This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
According to one aspect of the present invention, a method of forming a tubular liner within a preexisting structure is provided that includes positioning a tubular assembly within the preexisting structure; and radially expanding and plastically deforming the tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.
According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr.
According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr.
According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr.
According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation.
According to another aspect of the present invention, an expandable tubular member is provided, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 40% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.48.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 28% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.04.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.92.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.34.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the expandability coefficient of the expandable tubular member, prior to the radial expansion and plastic deformation, is greater than 0.12.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the expandability coefficient of the expandable tubular member is greater than the expandability coefficient of another portion of the expandable tubular member.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the tubular member has a higher ductility and a lower yield point prior to a radial expansion and plastic deformation than after the radial expansion and plastic deformation.
According to another aspect of the present invention, a method of radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member is provided that includes radially expanding and plastically deforming the tubular assembly within a preexisting structure; and using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member.
According to another aspect of the present invention, a system for radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member is provided that includes means for radially expanding the tubular assembly within a preexisting structure; and means for using less power to radially expand each unit length of the first tubular member than required to radially expand each unit length of the second tubular member.
According to another aspect of the present invention, a method of manufacturing a tubular member is provided that includes processing a tubular member until the tubular member is characterized by one or more intermediate characteristics; positioning the tubular member within a preexisting structure; and processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics.
According to another aspect of the present invention, an apparatus is provided that includes an expandable tubular assembly; and an expansion device coupled to the expandable tubular assembly; wherein a predetermined portion of the expandable tubular assembly has a lower yield point than another portion of the expandable tubular assembly.
According to another aspect of the present invention, an expandable tubular member is provided, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 5.8% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.
According to another aspect of the present invention, a method of determining the expandability of a selected tubular member is provided that includes determining an anisotropy value for the selected tubular member, determining a strain hardening value for the selected tubular member; and multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member.
According to another aspect of the present invention, a method of radially expanding and plastically deforming tubular members is provided that includes selecting a tubular member; determining an anisotropy value for the selected tubular member; determining a strain hardening value for the selected tubular member; multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member; and if the anisotropy value is greater than 0.12, then radially expanding and plastically deforming the selected tubular member.
According to another aspect of the present invention, a radially expandable tubular member apparatus is provided that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus.
According to another aspect of the present invention, a radially expandable tubular member apparatus is provided that includes: a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus.
According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes: providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.
According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.
According to another aspect of the present invention, an expandable tubular assembly is provided that includes a first tubular member; a second tubular member coupled to the first tubular member; a first threaded connection for coupling a portion of the first and second tubular members; a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members; a tubular sleeve coupled to and receiving end portions of the first and second tubular members; and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member; wherein the sealing element is positioned within an annulus defined between the first and second tubular members; and wherein, prior to a radial expansion and plastic deformation of the assembly, a predetermined portion of the assembly has a lower yield point than another portion of the apparatus.
According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes: providing a first tubular member; providing a second tubular member; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members; threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element, wherein the first tubular member, second tubular member, sleeve, and the sealing element define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the carbon content of the tubular member is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.21.
According to another aspect of the present invention, an expandable tubular member is provided, wherein the carbon content of the tubular member is greater than 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.36.
According to another aspect of the present invention, a method of selecting tubular members for radial expansion and plastic deformation is provided that includes selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is less than or equal to 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.21, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.
According to another aspect of the present invention, a method of selecting tubular members for radial expansion and plastic deformation is provided that includes selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is greater than 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.36, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.
According to another aspect of the present invention, an expandable tubular member is provided that includes a tubular body; wherein a yield point of an inner tubular portion of the tubular body is less than a yield point of an outer tubular portion of the tubular body.
According to another aspect of the present invention, a method of manufacturing an expandable tubular member has been provided that includes: providing a tubular member; heat treating the tubular member; and quenching the tubular member; wherein following the quenching, the tubular member comprises a microstructure comprising a hard phase structure and a soft phase structure.
According to another aspect of the present invention, a method for manufacturing an expandable tubular member has been provided that includes providing a material, heat treating the material, quenching the material, and cold working the material, whereby upon cold working, the yield strength of the material is increased.
According to another aspect of the present invention, a method for expanding an expandable tubular member has been provided that includes providing a tubular member, lubricating the tubular member, and expanding the tubular member.
According to another aspect of the present invention, a method for formability evaluation has been provided that includes providing a tubular member, measuring a plurality of stress and strain property parameters for the tubular member, measuring a Charpy V-notch impact value parameter for the tubular member, measuring a stress rupture parameter for the tubular member, measuring a strain hardening exponent parameter for the tubular member, measuring a plastic strain ratio parameter for the tubular member, comparing the parameters measured for first tubular member to a plurality of parameters measured for a second tubular member, and selecting the first or second tubular member to manufacture an expandable tubular member.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength in the range of 60 ksi to 120 ksi, a yield strength in the range of 40 ksi to 100 ksi, a yield strength to tensile strength ratio in the range of 50% to 85%, a minimum elongation of 35%, a minimum width reduction of 40%, a minimum thickness reduction of 30%, and a minimum anisotropy of 1.5.
According to another aspect of the present invention, a method for transforming the yield strength of an expandable tubular member has been provided that includes providing a manufactured tubular member, cold rolling the tubular member, inter-critical annealing the tubular member, expanding the tubular member, and heating the tubular member.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength in the range of 80 ksi to 100 ksi, a yield strength in the range of 60 ksi to 90 ksi, a maximum yield strength to tensile strength ratio of 85%, a minimum elongation of 22%, a minimum width reduction of 30%, a minimum thickness reduction of 35%, and a minimum anisotropy of 0.8.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength in the range of 60 ksi to 120 ksi, a yield strength in the range of 40 ksi to 100 ksi, a yield strength to tensile strength ratio in the range of 50% to 85%, a minimum elongation of 35%, a minimum width reduction of 40%, a minimum thickness reduction of 30%, and a minimum anisotropy of 1.5.
According to another aspect of the present invention, a method for transforming the yield strength of an expandable tubular member has been provided that includes providing a manufactured tubular member, inter-critical annealing the tubular member, expanding the tubular member, and heating the tubular member.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 76 ksi, a tensile strength of approximately 82 ksi, and an elongation of approximately 32%.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a surface, a self lubricating hard coating on the surface, and a self lubricating soft coating on the surface.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength in the range of 40 ksi to 80 ksi, a maximum yield strength to tensile strength ratio of 0.5, a minimum elongation of 30%, a minimum width reduction of 45%, a minimum wall thickness reduction of 30%, and a minimum anisotropy of 1.5.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a friction coefficient of 0.02, whereby the member may be expanded by a force below 100000 lbs.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a lubricant resulting in a friction coefficient of 0.125, a wall thickness of approximately 0.305 inches, and an expansion force of approximately 146000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 25 and a collapse strength of approximately 2400 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a lubricant resulting in a friction coefficient of 0.0.075, a wall thickness of approximately 0.350 inches, and an expansion force of approximately 143000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 22 and a collapse strength of approximately 3250 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.450 inches, and an expansion force of approximately 150000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 17 and a collapse strength of approximately 5800 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.5 inches, and an expansion force of approximately 126000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 15 and a collapse strength of approximately 5350 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.5 inches, and an expansion force of approximately 127000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 15 and a collapse strength of approximately 8400 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a composition, by weight percentage, of 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a composition, by weight percentage, of 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a composition, by weight percentage, of 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.3% Si, 0.16% Cu, 0.05% Ni, 0.05% Cr, 0.06% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a composition, by weight percentage, of 0.03% C, 1.48% Mn, 0.014% P, 0.002% S, 0.16% Si, 0.02% Cu, 0.01% Ni, 0.02% Cr, 0.06% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 16% expansion, approximately a 21% change in yield strength, approximately a 24% change in yield ratio, approximately a 18% change in elongation percentage, approximately a 8% change in width reduction percentage, approximately a 15% change in wall thickness reduction percentage, and approximately a 4% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 15.6% expansion, approximately a 70% change in yield strength, approximately a 25% change in yield ratio, approximately a 67% change in elongation percentage, approximately a 28% change in width reduction percentage, approximately a 7% change in wall thickness reduction percentage, and approximately a 75% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 5% change in yield strength, approximately a 11% change in yield ratio, approximately a 20% change in elongation percentage, approximately a 43% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 52% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 10% change in yield strength, approximately a 3% change in yield ratio, approximately a 30% change in elongation percentage, approximately a 13% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 17% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 46% change in yield strength, approximately a 20% change in yield ratio, approximately a 91% change in elongation percentage, approximately a 15% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 18% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 16% expansion, approximately a 38% change in yield strength, approximately a 20% change in yield ratio, approximately a 11% change in elongation percentage, approximately a 9% change in width reduction percentage, approximately a 4% change in wall thickness reduction percentage, and approximately a 4% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 31% change in yield strength, approximately a 14% change in yield ratio, approximately a 48% change in elongation percentage, approximately a 13% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 12% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 38% change in yield strength, approximately a 21% change in yield ratio, approximately a 55% change in elongation percentage, approximately a 16% change in width reduction percentage, approximately a 9% change in wall thickness reduction percentage, and approximately a 13% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 16% expansion, approximately a 33% change in yield strength, approximately a 26% change in yield ratio, approximately a 30% change in elongation percentage, approximately a 15% change in width reduction percentage, approximately a 9% change in wall thickness reduction percentage, and approximately a 10% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, after a 24% expansion, approximately a 41% change in yield strength, approximately a 27% change in yield ratio, approximately a 40% change in elongation percentage, approximately a 21% change in width reduction percentage, approximately a 16% change in wall thickness reduction percentage, and approximately a 5% change in anisotropy.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 80 ksi after 16% expansion, and a tensile strength of approximately 82 ksi after 24% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 82 ksi after 16% expansion, and a tensile strength of approximately 88 ksi after 24% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 80 ksi before expansion, a tensile strength of approximately 90 ksi after 16% expansion, and a tensile strength of approximately 92 ksi after 24% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 115 ksi before expansion, a tensile strength of approximately 120 ksi after 15.2% expansion; and a tensile strength of approximately 121 ksi after 25.2% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 100 ksi before expansion, and a tensile strength of approximately 126 ksi after 31.3% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a tensile strength of approximately 114 ksi before expansion, and a tensile strength of approximately 140 ksi after 15.6% expansion.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in water at approximately 775° C., a tensile strength of 94 ksi and a yield strength of 56 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in water at approximately 790° C., a tensile strength of 94 ksi and a yield strength of 59 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in water at approximately 735° C., a tensile strength of 94 ksi and a yield strength of 59 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in oil at approximately 775° C., a tensile strength of 84 ksi and a yield strength of 49 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in oil at approximately 820° C., a tensile strength of 82 ksi and a yield strength of 61 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, upon quenching in oil at approximately 750° C., a tensile strength of 109 ksi and a yield strength of 58 ksi.
