Sep 1991 A
5053046 Janese Oct 1991 A
5078731 Hayhurst Jan 1992 A
5080660 Buelna Jan 1992 A
5098374 Othel-Jacobsen et al. Mar 1992 A
5100421 Christoudias Mar 1992 A
5123914 Cope Jun 1992 A
5127393 McFarlin et al. Jul 1992 A
5129912 Noda et al. Jul 1992 A
5133713 Huang et al. Jul 1992 A
5159925 Neuwirth et al. Nov 1992 A
5160339 Chen et al. Nov 1992 A
5163960 Bonutti Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5192303 Gattuma et al. Mar 1993 A
5203787 Noblitt et al. Apr 1993 A
5207672 Roth et al. May 1993 A
5217470 Weston Jun 1993 A
5217486 Rice et al. Jun 1993 A
5234454 Bangs Aug 1993 A
5236445 Hayhurst et al. Aug 1993 A
5237984 Williams et al. Aug 1993 A
5254126 Filipi et al. Oct 1993 A
5258015 Li et al. Nov 1993 A
5267960 Hayman et al. Dec 1993 A
5269802 Garber Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5300099 Rudie Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5322501 Mahmud-Durrani Jun 1994 A
5330488 Goldrath Jul 1994 A
5334200 Johnson Aug 1994 A
5336240 Metzler et al. Aug 1994 A
5350399 Erlebacher et al. Sep 1994 A
5354271 Voda Oct 1994 A
5358511 Gattuma et al. Oct 1994 A
5364408 Gordon Nov 1994 A
5366490 Edwards et al. Nov 1994 A
5368599 Hirsch et al. Nov 1994 A
5370646 Reese et al. Dec 1994 A
5370661 Branch Dec 1994 A
5372600 Beyar et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5391182 Chin Feb 1995 A
5403348 Bonutti Apr 1995 A
5405352 Weston Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411520 Nash et al. May 1995 A
5417691 Hayhurst May 1995 A
5435805 Edwards et al. Jul 1995 A
5441485 Peters Aug 1995 A
5458612 Chin Oct 1995 A
5464416 Steckel Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470337 Moss Nov 1995 A
5472446 Torre Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5499994 Tihon et al. Mar 1996 A
5501690 Measamer et al. Mar 1996 A
5507754 Green et al. Apr 1996 A
5522846 Bonutti Jun 1996 A
5531759 Kensey et al. Jul 1996 A
5531763 Mastri et al. Jul 1996 A
5534012 Bonutti Jul 1996 A
5536240 Edwards et al. Jul 1996 A
5540655 Edwards et al. Jul 1996 A
5540701 Sharkey et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5545171 Sharkey et al. Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5549631 Bonutti Aug 1996 A
5550172 Regula et al. Aug 1996 A
5554162 DeLange Sep 1996 A
5554171 Gattuma et al. Sep 1996 A
5562688 Riza Oct 1996 A
5562689 Green et al. Oct 1996 A
5569305 Bonutti Oct 1996 A
5571104 Li Nov 1996 A
5573540 Yoon Nov 1996 A
5578044 Gordon et al. Nov 1996 A
5591177 Lehrer Jan 1997 A
5591179 Edelstein Jan 1997 A
5593421 Bauer Jan 1997 A
5611515 Benderev et al. Mar 1997 A
5620461 Moer et al. Apr 1997 A
5626614 Hart May 1997 A
5630824 Hart May 1997 A
5643321 McDevitt Jul 1997 A
5647836 Blake et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5665109 Yoon Sep 1997 A
5667486 Mikulich et al. Sep 1997 A
5667488 Lundquist et al. Sep 1997 A
5667522 Flomenblit et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5672171 Andrus et al. Sep 1997 A
5690649 Li Nov 1997 A
5690677 Schmieding et al. Nov 1997 A
5697950 Fucci et al. Dec 1997 A
5707394 Miller et al. Jan 1998 A
5716368 Torre et al. Feb 1998 A
5718717 Bonutti Feb 1998 A
5725556 Moser et al. Mar 1998 A
5725557 Gattuma et al. Mar 1998 A
5733306 Bonutti Mar 1998 A
5741276 Poloyko et al. Apr 1998 A
5746753 Sullivan et al. May 1998 A
5749846 Edwards et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752963 Allard et al. May 1998 A
5775328 Lowe et al. Jul 1998 A
5782862 Bonutti Jul 1998 A
5782864 Lizardi Jul 1998 A
5791022 Bohman Aug 1998 A
5800445 Ratcliff et al. Sep 1998 A
5807403 Beyar et al. Sep 1998 A
5810848 Hayhurst Sep 1998 A
5810853 Yoon Sep 1998 A