According to another aspect of the present invention, an expandable tubular member has been provided that includes, by weight percentage, 0.1% C, 1.5% Mn, and 0.3% Si.
According to another aspect of the present invention, an expandable tubular member has been provided that includes martensite in the range of 15% to 30%.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.86, a longitudinal elongation of approximately 14.8%, a width reduction of approximately 38%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.87.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 81 ksi, a yield strength to tensile strength ratio of approximately 0.83, a longitudinal elongation of approximately 14.9%, a width reduction of approximately 38%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.83.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 79 ksi, a yield strength to tensile strength ratio of approximately 0.82, a longitudinal elongation of approximately 15.9%, a width reduction of approximately 44%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 1.03.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.83, a longitudinal elongation of approximately 15.3%, a width reduction of approximately 40%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.92.
According to another aspect of the present invention, an expandable tubular member has been provided that includes an elongation of approximately 21%, a width reduction of approximately 35%, a wall thickness reduction of approximately 38%, and an anisotropy of approximately 0.89.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 77 ksi, a yield strength to tensile strength ratio of approximately 0.82, a longitudinal elongation of approximately 16%, a width reduction of approximately 32%, a wall thickness reduction of approximately 45%, and an anisotropy of approximately 0.65.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 78 ksi, a yield strength to tensile strength ratio of approximately 0.8, a longitudinal elongation of approximately 16%, a width reduction of approximately 31%, a wall thickness reduction of approximately 45%, and an anisotropy of approximately 0.63.
According to another aspect of the present invention, an expandable tubular member has been provided that, upon quenching and tempering, includes a yield strength of approximately 84 ksi, a yield strength to tensile strength ratio of approximately 0.84, a longitudinal elongation of approximately 20.5%, a width reduction of approximately 40%, a wall thickness reduction of approximately 42%, and an anisotropy of approximately 0.94.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.72, an elongation of approximately 35%, a width reduction of approximately 35%, a wall thickness reduction of approximately 33%, and an anisotropy of approximately 0.92.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 90 ksi, a yield strength to tensile strength ratio of approximately 0.88, an elongation of approximately 25%, a width reduction of approximately 22%, a wall thickness reduction of approximately 20%, and an anisotropy of approximately 1.1.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 88 ksi, a yield strength to tensile strength ratio of approximately 0.87, an elongation of approximately 16%, a width reduction of approximately 24%, a wall thickness reduction of approximately 30%, and an anisotropy of approximately 0.76.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 48 ksi, a yield strength to tensile strength ratio of approximately 0.73, an elongation of approximately 38%, a width reduction of approximately 43%, a wall thickness reduction of approximately 49%, and an anisotropy of approximately 0.83.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 46 ksi, a yield strength to tensile strength ratio of approximately 0.69, an elongation of approximately 40%, a width reduction of approximately 50%, a wall thickness reduction of approximately 53%, and an anisotropy of approximately 0.93.
According to another aspect of the present invention, an expandable tubular member has been provided that includes a yield strength of approximately 53 ksi, a yield strength to tensile strength ratio of approximately 0.85, an elongation of approximately 49%, a width reduction of approximately 49%, a wall thickness reduction of approximately 46%, and an anisotropy of approximately 1.1.
According to another aspect of the present invention, an expandable tubular member has been provided that, upon quenching and tempering, includes, after a flare expansion of 42%, an absorbed energy in the longitudinal direction of 125, an absorbed energy in the transverse direction of 59, and an absorbed energy in the weld of 176.
According to another aspect of the present invention, an expandable tubular member has been provided that, upon quenching and tempering, includes, after a flare expansion of 52%, an absorbed energy in the longitudinal direction of 145, an absorbed energy in the transverse direction of 59, and an absorbed energy in the weld of 174.
a-30c are fragmentary cross-sectional illustrations of exemplary embodiments of expandable connections.
a and 32b are fragmentary cross-sectional illustrations of the formation of an exemplary embodiment of an expandable connection.
a, 34b and 34c are fragmentary cross-sectional illustrations of an exemplary embodiment of an expandable connection.
a is a fragmentary cross-sectional illustration of an exemplary embodiment of an expandable tubular member.
b is a graphical illustration of an exemplary embodiment of the variation in the yield point for the expandable tubular member of
a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.
b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.
c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.
a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.
b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.
c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.
a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.
b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.
c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.
a is an illustration of an exemplary embodiment of the properties of an expandable tubular member.
b is an illustration of the stress strain properties of a plurality of expandable tubular members.
a is an illustration of an exemplary experimental embodiment of the stress/strain curve for an expandable tubular member before expansion and after 15.6% expansion.
b is an illustration of the properties of an expandable tubular member.
a is an illustration of an exemplary embodiment of the properties of an expandable tubular member.
b is an illustration of an exemplary embodiment of the stress-strain curve for an expandable tubular member.
a is an illustration of an exemplary embodiment of the properties of an expandable tubular member.
b is an illustration of an exemplary embodiment of the stress-strain curve for an expandable tubular member.
a is an illustration of an exemplary embodiment of the properties of an expandable tubular member.
b is an illustration of an exemplary embodiment of the stress-strain curve for an expandable tubular member.
a is an illustration of an exemplary embodiment of the properties of an expandable tubular member.
b is an illustration of an exemplary embodiment of the stress-strain curve for an expandable tubular member.
Referring initially to
As illustrated in
As illustrated in
As illustrated in
In an exemplary embodiment, at least a portion of at least a portion of at least one of the first and second expandable tubular members, 12 and 14, are radially expanded into intimate contact with the interior surface of the preexisting structure 16.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Referring to
As illustrated in
As illustrated in
As illustrated in
In an exemplary embodiment, at least a portion of at least a portion of at least one of the first and second expandable tubular members, 102 and 108, are radially expanded into intimate contact with the interior surface of the preexisting structure 110.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Referring to
As illustrated in
As illustrated in
As illustrated in
In an exemplary embodiment, the anisotropy ratio AR for the first and second expandable tubular members is defined by the following equation:
AR=In (WTf/WTo)/In (Df/Do);
where AR=anisotropy ratio;
where WTf=final wall thickness of the expandable tubular member following the radial expansion and plastic deformation of the expandable tubular member;
where WTi=initial wall thickness of the expandable tubular member prior to the radial expansion and plastic deformation of the expandable tubular member;
where Df=final inside diameter of the expandable tubular member following the radial expansion and plastic deformation of the expandable tubular member; and
where Di=initial inside diameter of the expandable tubular member prior to the radial expansion and plastic deformation of the expandable tubular member.
In an exemplary embodiment, the anisotropy ratio AR for the first and/or second expandable tubular members, 204 and 204, is greater than 1.
In an exemplary experimental embodiment, the second expandable tubular member 204 had an anisotropy ratio AR greater than 1, and the radial expansion and plastic deformation of the second expandable tubular member did not result in any of the openings, 204a, 204b, 204c, and 204d, splitting or otherwise fracturing the remaining portions of the second expandable tubular member. This was an unexpected result.
Referring to
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, have the following characteristics:
In an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, are characterized by an expandability coefficient f:
In an exemplary embodiment, the anisotropy coefficient for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 1. In an exemplary embodiment, the strain hardening exponent for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 0.12. In an exemplary embodiment, the expandability coefficient for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 0.12.
In an exemplary embodiment, a tubular member having a higher expandability coefficient requires less power and/or energy to radially expand and plastically deform each unit length than a tubular member having a lower expandability coefficient. In an exemplary embodiment, a tubular member having a higher expandability coefficient requires less power and/or energy per unit length to radially expand and plastically deform than a tubular member having a lower expandability coefficient.
In several exemplary experimental embodiments, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, are steel alloys having one of the following compositions:
In exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, a sample of an expandable tubular member composed of Alloy A exhibited the following tensile characteristics before and after radial expansion and plastic deformation:
In exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, a sample of an expandable tubular member composed of Alloy B exhibited the following tensile characteristics before and after radial expansion and plastic deformation:
In an exemplary experimental embodiment, samples of expandable tubulars composed of Alloys A, B, C, and D exhibited the following tensile characteristics prior to radial expansion and plastic deformation:
In an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 have a strain hardening exponent greater than 0.12, and a yield ratio is less than 0.85.
In an exemplary embodiment, the carbon equivalent Ce, for tubular members having a carbon content (by weight percentage) less than or equal to 0.12%, is given by the following expression:
Ce=C+Mn/6+(Cr+Mo+V+Ti+Nb)/5+(Ni+Cu)/15
where Ce=carbon equivalent value;
a. C=carbon percentage by weight;
b. Mn=manganese percentage by weight;
c. Cr=chromium percentage by weight;
d. Mo=molybdenum percentage by weight;
e. V=vanadium percentage by weight;
f. Ti=titanium percentage by weight;
g. Nb=niobium percentage by weight;
h. Ni=nickel percentage by weight; and
i. Cu=copper percentage by weight.
In an exemplary embodiment, the carbon equivalent value Ce, for tubular members having a carbon content less than or equal to 0.12% (by weight), for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is less than 0.21.
In an exemplary embodiment, the carbon equivalent Ce, for tubular members having more than 0.12% carbon content (by weight), is given by the following expression:
Ce=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5*B
a. C=carbon percentage by weight;
b. Si=silicon percentage by weight;
c. Mn=manganese percentage by weight;
d. Cu=copper percentage by weight;
e. Cr=chromium percentage by weight;
f. Ni=nickel percentage by weight;
g. Mo=molybdenum percentage by weight;
h. V=vanadium percentage by weight; and
i. B=boron percentage by weight.
In an exemplary embodiment, the carbon equivalent value Ce, for tubular members having greater than 0.12% carbon content (by weight), for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is less than 0.36.
Referring to
The internally threaded connection 2212 of the end portion 2214 of the first tubular member 2210 is a box connection, and the externally threaded connection 2224 of the end portion 2226 of the second tubular member 2228 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2216 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members, 2210 and 2228. In this manner, during the threaded coupling of the first and second tubular members, 2210 and 2228, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 is also radially expanded and plastically deformed. As a result, the tubular sleeve 2216 may be maintained in circumferential tension and the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, may be maintained in circumferential compression.
Sleeve 2216 increases the axial compression loading of the connection between tubular members 2210 and 2228 before and after expansion by the expansion device 2234. Sleeve 2216 may, for example, be secured to tubular members 2210 and 2228 by a heat shrink fit.
In several alternative embodiments, the first and second tubular members, 2210 and 2228, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 2216 during (a) the coupling of the first tubular member 2210 to the second tubular member 2228, (b) the placement of the first and second tubular members in the structure 2232, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 2216 protects the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, during handling and insertion of the tubular members within the structure 2232. In this manner, damage to the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 2216 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 2228 to the first tubular member 2210. In this manner, misalignment that could result in damage to the threaded connections, 2212 and 2224, of the first and second tubular members, 2210 and 2228, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 2216 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 2216 can be easily rotated, that would indicate that the first and second tubular members, 2210 and 2228, are not fully threadably coupled and in intimate contact with the internal flange 2218 of the tubular sleeve. Furthermore, the tubular sleeve 2216 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 2214 and 2226, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 2216 and the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 2212 and 2224, of the first and second tubular members, 2210 and 2228, into the annulus between the first and second tubular members and the structure 2232. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 may be maintained in circumferential tension and the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2210 and 2228, and the tubular sleeve 2216 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The first tubular member 2310 includes a recess 2331. The internal flange 2321 mates with and is received within the annular recess 2331. Thus, the sleeve 2316 is coupled to and surrounds the external surfaces of the first and second tubular members 2310 and 2328.
The internally threaded connection 2312 of the end portion 2314 of the first tubular member 2310 is a box connection, and the externally threaded connection 2324 of the end portion 2326 of the second tubular member 2328 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2316 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 2310 and 2328. In this manner, during the threaded coupling of the first and second tubular members 2310 and 2328, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 2310 and 2328, the tubular sleeve 2316 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2316 may be maintained in circumferential tension and the end portions 2314 and 2326, of the first and second tubular members 2310 and 2328, may be maintained in circumferential compression.
Sleeve 2316 increases the axial tension loading of the connection between tubular members 2310 and 2328 before and after expansion by the expansion device 2334. Sleeve 2316 may be secured to tubular members 2310 and 2328 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2310 and 2328, and the tubular sleeve 2316 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connection 2412 of the end portion 2414 of the first tubular member 2410 is a box connection, and the externally threaded connection 2424 of the end portion 2426 of the second tubular member 2428 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2416 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 2410 and 2428. In this manner, during the threaded coupling of the first and second tubular members 2410 and 2428, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 2410 and 2428, the tubular sleeve 2416 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2416 may be maintained in circumferential tension and the end portions, 2414 and 2426, of the first and second tubular members, 2410 and 2428, may be maintained in circumferential compression.
The sleeve 2416 increases the axial compression and tension loading of the connection between tubular members 2410 and 2428 before and after expansion by expansion device 2424. Sleeve 2416 may be secured to tubular members 2410 and 2428 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2410 and 2428, and the tubular sleeve 2416 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connection 2512 of the end portion 2514 of the first tubular member 2510 is a box connection, and the externally threaded connection 2524 of the end portion 2526 of the second tubular member 2528 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2516 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 2510 and 2528. In this manner, during the threaded coupling of the first and second tubular members 2510 and 2528, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 2510 and 2528, the tubular sleeve 2516 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2516 may be maintained in circumferential tension and the end portions 2514 and 2526, of the first and second tubular members, 2510 and 2528, may be maintained in circumferential compression.
The addition of the sacrificial material 2540, provided on sleeve 2516, avoids stress risers on the sleeve 2516 and the tubular member 2510. The tapered surfaces 2542 and 2544 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 2516. Sleeve 2516 may be secured to tubular members 2510 and 2528 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2510 and 2528, and the tubular sleeve 2516 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The first tubular member 2610 includes a recess 2631. The internal flange 2621 mates with and is received within the annular recess 2631. Thus, the sleeve 2616 is coupled to and surrounds the external surfaces of the first and second tubular members 2610 and 2628.
The internally threaded connection 2612 of the end portion 2614 of the first tubular member 2610 is a box connection, and the externally threaded connection 2624 of the end portion 2626 of the second tubular member 2628 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2616 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 2610 and 2628. In this manner, during the threaded coupling of the first and second tubular members 2610 and 2628, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 2610 and 2628, the tubular sleeve 2616 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2616 may be maintained in circumferential tension and the end portions 2614 and 2626, of the first and second tubular members 2610 and 2628, may be maintained in circumferential compression.
Sleeve 2616 is covered by a thin walled cylinder of sacrificial material 2640. Spaces 2623 and 2624, adjacent tapered portions 2620 and 2622, respectively, are also filled with an excess of the sacrificial material 2640. The material may be a metal or a synthetic, and is provided to facilitate the insertion and movement of the first and second tubular members 2610 and 2628, through the structure 2632.
The addition of the sacrificial material 2640, provided on sleeve 2616, avoids stress risers on the sleeve 2616 and the tubular member 2610. The excess of the sacrificial material 2640 adjacent tapered portions 2620 and 2622 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 2616. Sleeve 2616 may be secured to tubular members 2610 and 2628 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2610 and 2628, and the tubular sleeve 2616 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The first tubular member 2710 includes a recess 2731. The internal flange 2721 mates with and is received within the annular recess 2731. Thus, the sleeve 2716 is coupled to and surrounds the external surfaces of the first and second tubular members 2710 and 2728.
The internally threaded connection 2712 of the end portion 2714 of the first tubular member 2710 is a box connection, and the externally threaded connection 2724 of the end portion 2726 of the second tubular member 2728 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2716 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 2710 and 2728. In this manner, during the threaded coupling of the first and second tubular members 2710 and 2728, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 2710 and 2728, the tubular sleeve 2716 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2716 may be maintained in circumferential tension and the end portions 2714 and 2726, of the first and second tubular members 2710 and 2728, may be maintained in circumferential compression.
Sleeve 2716 has a variable thickness due to one or more reduced thickness portions 2790 and/or increased thickness portions 2792.