5814072 Bonutti Sep 1998 A
5830179 Mikus et al. Nov 1998 A
5830221 Stein et al. Nov 1998 A
5845645 Bonutti Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5861002 Desai Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5873891 Sohn Feb 1999 A
5879357 Heaton et al. Mar 1999 A
5897574 Bonutti Apr 1999 A
5899911 Carter May 1999 A
5899921 Caspari et al. May 1999 A
5904679 Clayman May 1999 A
5904696 Rosenman May 1999 A
5908428 Scirica et al. Jun 1999 A
5908447 Schroeppel et al. Jun 1999 A
5919198 Graves et al. Jul 1999 A
5919202 Yoon Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5921986 Bonutti Jul 1999 A
5928252 Steadman et al. Jul 1999 A
5931844 Thompson et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5944739 Zlock et al. Aug 1999 A
5948000 Larsen et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5954057 Li Sep 1999 A
5954747 Clark Sep 1999 A
5964732 Willard Oct 1999 A
5971447 Steck Oct 1999 A
5971967 Willard Oct 1999 A
6010514 Burney et al. Jan 2000 A
6011525 Piole Jan 2000 A
6015428 Pagedas Jan 2000 A
6024751 Lovato et al. Feb 2000 A
6030393 Corlew Feb 2000 A
6033413 Mikus et al. Mar 2000 A
6033430 Bonutti Mar 2000 A
6036701 Rosenman Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6053908 Crainich et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056722 Jayaraman May 2000 A
6056772 Bonutti May 2000 A
6066160 Colvin et al. May 2000 A
6068648 Cole et al. May 2000 A
6080167 Lyell Jun 2000 A
6086608 Ek et al. Jul 2000 A
6110183 Cope Aug 2000 A
6117133 Zappala Sep 2000 A
6117160 Bonutti Sep 2000 A
6117161 Li et al. Sep 2000 A
6120539 Eldridge et al. Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6139555 Hart et al. Oct 2000 A
RE36974 Bonutti Nov 2000 E
6143006 Chan Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6156044 Kammerer et al. Dec 2000 A
6156049 Lovato et al. Dec 2000 A
6159207 Yoon Dec 2000 A
6159234 Bonutti et al. Dec 2000 A
6193714 McGaffigan et al. Feb 2001 B1
6200329 Fung et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206895 Levinson Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6228096 Marchand May 2001 B1
6235024 Tu May 2001 B1
6258124 Darois et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6261320 Tam et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6287317 Makower et al. Sep 2001 B1
6290711 Caspari et al. Sep 2001 B1
6306158 Bartlett Oct 2001 B1
6312448 Bonutti Nov 2001 B1
6319263 Levinson Nov 2001 B1
6322112 Duncan Nov 2001 B1
6332889 Sancoff et al. Dec 2001 B1
6382214 Raz et al. May 2002 B1
6387041 Harari et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6398796 Levinson Jun 2002 B2
6425900 Knodel et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428562 Bonutti Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6461355 Svejkovsky et al. Oct 2002 B2
6482235 Lambrecht et al. Nov 2002 B1
6488691 Carroll et al. Dec 2002 B1
6491672 Slepian et al. Dec 2002 B2
6491707 Makower et al. Dec 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500184 Chan et al. Dec 2002 B1
6500195 Bonutti Dec 2002 B2
6506190 Walshe Jan 2003 B1
6506196 Laufer Jan 2003 B1
6514247 McGaffigan et al. Feb 2003 B1
6517569 Mikus et al. Feb 2003 B2
6527702 Whalen et al. Mar 2003 B2
6527794 McDevitt et al. Mar 2003 B1
6530932 Swayze et al. Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6533796 Sauer et al. Mar 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6547725 Paolitto et al. Apr 2003 B1
6551328 Kortenbach Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6565578 Peifer et al. May 2003 B1
6569187 Bonutti et al. May 2003 B1
6572626 Knodel et al. Jun 2003 B1
6572635 Bonutti Jun 2003 B1