Varying the thickness of sleeve 2716 provides the ability to control or induce stresses at selected positions along the length of sleeve 2716 and the end portions 2724 and 2726. Sleeve 2716 may be secured to tubular members 2710 and 2728 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2710 and 2728, and the tubular sleeve 2716 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
Referring to
The internally threaded connection 2912 of the end portion 2916 of the first tubular member 2910 is a box connection, and the externally threaded connection 2922 of the end portion 2924 of the second tubular member 2926 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2918 is at least approximately 0.020″ greater than the outside diameters of the first tubular member 2910. In this manner, during the threaded coupling of the first and second tubular members 2910 and 2926, fluidic materials within the first and second tubular members may be vented from the tubular members.
The first and second tubular members 2910 and 2926, and the tubular sleeve 2918 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, the tubular sleeve 2918 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2918 may be maintained in circumferential tension and the end portions 2916 and 2924, of the first and second tubular members 2910 and 2926, respectively, may be maintained in circumferential compression.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, and the tubular sleeve 2918, the sealing element 2930 seals the interface between the first and second tubular members. In an exemplary embodiment, during and after the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, and the tubular sleeve 2918, a metal to metal seal is formed between at least one of: the first and second tubular members 2910 and 2926, the first tubular member and the tubular sleeve 2918, and/or the second tubular member and the tubular sleeve. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In several exemplary embodiments, one or more portions of the first and second tubular members, 2910 and 2926, the tubular sleeve 2918, and the sealing element 2930 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connections, 3012a and 3012b, of the end portion 3016 of the first tubular member 3010 are box connections, and the externally threaded connections, 3018a and 3018b, of the end portion 3022 of the second tubular member 3024 are pin connections. In an exemplary embodiment, the sealing element 3026 is an elastomeric and/or metallic sealing element.
The first and second tubular members 3010 and 3024 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, the sealing element 3026 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, a metal to metal seal is formed between at least one of: the first and second tubular members 3010 and 3024, the first tubular member and the sealing element 3026, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 3026 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, a metal to metal seal is formed between the first and second tubular members.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3010 and 3024, the sealing element 3026 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connections, 3032a and 3032b, of the end portion 3036 of the first tubular member 3030 are box connections, and the externally threaded connections, 3038a and 3038b, of the end portion 3042 of the second tubular member 3044 are pin connections. In an exemplary embodiment, the sealing element 3046 is an elastomeric and/or metallic sealing element.
The first and second tubular members 3030 and 3044 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, the sealing element 3046 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, a metal to metal seal is formed between at least one of: the first and second tubular members 3030 and 3044, the first tubular member and the sealing element 3046, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 3046 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, a metal to metal seal is formed between the first and second tubular members.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3030 and 3044, the sealing element 3046 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connections, 3052a and 3052b, of the end portion 3058 of the first tubular member 3050 are box connections, and the externally threaded connections, 3060a and 3060b, of the end portion 3066 of the second tubular member 3068 are pin connections. In an exemplary embodiment, the sealing element 3070 is an elastomeric and/or metallic sealing element.
The first and second tubular members 3050 and 3068 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3050 and 3068, the sealing element 3070 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members, 3050 and 3068, a metal to metal seal is formed between at least one of: the first and second tubular members, the first tubular member and the sealing element 3070, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 3070 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 950 and 968, a metal to metal seal is formed between the first and second tubular members.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3050 and 3068, the sealing element 3070 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
First, second, and/or third tubular sleeves, 3126, 3128, and 3130, are coupled the external surface of the first tubular member 3110 in opposing relation to the threaded connection formed by the internal and external threads, 3112a and 3118a, the interface between the non-threaded surfaces, 3114 and 3120, and the threaded connection formed by the internal and external threads, 3112b and 3118b, respectively.
The internally threaded connections, 3112a and 3112b, of the end portion 3116 of the first tubular member 3110 are box connections, and the externally threaded connections, 3118a and 3118b, of the end portion 3122 of the second tubular member 3124 are pin connections.
The first and second tubular members 3110 and 3124, and the tubular sleeves 3126, 3128, and/or 3130, may then be positioned within another structure 3132 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 3134 through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 3110 and 3124, the tubular sleeves 3126, 3128 and/or 3130 are also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeves 3126, 3128, and/or 3130 are maintained in circumferential tension and the end portions 3116 and 3122, of the first and second tubular members 3110 and 3124, may be maintained in circumferential compression.
The sleeves 3126, 3128, and/or 3130 may, for example, be secured to the first tubular member 3110 by a heat shrink fit.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3110 and 3124, and the sleeves, 3126, 3128, and 3130, have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
The internally threaded connection 3212 of the end portion 3214 of the first tubular member 3210 is a box connection, and the externally threaded connection 3216 of the end portion 3218 of the second tubular member 3220 is a pin connection.
A tubular sleeve 3222 including internal flanges 3224 and 3226 is positioned proximate and surrounding the end portion 3214 of the first tubular member 3210. As illustrated in
The first and second tubular members 3210 and 3220, and the tubular sleeve 3222, may then be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 3210 and 3220, the tubular sleeve 3222 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 3222 is maintained in circumferential tension and the end portions 3214 and 3218, of the first and second tubular members 3210 and 3220, may be maintained in circumferential compression.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3210 and 3220, and the sleeve 3222 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
A first end of a tubular sleeve 3318 that includes an internal flange 3320 having a tapered portion 3322 and an annular recess 3324 for receiving the annular projection 3314 of the first tubular member 3310, and a second end that includes a tapered portion 3326, is then mounted upon and receives the end portion 3316 of the first tubular member 3310.
In an exemplary embodiment, the end portion 3316 of the first tubular member 3310 abuts one side of the internal flange 3320 of the tubular sleeve 3318 and the annular projection 3314 of the end portion of the first tubular member mates with and is received within the annular recess 3324 of the internal flange of the tubular sleeve, and the internal diameter of the internal flange 3320 of the tubular sleeve 3318 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310. An externally threaded connection 3326 of an end portion 3328 of a second tubular member 3330 having an annular recess 3332 is then positioned within the tubular sleeve 3318 and threadably coupled to the internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310. In an exemplary embodiment, the internal flange 3332 of the tubular sleeve 3318 mates with and is received within the annular recess 3332 of the end portion 3328 of the second tubular member 3330. Thus, the tubular sleeve 3318 is coupled to and surrounds the external surfaces of the first and second tubular members, 3310 and 3328.
The internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310 is a box connection, and the externally threaded connection 3326 of the end portion 3328 of the second tubular member 3330 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 3318 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members, 3310 and 3330. In this manner, during the threaded coupling of the first and second tubular members, 3310 and 3330, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 is also radially expanded and plastically deformed. As a result, the tubular sleeve 3318 may be maintained in circumferential tension and the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, may be maintained in circumferential compression.
Sleeve 3316 increases the axial compression loading of the connection between tubular members 3310 and 3330 before and after expansion by the expansion device 3336. Sleeve 3316 may be secured to tubular members 3310 and 3330, for example, by a heat shrink fit.
In several alternative embodiments, the first and second tubular members, 3310 and 3330, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 3318 during (a) the coupling of the first tubular member 3310 to the second tubular member 3330, (b) the placement of the first and second tubular members in the structure 3334, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 3318 protects the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, during handling and insertion of the tubular members within the structure 3334. In this manner, damage to the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 3318 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 3330 to the first tubular member 3310. In this manner, misalignment that could result in damage to the threaded connections, 3312 and 3326, of the first and second tubular members, 3310 and 3330, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 3318 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 3318 can be easily rotated, that would indicate that the first and second tubular members, 3310 and 3330, are not fully threadably coupled and in intimate contact with the internal flange 3320 of the tubular sleeve. Furthermore, the tubular sleeve 3318 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 3316 and 3328, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 3318 and the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 3312 and 3326, of the first and second tubular members, 3310 and 3330, into the annulus between the first and second tubular members and the structure 3334. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 may be maintained in circumferential tension and the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
In several exemplary embodiments, one or more portions of the first and second tubular members, 3310 and 3330, and the sleeve 3318 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.
Referring to
A first end of a tubular sleeve 3418 that includes an internal flange 3420 and a tapered portion 3422, a second end that includes a tapered portion 3424, and an intermediate portion that includes one or more longitudinally aligned openings 3426, is then mounted upon and receives the end portion 3416 of the first tubular member 3410.
In an exemplary embodiment, the end portion 3416 of the first tubular member 3410 abuts one side of the internal flange 3420 of the tubular sleeve 3418, and the internal diameter of the internal flange 3420 of the tubular sleeve 3416 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 3412 of the end portion 3416 of the first tubular member 3410. An externally threaded connection 3428 of an end portion 3430 of a second tubular member 3432 that includes one or more internal grooves 3434 is then positioned within the tubular sleeve 3418 and threadably coupled to the internally threaded connection 3412 of the end portion 3416 of the first tubular member 3410. In an exemplary embodiment, the internal flange 3420 of the tubular sleeve 3418 mates with and is received within an annular recess 3436 defined in the end portion 3430 of the second tubular member 3432. Thus, the tubular sleeve 3418 is coupled to and surrounds the external surfaces of the first and second tubular members, 3410 and 3432.
The first and second tubular members, 3410 and 3432, and the tubular sleeve 3418 may be positioned within another structure such as, for example, a cased or uncased wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating a conventional expansion device within and/or through the interiors of the first and second tubular members. The tapered portions, 3422 and 3424, of the tubular sleeve 3418 facilitate the insertion and movement of the first and second tubular members within and through the structure, and the movement of the expansion device through the interiors of the first and second tubular members, 3410 and 3432, may be from top to bottom or from bottom to top.
During the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 is also radially expanded and plastically deformed. As a result, the tubular sleeve 3418 may be maintained in circumferential tension and the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, may be maintained in circumferential compression.
Sleeve 3416 increases the axial compression loading of the connection between tubular members 3410 and 3432 before and after expansion by the expansion device. The sleeve 3418 may be secured to tubular members 3410 and 3432, for example, by a heat shrink fit.
During the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the grooves 3414 and/or 3434 and/or the openings 3426 provide stress concentrations that in turn apply added stress forces to the mating threads of the threaded connections, 3412 and 3428. As a result, during and after the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the mating threads of the threaded connections, 3412 and 3428, are maintained in metal to metal contact thereby providing a fluid and gas tight connection. In an exemplary embodiment, the orientations of the grooves 3414 and/or 3434 and the openings 3426 are orthogonal to one another. In an exemplary embodiment, the grooves 3414 and/or 3434 are helical grooves.
In several alternative embodiments, the first and second tubular members, 3410 and 3432, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 3418 during (a) the coupling of the first tubular member 3410 to the second tubular member 3432, (b) the placement of the first and second tubular members in the structure, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 3418 protects the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, during handling and insertion of the tubular members within the structure. In this manner, damage to the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 3418 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 3432 to the first tubular member 3410. In this manner, misalignment that could result in damage to the threaded connections, 3412 and 3428, of the first and second tubular members, 3410 and 3432, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 3416 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 3418 can be easily rotated, that would indicate that the first and second tubular members, 3410 and 3432, are not fully threadably coupled and in intimate contact with the internal flange 3420 of the tubular sleeve. Furthermore, the tubular sleeve 3418 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 3416 and 3430, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 may provide a fluid and gas tight metal-to-metal seal between interior surface of the tubular sleeve 3418 and the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 3412 and 3430, of the first and second tubular members, 3410 and 3432, into the annulus between the first and second tubular members and the structure. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 may be maintained in circumferential tension and the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
In several exemplary embodiments, the first and second tubular members described above with reference to FIGS. 1 to 34c are radially expanded and plastically deformed using the expansion device in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application Ser. No. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18/2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20/2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; and (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 07, 2002, the disclosures of which are incorporated herein by reference.
Referring to
Referring to
In several exemplary embodiments, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202, 204 and/or 3502, prior to a radial expansion and plastic deformation, include a microstructure that is a combination of a hard phase, such as martensite, a soft phase, such as ferrite, and a transitionary phase, such as retained austentite. In this manner, the hard phase provides high strength, the soft phase provides ductility, and the transitionary phase transitions to a hard phase, such as martensite, during a radial expansion and plastic deformation. Furthermore, in this manner, the yield point of the tubular member increases as a result of the radial expansion and plastic deformation. Further, in this manner, the tubular member is ductile, prior to the radial expansion and plastic deformation, thereby facilitating the radial expansion and plastic deformation. In an exemplary embodiment, the composition of a dual-phase expandable tubular member includes (weight percentages): about 0.1% C, 1.2% Mn, and 0.3% Si.
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3602a is then heated at a temperature of 790° C. for about 10 minutes in step 3604.
In an exemplary embodiment, the expandable tubular member 3602a is then quenched in water in step 3606.
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3602a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3602a, the yield strength of the expandable tubular member is about 95 ksi.
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3702a is then heated at a temperature of 790° C. for about 10 minutes in step 3704.
In an exemplary embodiment, the expandable tubular member 3702a is then quenched in water in step 3706.
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3702a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3702a, the yield strength of the expandable tubular member is about 130 ksi.
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3802a is then heated at a temperature of 790° C. for about 10 minutes in step 3804.
In an exemplary embodiment, the expandable tubular member 3802a is then quenched in water in step 3806.
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, the expandable tubular member 3802a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3802a, the yield strength of the expandable tubular member is about 97 ksi.
Referring now to
Referring now to
Referring now to
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experiment embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary experimental embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In several exemplary embodiments, the teachings of the present disclosure are combined with one or more of the teachings disclosed in FR 2 841 626, filed on Jun. 28, 2002, and published on Jan. 2, 2004, the disclosure of which is incorporated herein by reference.
A method of forming a tubular liner within a preexisting structure has been described that includes positioning a tubular assembly within the preexisting structure; and radially expanding and plastically deforming the tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the method further includes positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings include the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings include the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members include the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings include slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly is a first steel alloy including: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a second steel alloy including: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a third steel alloy including: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a fourth steel alloy including: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly. In an exemplary embodiment, yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure. In an exemplary embodiment, the hard phase structure comprises martensite. In an exemplary embodiment, the soft phase structure comprises ferrite. In an exemplary embodiment, the transitional phase structure comprises retained austentite. In an exemplary embodiment, the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austentite. In an exemplary embodiment, the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si.
An expandable tubular member has been described that includes a steel alloy including: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, a yield point of the tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and a yield point of the tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the tubular member after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described that includes a steel alloy including: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, a yield point of the tubular member is at most about 57.8 ksi prior to a radial expansion and plastic deformation; and the yield point of the tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, a yield point of the of the tubular member after a radial expansion and plastic deformation is at least about 28% greater than the yield point of the tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described that includes a steel alloy including: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described that includes a steel alloy including: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the yield point of the expandable tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 40% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the yield point of the expandable tubular member is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 28% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the yield point of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the expandability coefficient of the expandable tubular member, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the expandability coefficient of the expandable tubular member is greater than the expandability coefficient of another portion of the expandable tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
An expandable tubular member has been described, wherein the tubular member has a higher ductility and a lower yield point prior to a radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
A method of radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member has been described that includes radially expanding and plastically deforming the tubular assembly within a preexisting structure; and using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
A system for radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member has been described that includes means for radially expanding the tubular assembly within a preexisting structure; and means for using less power to radially expand each unit length of the first tubular member than required to radially expand each unit length of the second tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
A method of manufacturing a tubular member has been described that includes processing a tubular member until the tubular member is characterized by one or more intermediate characteristics; positioning the tubular member within a preexisting structure; and processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the preexisting structure includes a wellbore that traverses a subterranean formation. In an exemplary embodiment, the characteristics are selected from a group consisting of yield point and ductility. In an exemplary embodiment, processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics includes: radially expanding and plastically deforming the tubular member within the preexisting structure.
An apparatus has been described that includes an expandable tubular assembly; and an expansion device coupled to the expandable tubular assembly; wherein a predetermined portion of the expandable tubular assembly has a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the expansion device includes a rotary expansion device, an axially displaceable expansion device, a reciprocating expansion device, a hydroforming expansion device, and/or an impulsive force expansion device. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1 In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a first steel alloy including: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a second steel alloy including: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a third steel alloy including: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a fourth steel alloy including: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure. In an exemplary embodiment, wherein the hard phase structure comprises martensite. In an exemplary embodiment, wherein the soft phase structure comprises ferrite. In an exemplary embodiment, wherein the transitional phase structure comprises retained austentite. In an exemplary embodiment, the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austentite. In an exemplary embodiment, the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si. In an exemplary embodiment, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: pearlite or pearlite striation. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi.
An expandable tubular member has been described, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 5.8% greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
A method of determining the expandability of a selected tubular member has been described that includes determining an anisotropy value for the selected tubular member, determining a strain hardening value for the selected tubular member; and multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member. In an exemplary embodiment, an anisotropy value greater than 0.12 indicates that the tubular member is suitable for radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.
A method of radially expanding and plastically deforming tubular members has been described that includes selecting a tubular member; determining an anisotropy value for the selected tubular member; determining a strain hardening value for the selected tubular member; multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member; and if the anisotropy value is greater than 0.12, then radially expanding and plastically deforming the selected tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, radially expanding and plastically deforming the selected tubular member includes: inserting the selected tubular member into a preexisting structure; and then radially expanding and plastically deforming the selected tubular member. In an exemplary embodiment, the preexisting structure includes a wellbore that traverses a subterranean formation.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange. In an exemplary embodiment, the recess includes a tapered wall in mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange. In an exemplary embodiment, each tubular member includes a recess. In an exemplary embodiment, each flange is engaged in a respective one of the recesses. In an exemplary embodiment, each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges.