6572653 Simonson Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6592609 Bonutti Jul 2003 B1
6595911 LoVuolo Jul 2003 B2
6596013 Yang et al. Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6626913 McKinnon et al. Sep 2003 B1
6626916 Yeung et al. Sep 2003 B1
6626919 Swanstrom Sep 2003 B1
6629534 Goar et al. Oct 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6641524 Kovac Nov 2003 B2
6641592 Sauer et al. Nov 2003 B1
6656182 Hayhurst Dec 2003 B1
6660008 Foerster et al. Dec 2003 B1
6660023 McDevitt et al. Dec 2003 B2
6663589 Halevy Dec 2003 B1
6663633 Pierson Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6699263 Cope Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706047 Trout et al. Mar 2004 B2
6709493 DeGuiseppi et al. Mar 2004 B2
6715804 Beers Apr 2004 B2
6719709 Whalen et al. Apr 2004 B2
6730112 Levinson May 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740098 Abrams et al. May 2004 B2
6767037 Wenstrom Jul 2004 B2
6770076 Foerster Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773441 Laufer et al. Aug 2004 B1
6790213 Cherok et al. Sep 2004 B2
6790223 Reever Sep 2004 B2
6802838 Loeb et al. Oct 2004 B2
6802846 Hauschild et al. Oct 2004 B2
6821282 Perry et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6821291 Bolea et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6905475 Hauschild et al. Jun 2005 B2
6908473 Skiba et al. Jun 2005 B2
6921361 Suzuki et al. Jul 2005 B2
6926732 Derus et al. Aug 2005 B2
6951565 Keane et al. Oct 2005 B2
6986775 Morales et al. Jan 2006 B2
6986784 Weiser et al. Jan 2006 B1
6988983 Connors et al. Jan 2006 B2
6991596 Whalen et al. Jan 2006 B2
6991647 Jadhav Jan 2006 B2
6997940 Bonutti Feb 2006 B2
7001327 Whalen et al. Feb 2006 B2
7004965 Gross Feb 2006 B2
7008381 Janssens Mar 2006 B2
7011688 Gryska et al. Mar 2006 B2
7015253 Escandon et al. Mar 2006 B2
7041111 Chu May 2006 B2
7048698 Whalen et al. May 2006 B2
7048747 Arcia et al. May 2006 B2
7060077 Gordon et al. Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7065325 Zegelin et al. Jun 2006 B2
7081126 McDevitt et al. Jul 2006 B2
7083638 Foerster Aug 2006 B2
7087073 Bonutti Aug 2006 B2
7089064 Manker et al. Aug 2006 B2
7090690 Foerster et al. Aug 2006 B2
7093601 Manker et al. Aug 2006 B2
7096301 Beaudoin et al. Aug 2006 B2
7104949 Anderson et al. Sep 2006 B2
7105004 DiCesare et al. Sep 2006 B2
7108655 Whalen et al. Sep 2006 B2
7141038 Whalen et al. Nov 2006 B2
7153314 Laufer et al. Dec 2006 B2
7179225 Shluzas et al. Feb 2007 B2
7226558 Nieman et al. Jun 2007 B2
7232448 Battles et al. Jun 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261709 Swoyer et al. Aug 2007 B2
7261710 Elmouelhi et al. Aug 2007 B2
7282020 Kaplan Oct 2007 B2
7288063 Petros et al. Oct 2007 B2
7303108 Shelton Dec 2007 B2
7320701 Haut et al. Jan 2008 B2
7322974 Swoyer et al. Jan 2008 B2
7326221 Sakamoto et al. Feb 2008 B2
7334822 Hines Feb 2008 B1
7335197 Sage et al. Feb 2008 B2
7340300 Christopherson et al. Mar 2008 B2
7399304 Gambale et al. Jul 2008 B2
7402166 Feigl Jul 2008 B2
7416554 Lam et al. Aug 2008 B2
7417175 Oda et al. Aug 2008 B2
7437194 Skwarek et al. Oct 2008 B2
7463934 Tronnes et al. Dec 2008 B2
7470228 Connors et al. Dec 2008 B2
7481771 Fonseca et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7553317 William et al. Jun 2009 B2
7608108 Bhatnagar et al. Oct 2009 B2
7632297 Gross Dec 2009 B2
7645286 Catanese et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7666197 Orban Feb 2010 B2
7674275 Martin et al. Mar 2010 B2
7682374 Foerster et al. Mar 2010 B2
7695494 Foerster Apr 2010 B2
7704261 Sakamoto et al. Apr 2010 B2
7727248 Smith et al. Jun 2010 B2