A method of joining radially expandable multiple tubular members has also been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members. In an exemplary embodiment, the method further includes providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the method further includes providing a flange at each tapered end wherein each tapered end is formed on a respective flange. In an exemplary embodiment, the method further includes providing a recess in each tubular member. In an exemplary embodiment, the method further includes engaging each flange in a respective one of the recesses. In an exemplary embodiment, the method further includes providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein at least a portion of the sleeve is comprised of a frangible material.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein the wall thickness of the sleeve is variable.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a frangible material; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a variable wall thickness; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
In several exemplary embodiments of the apparatus described above, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
In several exemplary embodiments of the method described above, the method further includes maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression before, during, and/or after the radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, a tubular sleeve coupled to and receiving end portions of the first and second tubular members, and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member, wherein the sealing element is positioned within an annulus defined between the first and second tubular members. In an exemplary embodiment, the annulus is at least partially defined by an irregular surface. In an exemplary embodiment, the annulus is at least partially defined by a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a sleeve, mounting the sleeve for overlapping and coupling the first and second tubular members, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, and sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element. In an exemplary embodiment, the sealing element includes an irregular surface. In an exemplary embodiment, the sealing element includes a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded connections.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, providing a plurality of sleeves, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a plurality of sleeves, coupling the first and second tubular members, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a threaded connection for coupling a portion of the first and second tubular members, and a tubular sleeves coupled to and receiving end portions of the first and second tubular members, wherein at least a portion of the threaded connection is upset. In an exemplary embodiment, at least a portion of tubular sleeve penetrates the first tubular member.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members, and upsetting the threaded coupling. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom, and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member, a second tubular member engaged with the first tubular member forming a joint, a sleeve overlapping and coupling the first and second tubular members at the joint, and one or more stress concentrators for concentrating stresses in the joint. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, engaging a second tubular member with the first tubular member to form a joint, providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange, and concentrating stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members, and means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.
A radially expandable tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the carbon content of the predetermined portion of the apparatus is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the apparatus is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.36. In an exemplary embodiment, the apparatus further includes means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes one or more stress concentrators for concentrating stresses in the joint. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the apparatus further includes a threaded connection for coupling a portion of the first and second tubular members; wherein at least a portion of the threaded connection is upset. In an exemplary embodiment, at least a portion of tubular sleeve penetrates the first tubular member. In an exemplary embodiment, the apparatus further includes means for increasing the axial compression loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for increasing the axial tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for increasing the axial compression and tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for avoiding stress risers in the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, at least a portion of the sleeve is comprised of a frangible material. In an exemplary embodiment, the wall thickness of the sleeve is variable. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the apparatus further includes positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and radially expanding and plastically deforming the other apparatus within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of other portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus. In an exemplary embodiment, the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the apparatus. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the apparatus comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the other portion of the apparatus. In an exemplary embodiment, the apparatus comprises a wellbore casing. In an exemplary embodiment, the apparatus comprises a pipeline. In an exemplary embodiment, the apparatus comprises a structural support.
A radially expandable tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the recess includes a tapered wall in mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange. In an exemplary embodiment, each tubular member includes a recess. In an exemplary embodiment, each flange is engaged in a respective one of the recesses. In an exemplary embodiment, each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the apparatus further includes positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and radially expanding and plastically deforming the other apparatus within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of other portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus. In an exemplary embodiment, the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the apparatus. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the apparatus comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the other portion of the apparatus. In an exemplary embodiment, the apparatus comprises a wellbore casing. In an exemplary embodiment, the apparatus comprises a pipeline. In an exemplary embodiment, the apparatus comprises a structural support.
A method of joining radially expandable tubular members has been provided that includes: providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, the method further includes: maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members; and concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: concentrating stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, at least a portion of the sleeve is comprised of a frangible material. In an exemplary embodiment, the sleeve comprises a variable wall thickness. In an exemplary embodiment, the method further includes maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes: maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes: threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; providing a plurality of sleeves; and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings. In an exemplary embodiment, the method further includes: threadably coupling the first and second tubular members; and upsetting the threaded coupling. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support.
A method of joining radially expandable tubular members has been described that includes: providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the method further includes: providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the method further includes: providing a flange at each tapered end wherein each tapered end is formed on a respective flange. In an exemplary embodiment, the method further includes: providing a recess in each tubular member. In an exemplary embodiment, the method further includes: engaging each flange in a respective one of the recesses. In an exemplary embodiment, the method further includes: providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; a first threaded connection for coupling a portion of the first and second tubular members; a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members; a tubular sleeve coupled to and receiving end portions of the first and second tubular members; and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member; wherein the sealing element is positioned within an annulus defined between the first and second tubular members; and wherein, prior to a radial expansion and plastic deformation of the assembly, a predetermined portion of the assembly has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the predetermined portion of the assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the assembly further includes: positioning another assembly within the preexisting structure in overlapping relation to the assembly; and radially expanding and plastically deforming the other assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the assembly, a predetermined portion of the other assembly has a lower yield point than another portion of the other assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises an end portion of the assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises a plurality of predetermined portions of the assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises a plurality of spaced apart predetermined portions of the assembly. In an exemplary embodiment, the other portion of the assembly comprises an end portion of the assembly. In an exemplary embodiment, the other portion of the assembly comprises a plurality of other portions of the assembly. In an exemplary embodiment, the other portion of the assembly comprises a plurality of spaced apart other portions of the assembly. In an exemplary embodiment, the assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the assembly; and wherein the tubular members comprise the other portion of the assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the assembly. In an exemplary embodiment, the predetermined portion of the assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the assembly comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the assembly comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the assembly comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the assembly comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the assembly is greater than the expandability coefficient of the other portion of the assembly. In an exemplary embodiment, the assembly comprises a wellbore casing. In an exemplary embodiment, the assembly comprises a pipeline. In an exemplary embodiment, the assembly comprises a structural support. In an exemplary embodiment, the annulus is at least partially defined by an irregular surface. In an exemplary embodiment, the annulus is at least partially defined by a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.
A method of joining radially expandable tubular members is provided that includes providing a first tubular member; providing a second tubular member; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members; threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element, wherein the first tubular member, second tubular member, sleeve, and the sealing element define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the sealing element includes an irregular surface. In an exemplary embodiment, the sealing element includes a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, and 0.02% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, and 0.03% Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.16% Cu, 0.05% Ni, and 0.05% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02% C, 1.31% Mn, 0.02% P, 0.001% S, 0.45% Si, 9.1% Ni, and 18.7% Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28% greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support. In an exemplary embodiment, the sleeve comprises: a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members. In an exemplary embodiment, the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; wherein at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection. In an exemplary embodiment, the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; and wherein at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded connections. In an exemplary embodiment, the carbon content of the tubular member is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.21. In an exemplary embodiment, the tubular member comprises a wellbore casing.
An expandable tubular member has been described, wherein the carbon content of the tubular member is greater than 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.36. In an exemplary embodiment, the tubular member comprises a wellbore casing.
A method of selecting tubular members for radial expansion and plastic deformation has been described that includes: selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is less than or equal to 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.21, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.
A method of selecting tubular members for radial expansion and plastic deformation has been described that includes: selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is greater than 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.36, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.
An expandable tubular member has been described that includes: a tubular body; wherein a yield point of an inner tubular portion of the tubular body is less than a yield point of an outer tubular portion of the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.
A method of manufacturing an expandable tubular member has been described that includes: providing a tubular member; heat treating the tubular member; and quenching the tubular member; wherein following the quenching, the tubular member comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: pearlite or pearlite striation. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the heat treating comprises heating the provided tubular member for about 10 minutes at 790° C. In an exemplary embodiment, the quenching comprises quenching the heat treated tubular member in water. In an exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite. In an exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite. In an exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi. In an exemplary embodiment, the method further includes: positioning the quenched tubular member within a preexisting structure; and radially expanding and plastically deforming the tubular member within the preexisting structure.
A method for manufacturing an expandable tubular member has been described that includes providing a tubular member, heat treating the tubular member, quenching the tubular member, and cold working the tubular member, whereby upon cold working, the yield strength of the material is increased. In an exemplary embodiment, the tubular member is a connection for an expandable tubular member. In an exemplary embodiment, the yield strength increases from approximately 35 ksi to 80 ksi.
A method for expanding an expandable tubular member has been described that includes providing a tubular member, lubricating the tubular member, and expanding the tubular member. In an exemplary embodiment, the tubular member is a connection for an expandable tubular member.
A method for formability evaluation has been described that includes providing a tubular member, measuring a plurality of stress and strain property parameters for the tubular member, measuring a Charpy V-notch impact value parameter for the tubular member, measuring a stress rupture parameter for the tubular member, measuring a strain hardening exponent parameter for the tubular member, measuring a plastic strain ratio parameter for the tubular member, comparing the parameters measured for first tubular member to a plurality of parameters measured for a second tubular member, and selecting the first or second tubular member to manufacture an expandable tubular member. In an exemplary embodiment, the stress rupture parameter includes a parameter for burst. In an exemplary embodiment, the stress rupture parameter includes a parameter for collapse. In an exemplary embodiment, a tubular member with a plastic strain ratio parameter of greater than 1.0 will be more resistant to thinning and better suited to tubular expansion.
An expandable tubular member has been described that includes a tensile strength in the range of 60 ksi to 120 ksi, a yield strength in the range of 40 ksi to 100 ksi, a yield strength to tensile strength ratio in the range of 50% to 85%, a minimum elongation of 35%, a minimum width reduction of 40%, a minimum thickness reduction of 30%, and a minimum anisotropy of 1.5. In an exemplary embodiment, the expandable tubular member further includes a minimum flare expansion of 45%. In an exemplary embodiment, the expandable tubular member further includes a minimum absorbed energy at negative 4 degrees Fahrenheit of 80 ft-lbs in the longitudinal direction, 60 ft-lbs in the transverse direction, and 60 ft lbs in the transverse weld area.