7731725 Gadberry et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7758594 Lamson et al. Jul 2010 B2
7766923 Catanese et al. Aug 2010 B2
7766939 Yeung et al. Aug 2010 B2
7780682 Catanese et al. Aug 2010 B2
7780687 Heinrich et al. Aug 2010 B2
7815655 Catanese et al. Oct 2010 B2
7850712 Conlon et al. Dec 2010 B2
7862542 Harmon Jan 2011 B1
7862584 Lyons et al. Jan 2011 B2
7887551 Bojarski et al. Feb 2011 B2
7896891 Catanese et al. Mar 2011 B2
7905889 Catanese et al. Mar 2011 B2
7905904 Stone et al. Mar 2011 B2
7909836 McLean et al. Mar 2011 B2
7914542 Lamson et al. Mar 2011 B2
7922645 Kaplan Apr 2011 B2
7951158 Catanese et al. May 2011 B2
8007503 Catanese et al. Aug 2011 B2
8043309 Catanese et al. Oct 2011 B2
8114070 Rubinsky et al. Feb 2012 B2
8145321 Gross Mar 2012 B2
8152804 Elmouelhi et al. Apr 2012 B2
8157815 Catanese et al. Apr 2012 B2
8162960 Manzo Apr 2012 B2
8167830 Noriega May 2012 B2
8211118 Catanese et al. Jul 2012 B2
8216254 McLean et al. Jul 2012 B2
8236011 Harris et al. Aug 2012 B2
8251985 Hoey et al. Aug 2012 B2
8273079 Hoey et al. Sep 2012 B2
8298132 Connors et al. Oct 2012 B2
8303604 Stone et al. Nov 2012 B2
8308765 Saadat et al. Nov 2012 B2
8333776 Cheng et al. Dec 2012 B2
8343187 Lamson et al. Jan 2013 B2
8361112 Kempton et al. Jan 2013 B2
8372065 Hoey et al. Feb 2013 B2
8388611 Shadduck et al. Mar 2013 B2
8388653 Nobis et al. Mar 2013 B2
8394110 Catanese et al. Mar 2013 B2
8394113 Wei et al. Mar 2013 B2
8419723 Shadduck et al. Apr 2013 B2
8425535 McLean et al. Apr 2013 B2
8444657 Saadat et al. May 2013 B2
8454655 Yeung et al. Jun 2013 B2
8465551 Wijay et al. Jun 2013 B1
8480686 Bakos et al. Jul 2013 B2
8491606 Tong et al. Jul 2013 B2
8496684 Crainich et al. Jul 2013 B2
8521257 Whitcomb et al. Aug 2013 B2
8529584 Catanese et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8562646 Gellman et al. Oct 2013 B2
8585692 Shadduck et al. Nov 2013 B2
8603106 Catanese et al. Dec 2013 B2
8603123 Todd Dec 2013 B2
8603187 Kilemnick et al. Dec 2013 B2
8628542 Merrick et al. Jan 2014 B2
8663243 Lamson et al. Mar 2014 B2
8668705 Johnston et al. Mar 2014 B2
8683895 Nash Apr 2014 B2
8715239 Lamson et al. May 2014 B2
8715298 Catanese et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8758366 McLean et al. Jun 2014 B2
8790356 Darois et al. Jul 2014 B2
8801702 Hoey et al. Aug 2014 B2
8808363 Perry et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8828035 Kim Sep 2014 B2
8834458 Neuberger et al. Sep 2014 B2
8880195 Azure Nov 2014 B2
8900293 Forbes et al. Dec 2014 B2
8920437 Harris et al. Dec 2014 B2
8926494 Cook et al. Jan 2015 B1
8945114 Elmouelhi et al. Feb 2015 B2
9034001 Cheng et al. May 2015 B2
9039740 Wales et al. May 2015 B2
9089320 Spivey et al. Jul 2015 B2
9150817 Furihata et al. Oct 2015 B2
9179991 Gozzi et al. Nov 2015 B2
9204922 Hooven Dec 2015 B2
9211155 Fruland et al. Dec 2015 B2
9220874 Pillai et al. Dec 2015 B2
9272140 Gerber Mar 2016 B2
9277914 Wales et al. Mar 2016 B2
9345507 Hoey et al. May 2016 B2
9345867 Browning May 2016 B2
9393007 Darois et al. Jul 2016 B2
9402711 Catanese et al. Aug 2016 B2
9439643 Darois et al. Sep 2016 B2
9459751 Weaver et al. Oct 2016 B2
9526555 Hoey et al. Dec 2016 B2
9549739 Catanese et al. Jan 2017 B2
9561025 Stone et al. Feb 2017 B2
9592044 Weir et al. Mar 2017 B2
9597145 Nelson et al. Mar 2017 B2
9668803 Bhushan et al. Jun 2017 B2
9675373 Todd Jun 2017 B2
9750492 Ziniti et al. Sep 2017 B2
10426509 Merrick et al. Oct 2019 B2
20010041916 Bonutti Nov 2001 A1
20010044639 Levinson Nov 2001 A1
20020049453 Nobles et al. Apr 2002 A1
20020095064 Beyar Jul 2002 A1
20020095154 Atkinson et al. Jul 2002 A1
20020107540 Whalen et al. Aug 2002 A1
20020128684 Foerster Sep 2002 A1
20020161382 Neisz et al. Oct 2002 A1
20020177866 Weikel et al. Nov 2002 A1
20020183740 Edwards et al. Dec 2002 A1
20020193809 Meade et al. Dec 2002 A1
20030023248 Parodi Jan 2003 A1
20030040803 Rioux et al. Feb 2003 A1
20030060819 McGovern et al. Mar 2003 A1
20030078601 Shikhman et al. Apr 2003 A1
20030109769 Lowery et al. Jun 2003 A1
20030120309 Colleran et al. Jun 2003 A1
20030130575 Desai Jul 2003 A1
20030144570 Hunter et al. Jul 2003 A1
20030176883 Sauer et al. Sep 2003 A1
20030191497 Cope Oct 2003 A1
20030199860 Loeb et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030236535 Onuki et al. Dec 2003 A1
20040010301 Kindlein et al. Jan 2004 A1
20040030217 Yeung et al. Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040078046 Barzell et al. Apr 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122474 Gellman et al. Jun 2004 A1
20040143343 Grocela Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040167635 Yachia et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193194 Laufer et al. Sep 2004 A1
20040193196 Appling et al. Sep 2004 A1
20040194790 Laufer et al. Oct 2004 A1
20040215181 Christopherson et al. Oct 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040230316 Cioanta et al. Nov 2004 A1
20040243178 Haut et al. Dec 2004 A1
20040243179 Foerster Dec 2004 A1
20040243180 Donnelly et al. Dec 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260345 Foerster Dec 2004 A1
20050010203 Edwards et al. Jan 2005 A1
20050033403 Ward et al. Feb 2005 A1
20050055087 Starksen Mar 2005 A1
20050059929 Bolmsjo et al. Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050101982 Ravenscroft et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050137716 Gross Jun 2005 A1
20050154401 Weldon et al. Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050203344 Orban et al. Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050222557 Baxter et al. Oct 2005 A1
20050251157 Saadat et al. Nov 2005 A1
20050251159 Ewers et al. Nov 2005 A1
20050251177 Saadat et al. Nov 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050267405 Shah Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050283189 Rosenblatt Dec 2005 A1
20050288694 Solomon Dec 2005 A1
20060004410 Nobis et al. Jan 2006 A1
20060020276 Saadat et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060025750 Starksen et al. Feb 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025789 Laufer et al. Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060026750 Ballance Feb 2006 A1
20060030884 Yeung et al. Feb 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060079880 Sage et al. Apr 2006 A1
20060079881 Christopherson et al. Apr 2006 A1
20060089646 Bonutti Apr 2006 A1
20060095058 Sivan et al. May 2006 A1
20060167477 Arcia et al. Jul 2006 A1
20060178680 Nelson et al. Aug 2006 A1
20060199996 Caraballo et al. Sep 2006 A1
20060241694 Cerundolo Oct 2006 A1
20060265042 Catanese et al. Nov 2006 A1
20060271032 Chin et al. Nov 2006 A1
20060276481 Evrard et al. Dec 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282081 Fanton et al. Dec 2006 A1
20070049929 Catanese et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070060931 Hamilton et al. Mar 2007 A1
20070073322 Mikkaichi et al. Mar 2007 A1
20070073342 Stone et al. Mar 2007 A1
20070088362 Bonutti et al. Apr 2007 A1
20070100421 Griffin May 2007 A1
20070112385 Conlon May 2007 A1
20070142846 Catanese et al. Jun 2007 A1
20070173888 Gertner et al. Jul 2007 A1
20070179491 Kratoska et al. Aug 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070198038 Cohen et al. Aug 2007 A1
20070260259 Fanton et al. Nov 2007 A1
20080009888 Ewers et al. Jan 2008 A1