A method for transforming the yield strength of an expandable tubular member has been described that includes providing a manufactured tubular member, cold rolling the tubular member, inter-critical annealing the tubular member, expanding the tubular member, and heating the tubular member. In an exemplary embodiment, the tubular member comprises a dual steel composition comprising, by weight percentage, 0.12% C, 0.4% Si, 1.5% Mn, and 0.02% Nb.
An expandable tubular member has been described that includes a tensile strength in the range of 80 ksi to 100 ksi, a yield strength in the range of 60 ksi to 90 ksi, a maximum yield strength to tensile strength ratio of 85%, a minimum elongation of 22%, a minimum width reduction of 30%, a minimum thickness reduction of 35%, and a minimum anisotropy of 0.8. In an exemplary embodiment, the expandable tubular member further includes a minimum flare expansion of 45%. In an exemplary embodiment, the expandable tubular member further includes a minimum absorbed energy at negative 4 degrees Fahrenheit of 80 ft-lbs in a longitudinal direction, 60 ft-lbs in a transverse direction, and 60 ft lbs in a transverse weld area.
An expandable tubular member has been described that includes a tensile strength in the range of 60 ksi to 120 ksi, a yield strength in the range of 40 ksi to 100 ksi, a yield strength to tensile strength ratio in the range of 50% to 85%, a minimum elongation of 35%, a minimum width reduction of 40%, a minimum thickness reduction of 30%, and a minimum anisotropy of 1.5. In an exemplary embodiment, the expandable tubular member further includes a minimum flare expansion of 75%. In an exemplary embodiment, the expandable tubular member further includes a minimum absorbed energy at negative 4 degrees Fahrenheit of 80 ft-lbs in a longitudinal direction, 60 ft-lbs in a transverse direction, and 60 ft lbs in a transverse weld area.
A method for transforming the yield strength of an expandable tubular member has been described that includes providing a manufactured tubular member, inter-critical annealing the tubular member, expanding the tubular member, and heating the tubular member.
An expandable tubular member has been described that includes a yield strength of approximately 76 ksi, a tensile strength of approximately 82 ksi, and an elongation of approximately 32%.
An expandable tubular member has been described that includes a surface, a self lubricating hard coating on the surface, and a self lubricating soft coating on the surface. In an exemplary embodiment, the self-lubricating soft coating comprises film grease. In an exemplary embodiment, the self lubricating soft coating comprises a lubricated mud. In an exemplary embodiment, the self lubricating soft coating comprises a film grease and a lubricated mud. In an exemplary embodiment, the member comprises a friction coefficient of not more than 0.05. In an exemplary embodiment, the member comprises a friction coefficient of approximately 0.05. In an exemplary embodiment, the member comprises a friction coefficient of approximately 0.075. In an exemplary embodiment, the member comprises a friction coefficient of approximately 0.1. In an exemplary embodiment, the member comprises a friction coefficient of approximately 0.125.
An expandable tubular member has been described that includes a yield strength in the range of 40 ksi to 80 ksi, a maximum yield strength to tensile strength ratio of 0.5, a minimum elongation of 30%, a minimum width reduction of 45%, a minimum wall thickness reduction of 30%, and a minimum anisotropy of 1.5.
An expandable tubular member has been described that includes a friction coefficient of 0.02, whereby the member may be expanded by a force below 100000 lbs. In an exemplary embodiment, the member has approximately a 6 inch diameter.
An expandable tubular member has been described that includes a lubricant resulting in a friction coefficient of 0.125, a wall thickness of approximately 0.305 inches, and an expansion force of approximately 146000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 25 and a collapse strength of approximately 2400 ksi.
An expandable tubular member has been described that includes a lubricant resulting in a friction coefficient of 0.075, a wall thickness of approximately 0.350 inches, and an expansion force of approximately 143000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 22 and a collapse strength of approximately 3250 ksi.
An expandable tubular member has been described that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.450 inches, and an expansion force of approximately 150000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 17 and a collapse strength of approximately 5800 ksi.
An expandable tubular member has been described that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.5 inches, and an expansion force of approximately 126000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 15 and a collapse strength of approximately 5350 ksi. In an exemplary embodiment, the member includes a 55 ksi steel.
An expandable tubular member has been described that includes a lubricant resulting in a friction coefficient of 0.02, a wall thickness of approximately 0.5 inches, and an expansion force of approximately 127000 lbs, wherein the expansion force allows a diameter to thickness ratio of approximately 15 and a collapse strength of approximately 8400 ksi. In an exemplary embodiment, the member includes a steel with a 55 ksi yield before expansion and a 100 ksi yield after expansion.
An expandable tubular member has been described that includes a composition, by weight percentage, of 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
An expandable tubular member has been described that includes a composition, by weight percentage, of 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti.
An expandable tubular member has been described that includes a composition, by weight percentage, of 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.3% Si, 0.16% Cu, 0.05% Ni, 0.05% Cr, 0.06% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
An expandable tubular member has been described that includes a composition, by weight percentage, of 0.03% C, 1.48% Mn, 0.014% P, 0.002% S, 0.16% Si, 0.02% Cu, 0.01% Ni, 0.02% Cr, 0.06% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.
An expandable tubular member has been described that includes, after a 16% expansion, approximately a 21% change in yield strength, approximately a 24% change in yield ratio, approximately a 18% change in elongation percentage, approximately a 8% change in width reduction percentage, approximately a 15% change in wall thickness reduction percentage, and approximately a 4% change in anisotropy.
An expandable tubular member has been described that includes, after a 15.6% expansion, approximately a 70% change in yield strength, approximately a 25% change in yield ratio, approximately a 67% change in elongation percentage, approximately a 28% change in width reduction percentage, approximately a 7% change in wall thickness reduction percentage, and approximately a 75% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 5% change in yield strength, approximately a 11% change in yield ratio, approximately a 20% change in elongation percentage, approximately a 43% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 52% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 10% change in yield strength, approximately a 3% change in yield ratio, approximately a 30% change in elongation percentage, approximately a 13% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 17% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 46% change in yield strength, approximately a 20% change in yield ratio, approximately a 91% change in elongation percentage, approximately a 15% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 18% change in anisotropy.
An expandable tubular member has been described that includes, after a 16% expansion, approximately a 38% change in yield strength, approximately a 20% change in yield ratio, approximately a 11% change in elongation percentage, approximately a 9% change in width reduction percentage, approximately a 4% change in wall thickness reduction percentage, and approximately a 4% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 31% change in yield strength, approximately a 14% change in yield ratio, approximately a 48% change in elongation percentage, approximately a 13% change in width reduction percentage, approximately a 2% change in wall thickness reduction percentage, and approximately a 12% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 38% change in yield strength, approximately a 21% change in yield ratio, approximately a 55% change in elongation percentage, approximately a 16% change in width reduction percentage, approximately a 9% change in wall thickness reduction percentage, and approximately a 13% change in anisotropy.
An expandable tubular member has been described that includes, after a 16% expansion, approximately a 33% change in yield strength, approximately a 26% change in yield ratio, approximately a 30% change in elongation percentage, approximately a 15% change in width reduction percentage, approximately a 9% change in wall thickness reduction percentage, and approximately a 10% change in anisotropy.
An expandable tubular member has been described that includes, after a 24% expansion, approximately a 41% change in yield strength, approximately a 27% change in yield ratio, approximately a 40% change in elongation percentage, approximately a 21% change in width reduction percentage, approximately a 16% change in wall thickness reduction percentage, and approximately a 5% change in anisotropy.
An expandable tubular member has been described that includes a tensile strength of approximately 80 ksi after 16% expansion, and a tensile strength of approximately 82 ksi after 24% expansion.
An expandable tubular member has been described that includes a tensile strength of approximately 82 ksi after 16% expansion, and a tensile strength of approximately 88 ksi after 24% expansion.
An expandable tubular member has been described that includes a tensile strength of approximately 80 ksi before expansion, a tensile strength of approximately 90 ksi after 16% expansion, and a tensile strength of approximately 92 ksi after 24% expansion.
An expandable tubular member has been described that includes a tensile strength of approximately 115 ksi before expansion, a tensile strength of approximately 120 ksi after 15.2% expansion, and a tensile strength of approximately 121 ksi after 25.2% expansion.
An expandable tubular member has been described that includes a tensile strength of approximately 100 ksi before expansion, and a tensile strength of approximately 126 ksi after 31.3% expansion.
An expandable tubular member has been described that includes a tensile strength of approximately 114 ksi before expansion, and a tensile strength of approximately 140 ksi after 15.6% expansion.
An expandable tubular member has been described that includes, upon quenching in water at approximately 775° C., a tensile strength of 94 ksi and a yield strength of 56 ksi.
An expandable tubular member has been described that includes, upon quenching in water at approximately 790° C., a tensile strength of 94 ksi and a yield strength of 59 ksi.
An expandable tubular member has been described that includes, upon quenching in water at approximately 735° C., a tensile strength of 94 ksi and a yield strength of 59 ksi.