20080021445 Elmouelhi et al. Jan 2008 A1
20080021485 Catanese et al. Jan 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080033488 Catanese et al. Feb 2008 A1
20080039833 Catanese et al. Feb 2008 A1
20080039872 Catanese et al. Feb 2008 A1
20080039874 Catanese et al. Feb 2008 A1
20080039875 Catanese et al. Feb 2008 A1
20080039893 McLean et al. Feb 2008 A1
20080039894 Catanese et al. Feb 2008 A1
20080039921 Wallsten et al. Feb 2008 A1
20080045978 Kuhns et al. Feb 2008 A1
20080051810 To et al. Feb 2008 A1
20080058710 Wilk Mar 2008 A1
20080065120 Zannis et al. Mar 2008 A1
20080082113 Bishop et al. Apr 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080091220 Chu Apr 2008 A1
20080091237 Schwartz et al. Apr 2008 A1
20080119874 Merves May 2008 A1
20080154378 Pelo Jun 2008 A1
20080161852 Kaiser et al. Jul 2008 A1
20080195145 Bonutti et al. Aug 2008 A1
20080208220 Shiono et al. Aug 2008 A1
20080228202 Cropper et al. Sep 2008 A1
20080269737 Elmouelhi et al. Oct 2008 A1
20090012537 Green Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090060977 Lamson et al. Mar 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090112537 Okumura Apr 2009 A1
20090118762 Crainch May 2009 A1
20090163934 Raschdorf, Jr. Jun 2009 A1
20090177288 Wallsten Jul 2009 A1
20090198227 Prakash Aug 2009 A1
20090204128 Lamson Aug 2009 A1
20100010631 Otte et al. Jan 2010 A1
20100023022 Zeiner et al. Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100023025 Zeiner et al. Jan 2010 A1
20100023026 Zeiner et al. Jan 2010 A1
20100030262 McLean et al. Feb 2010 A1
20100030263 Cheng et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100063542 Burg et al. Mar 2010 A1
20100114162 Bojarski et al. May 2010 A1
20100130815 Gross et al. May 2010 A1
20100286106 Gat et al. Nov 2010 A1
20100286679 Hoey et al. Nov 2010 A1
20100298948 Hoey et al. Nov 2010 A1
20100324669 Hlavka et al. Dec 2010 A1
20110040312 Lamson et al. Feb 2011 A1
20110046648 Johnston et al. Feb 2011 A1
20110060349 Cheng et al. Mar 2011 A1
20110077676 Sivan et al. Mar 2011 A1
20110144423 Tong et al. Jun 2011 A1
20110152839 Cima et al. Jun 2011 A1
20110160747 McLean et al. Jun 2011 A1
20110166564 Merrick et al. Jul 2011 A1
20110190758 Lamson et al. Aug 2011 A1
20110196393 Eliachar et al. Aug 2011 A1
20110202052 Gelbart et al. Aug 2011 A1
20110218387 Lamson et al. Sep 2011 A1
20110245828 Baxter et al. Oct 2011 A1
20110276081 Kilemnik Nov 2011 A1
20110276086 Al-Qbandi et al. Nov 2011 A1
20120010645 Feld Jan 2012 A1
20120059387 Schanz et al. Mar 2012 A1
20120165837 Belman et al. Jun 2012 A1
20120203250 Weir et al. Aug 2012 A1
20120245600 McLean et al. Sep 2012 A1
20120265006 Makower et al. Oct 2012 A1
20130096582 Cheng et al. Apr 2013 A1
20130178871 Koogle et al. Jul 2013 A1
20130197547 Fukuoka Aug 2013 A1
20130211431 Wei et al. Aug 2013 A1
20130253574 Catanese et al. Sep 2013 A1
20130253662 Lamson et al. Sep 2013 A1
20130261383 Catanese et al. Oct 2013 A1
20130261665 Yeung et al. Oct 2013 A1
20130267772 Catanese et al. Oct 2013 A1
20130268001 Catanese et al. Oct 2013 A1
20130274799 Catanese et al. Oct 2013 A1
20130289342 Tong et al. Oct 2013 A1
20130296639 Lamson et al. Nov 2013 A1
20130296889 Tong et al. Nov 2013 A1
20130296935 McLean et al. Nov 2013 A1
20130325143 Lamson et al. Dec 2013 A1
20140005473 Catanese et al. Jan 2014 A1
20140005690 Catanese et al. Jan 2014 A1
20140012192 Bar-On et al. Jan 2014 A1
20140088587 Merrick et al. Mar 2014 A1
20140221981 Cima et al. Aug 2014 A1
20140236230 Johnston et al. Aug 2014 A1
20140288637 Clerc et al. Sep 2014 A1
20150112299 Forbes et al. Apr 2015 A1
20150157309 Bird Jun 2015 A1
20150257908 Chao et al. Sep 2015 A1
20150335393 Ciulla et al. Nov 2015 A1
20160000455 Golan et al. Jan 2016 A1
20160038087 Hunter Feb 2016 A1
20160051735 Slepian Feb 2016 A1
20160081736 Hoey et al. Mar 2016 A1
20160089140 Kawaura et al. Mar 2016 A1
20160096009 Feld Apr 2016 A1
20160120647 Rogers et al. May 2016 A1
20160206370 Fruland et al. Jul 2016 A1
20160242894 Davis Aug 2016 A1
20160302904 Ogdahl et al. Oct 2016 A1
20160317180 Kilemnik Nov 2016 A1
20170000598 Bachar Jan 2017 A1
20170128741 Keltner et al. May 2017 A1
20170135830 Harkin et al. May 2017 A1
20180146964 Garcia May 2018 A1
20180353169 Lamson et al. Dec 2018 A1
20180353181 Wei Dec 2018 A1
20200015837 Merrick et al. Jan 2020 A1
20200187931 Lamson et al. Jun 2020 A1
20210378659 Lamson et al. Dec 2021 A1
20210378784 Welch et al. Dec 2021 A1
Foreign Referenced Citations (112)
Number Date Country
2477220 Nov 2007 CA
1697633 Nov 2005 CN
101795641 Aug 2010 CN
102112064 Jun 2014 CN
105919695 Sep 2016 CN
10159470 Jun 2003 DE
0246836 Dec 1991 EP
0464480 Jan 1992 EP
0274846 Feb 1994 EP
0632999 Jan 1995 EP
0667126 Aug 1995 EP
1016377 Jul 2000 EP
1482841 Dec 2004 EP
1082941 Mar 2005 EP
1584295 Oct 2005 EP
1006909 Jan 2007 EP
1852071 Nov 2007 EP
1584295 Feb 2008 EP
1884198 Feb 2008 EP
1884199 Feb 2008 EP
1670361 Apr 2008 EP
1331886 Dec 2008 EP
1482840 Dec 2008 EP
2243507 Oct 2010 EP
1484023 May 2011 EP
2345373 Jul 2011 EP
2345374 Jul 2011 EP
2049023 Dec 2014 EP
3167845 May 2017 EP
2750031 Dec 1997 FR
5836559 Mar 1983 JP
09122134 May 1997 JP
3370300 Jan 2003 JP
2004344427 Dec 2004 JP
2009521278 Jun 2009 JP
2011529745 Dec 2011 JP
2012143622 Aug 2012 JP
20060009698 Feb 2006 KR
2062121 Jun 1996 RU
2112571 Jun 1998 RU
2128012 Mar 1999 RU
2221501 Jan 2004 RU
1987001270 Mar 1987 WO
1992010142 Jun 1992 WO
1993004727 Mar 1993 WO
1993015664 Aug 1993 WO
1994026170 Nov 1994 WO
1995000818 Jan 1995 WO
2000040159 Jul 2000 WO
2001026588 Apr 2001 WO
2001028432 Apr 2001 WO
2001039671 Jun 2001 WO
2001049195 Jul 2001 WO
2001095818 Dec 2001 WO
2002028289 Apr 2002 WO
2002030335 Apr 2002 WO
2002032321 Apr 2002 WO
2002058577 Aug 2002 WO
2003039334 May 2003 WO
200302 Sep 2003 WO
2004000159 Dec 2003 WO
2004017845 Mar 2004 WO
2004019787 Mar 2004 WO
2004019788 Mar 2004 WO
2004030569 Apr 2004 WO
2004066875 Aug 2004 WO
2004080529 Sep 2004 WO
2004103189 Dec 2004 WO
2005034738 Apr 2005 WO
2005065412 Jul 2005 WO
2005094447 Oct 2005 WO
2006127241 Nov 2006 WO
2006127431 Nov 2006 WO
2007048437 May 2007 WO
2007053516 May 2007 WO
2007064906 Jun 2007 WO
2007075981 Jul 2007 WO
2008002340 Jan 2008 WO
2008006084 Jan 2008 WO
2008014191 Jan 2008 WO
2008043044 Apr 2008 WO
2008043917 Apr 2008 WO
2008097942 Aug 2008 WO
2008132735 Nov 2008 WO
2008142677 Nov 2008 WO
2009009617 Jan 2009 WO
2009072131 Jun 2009 WO
2010011832 Jan 2010 WO
2010014821 Feb 2010 WO
2010014825 Feb 2010 WO
2010065214 Jun 2010 WO
2010086849 Aug 2010 WO
2010106543 Sep 2010 WO
2011084712 Jul 2011 WO
2012018446 Feb 2012 WO
2012079548 Jun 2012 WO
2012079549 Jun 2012 WO
2012091952 Jul 2012 WO
2012091954 Jul 2012 WO
2012091955 Jul 2012 WO
2012091956 Jul 2012 WO
2012123950 Sep 2012 WO
2014003987 Jan 2014 WO
2014035506 Mar 2014 WO
2014145381 Sep 2014 WO
2014153219 Sep 2014 WO
2014200764 Dec 2014 WO
2015101975 Jul 2015 WO
2016134166 Aug 2016 WO
2017017499 Feb 2017 WO
2017081326 May 2017 WO
2017112856 Jun 2017 WO
Non-Patent Literature Citations (40)
Entry
Bacharova, O.A., et al. “The Effect of Rhodiolae rosea Extract on Incidence Rate of Superficial Bladder Carcinoma Relapses”, Kozin 1995.
Berges, Richard, et al. “Alternative Minimalinvasive Therapien Beim Benignen Prostatasyndrom”, Medizin, Jg. 104, Heft 37, Sep. 14, 2007.
Borzhievski, et al., “Tactics of the Surgical Treatment of Patients With Prostatic Adenoma and Acute Urinary Retention,” Urologia Nefrol (Mosk), Jan.-Feb. 1987, (1):39-43.
European Search Report for EP Application No. 06770621.8, dated Sep. 20, 2012.
European Search Report for EP Application No. 06845991.6, dated Mar. 22, 2013.
European Search Report for EP Application No. 07840462.1, dated May 29, 2012.
European Search Report for EP Application No. 08729001.1, dated Feb. 4, 2014.
European Search Report for EP Application No. 08772483.7, dated Feb. 12, 2015.
European Search Report for EP Application No. 11154962.2, dated May 19, 2011.
European Search Report for EP Application No. 11154976.2, dated Jun. 6, 2011.
European Search Report for EP Application No. 11814950.9, dated Sep. 8, 2015.
European Search Report for EP Application No. 11852778.7, dated Nov. 19, 2015.
European Search Report for EP Application No. 11854148.1, dated Oct. 20, 2017.
European Search Report for EP Application No. 13810314.8, dated Apr. 6, 2016.
European Search Report for EP Application No. 17150545.6, dated Sep. 11, 2017.
Hartung, Rudolf, et al. “Instrumentelle Therapie der benignen Prostatahyperplasie”, Medizin, Deutsches Arzteblatt 97, Heft 15, Apr. 14, 2000.
Hofner, Klaus, et al., “Operative Therapie des benignen Prostatasyndroms”, Medizin, Dtsch Arztebl, 2007; 104(36):A 2424-9.
Hubmann, R. “Geschichte der transurethralen Prostataeingriffe”, Geschichte der Medizin, Urologe [B], 2000, 40:152-160.
International Search Report for PCT Application No. PCT/US2006/019372, dated May 2, 2008.
International Search Report for PCT Application No. PCT/US2006/048962, dated Dec. 10, 2008.
International Search Report for PCT Application No. PCT/US2007/074019, dated Jul. 25, 2008.
International Search Report for PCT Application No. PCT/US2008/053001, dated Jun. 17, 2008.
International Search Report for PCT Application No. PCT/US2008/069560, dated Sep. 8, 2008.
International Search Report for PCT Application No. PCT/US2009/052271, dated Apr. 7, 2010.
International Search Report for PCT Application No. PCT/US2009/052275, dated Oct. 9, 2009.
International Search Report for PCT Application No. PCT/US2011/041200, dated Feb. 17, 2012.
International Search Report for PCT Application No. PCT/US2011/065348, dated Jun. 21, 2012.
International Search Report for PCT Application No. PCT/US2011/065358, dated Jun. 21, 2012.
International Search Report for PCT Application No. PCT/US2011/065377, dated Aug. 29, 2012.
International Search Report for PCT Application No. PCT/US2011/065386, dated Jun. 28, 2012.
International Search Report for PCT Application No. PCT/US2013/044035, dated Sep. 6, 2013.
Jonas, U., et al., “Benigne Prostatahyperplasie”, Der Urologe 2006—[Sonderheft] 45:134-144.
Kruck, S., et al., “Aktuelle Therapiemoglichkeiten des Benignen Prostata-Syndroms”, J Urol Urogynakol, 2009; 16 (1): 19-22.
Reich, O., et al., “Benignes Prostatasyndrom (BPS),” Der Urologe A Issue vol. 45, No. 6, Jun. 2006, p. 769-782.
Schauer, P., et al. “New applications for endoscopy: the emerging field of endoluminal and transgastric bariatric surgery”, Surgical Endoscopy, (Apr. 24, 2006), 10 pgs.
Sharp, Howard T., M.D., et al. “Instruments and Methods-The 4-S Modification of the Roeder Knot: How to Tie It”, Obstetrics & Gynecology, p. 1004-1006, vol. 90, No. 6, Dec. 1997.
Trapeznikov, et al., “New Technologies in the Treatment of Benign Prostatic Hyperplasia”, Urologia Nefrol (Mosk), Jul.-Aug. 1996, (4):41-47.
Yeung, Jeff. “Treating Urinary Stress Incontenance Without Incision with Endoscopic Suture Anchor & Approximating Device,” Aleeva Medical, Inc., 2007.
PCT International Search Report and Written Opinion dated Mar. 19, 2019, in PCT/US2018/067229.
Written Opinion dated Sep. 13, 2021 in Singapore Patent Application No. 11202005766X.
Related Publications (1)
Number Date Country
20200022692 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62610184 Dec 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/067229 Dec 2018 US
Child 16577013 US