An expandable tubular member has been described that includes, upon quenching in oil at approximately 775° C., a tensile strength of 84 ksi and a yield strength of 49 ksi.
An expandable tubular member has been described that includes, upon quenching in oil at approximately 820° C., a tensile strength of 82 ksi and a yield strength of 61 ksi.
An expandable tubular member has been described that includes, upon quenching in oil at approximately 750° C., a tensile strength of 109 ksi and a yield strength of 58 ksi.
An expandable tubular member has been described that includes, by weight percentage, 0.1% C, 1.5% Mn, and 0.3% Si. In an exemplary embodiment, the member further includes martensite in the range of 15% to 30%.
An expandable tubular member has been described that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.86, a longitudinal elongation of approximately 14.8%, a width reduction of approximately 38%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.87.
An expandable tubular member has been described that includes a yield strength of approximately 81 ksi, a yield strength to tensile strength ratio of approximately 0.83, a longitudinal elongation of approximately 14.9%, a width reduction of approximately 38%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.83.
An expandable tubular member has been described that includes a yield strength of approximately 79 ksi, a yield strength to tensile strength ratio of approximately 0.82, a longitudinal elongation of approximately 15.9%, a width reduction of approximately 44%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 1.03.
An expandable tubular member has been described that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.83, a longitudinal elongation of approximately 15.3%, a width reduction of approximately 40%, a wall thickness reduction of approximately 43%, and an anisotropy of approximately 0.92.
An expandable tubular member has been described that includes an elongation of approximately 21%, a width reduction of approximately 35%, a wall thickness reduction of approximately 38%, and an anisotropy of approximately 0.89.
An expandable tubular member has been described that includes a yield strength of approximately 77 ksi, a yield strength to tensile strength ratio of approximately 0.82, a longitudinal elongation of approximately 16%, a width reduction of approximately 32%, a wall thickness reduction of approximately 45%, and an anisotropy of approximately 0.65.
An expandable tubular member has been described that includes a yield strength of approximately 78 ksi, a yield strength to tensile strength ratio of approximately 0.8, a longitudinal elongation of approximately 16%, a width reduction of approximately 31%, a wall thickness reduction of approximately 45%, and an anisotropy of approximately 0.63.
An expandable tubular member has been described that includes, upon quenching and tempering, a yield strength of approximately 84 ksi, a yield strength to tensile strength ratio of approximately 0.84, a longitudinal elongation of approximately 20.5%, a width reduction of approximately 40%, a wall thickness reduction of approximately 42%, and an anisotropy of approximately 0.94.
An expandable tubular member has been described that includes a yield strength of approximately 80 ksi, a yield strength to tensile strength ratio of approximately 0.72, an elongation of approximately 35%, a width reduction of approximately 35%, a wall thickness reduction of approximately 33%, and an anisotropy of approximately 0.92. In an exemplary embodiment, the member is processed comprising the steps of hot stretching, reducing at approximately 1950° C., and rotary straightening.
An expandable tubular member has been described that includes a yield strength of approximately 90 ksi, a yield strength to tensile strength ratio of approximately 0.88, an elongation of approximately 25%, a width reduction of approximately 22%, a wall thickness reduction of approximately 20%, and an anisotropy of approximately 1.1. In an exemplary embodiment, the member is processed comprising the steps of normalization at approximately 1850° C., cold drawing, annealing at approximately 1050° C., and rotary straightening.
An expandable tubular member has been described that includes a yield strength of approximately 88 ksi, a yield strength to tensile strength ratio of approximately 0.87, an elongation of approximately 16%, a width reduction of approximately 24%, a wall thickness reduction of approximately 30%, and an anisotropy of approximately 0.76. In an exemplary embodiment, the member is processed comprising the steps of hot stretching, reducing at approximately 1950° C., cold drawing, annealing, and rotary straightening.
An expandable tubular member has been described that includes a yield strength of approximately 48 ksi, a yield strength to tensile strength ratio of approximately 0.73, an elongation of approximately 38%, a width reduction of approximately 43%, a wall thickness reduction of approximately 49%, and an anisotropy of approximately 0.83. In an exemplary embodiment, the member is processed comprising the steps of hot stretching, reducing at approximately 1850° C., and rotary straightening.
An expandable tubular member has been described that includes a yield strength of approximately 46 ksi, a yield strength to tensile strength ratio of approximately 0.69, an elongation of approximately 40%, a width reduction of approximately 50%, a wall thickness reduction of approximately 53%, and an anisotropy of approximately 0.93. In an exemplary embodiment, the member is processed comprising the steps of hot reducing at approximately 1850° C., cold sizing, and rotary straightening.
An expandable tubular member has been described that includes a yield strength of approximately 53 ksi, a yield strength to tensile strength ratio of approximately 0.85, an elongation of approximately 49%, a width reduction of approximately 49%, a wall thickness reduction of approximately 46%, and an anisotropy of approximately 1.1. In an exemplary embodiment, the member is processed comprising the steps of hot stretching, reducing at approximately 1850° C., and rotary straightening.
An expandable tubular member has been described that includes, upon quenching and tempering, after a flare expansion of 42%, an absorbed energy in the longitudinal direction of 125 ft-lbs, an absorbed energy in the transverse direction of 59 ft-lbs, and an absorbed energy in the weld of 176 ft-lbs.
An expandable tubular member has been described that includes, upon quenching and tempering, after a flare expansion of 52%, an absorbed energy in the longitudinal direction of 145 ft-lbs, an absorbed energy in the transverse direction of 59 ft-lbs and an absorbed energy in the weld of 174 ft-lbs.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments. In addition, one or more of the elements and teachings of the various illustrated embodiments may be omitted, at least in part, and/or combined, at least in part, with one or more of the other elements and teachings of the various illustrative embodiments.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
The present application is the National Stage patent application for PCT patent application serial number PCT/US2004/026345, attorney docket number 25791.301.02, filed on Aug. 13, 2004, which claimed the benefit of the filing dates of: 1) U.S. provisional patent application Ser. No. 60/585,370, attorney docket number 25791.299, filed on Jul. 2, 2004, and 2) U.S. provisional patent application Ser. No. 60/495,056, attorney docket number 25791.301, filed on Aug. 14, 2003, the disclosures of which are incorporated herein by reference. The present application is also a continuation in part of the following: 1) U.S. utility patent application Ser. No. 10/528,498, attorney docket no. 25791.118.08, filed on Mar. 18, 2005, which was the National Stage patent application for PCT patent application serial number pct/us03/25667, attorney docket no. 25791.118.02, filed on Aug. 13, 2003, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed Sep. 20, 2002; 2) U.S. utility patent application Ser. No. 10/528,499, attorney docket no. 25791.121.05, filed on Mar. 18, 2005, which was the National Stage patent application for PCT patent application serial number PCT/US2003/25676, attorney docket no. 25791.121.02, filed on Aug. 18, 2003, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed Sep. 20, 2002; and 3) U.S. utility patent application Ser. No. 10/528,222, attorney docket no. 25791.129.03, filed on Aug. 18, 2005, which was the National Stage patent application for PCT patent application serial number PCT/US2003/025716, attorney docket no. 25791.129.02, filed on Aug. 18, 2003, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, the disclosures of which are incorporated herein by reference. The present application is also a continuation-in-part of U.S. utility patent application Ser. No. 10/528,223, attorney docket number 25791.127.03, filed on Mar. 18, 2005, which is a National Stage patent application of PCT patent application serial number PCT/2003/025707, attorney docket number 25791.127.02, filed on Aug. 18, 2003, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/412,196, attorney docket no 25791.127, filed on Sep. 20, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/525,402, attorney docket number 25791.120.05, filed on Feb. 23, 2005, which is a National Stage patent application of PCT patent application serial number PCT/US2003/025676, attorney docket number 25791.120.02, filed on Aug. 18, 2003, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/405,394, attorney docket no 25791.120, filed on Aug. 23, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/525,332, attorney docket number 25791.119.03, filed on Jul. 5, 2005, which is a National Stage patent application of PCT patent application serial number PCT/US2003/025677, attorney docket number 25791.119.02, filed on Aug. 18, 2003, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/405,610 attorney docket no 25791.119, filed on Aug. 23, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/522,039, attorney docket number 25791.106.05, filed on Jan. 19, 2005, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/511,410, attorney docket number 25791.101.05, filed on Oct. 14, 2004 which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/372,632, attorney docket number 25791.101, filed on Apr. 15, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/510,966, attorney docket number 25791.93.05, filed on Oct. 12, 2004, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/372,048, attorney docket number 25791.93, filed on Apr. 12, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/500,745, attorney docket number 25791.92.05, filed on Jul. 6, 2004, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 10/500,745, attorney docket number 25791.92, filed on Dec. 10, 2002, the disclosures of which are incorporated herein by reference. This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent spplication Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, attorney docket no. 25791.10.04, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, attorney docket no. 25791.18, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, attorney docket no. 25791.25.08, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, attorney docket no. 25791.27.08, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, attorney docket no. 25791.31, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, attorney docket no. 25791.34.02, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, attorney docket no. 25791.36.03, which claims priority from provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, attorney docket no. 25791.38.07, which claims priority from provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, attorney docket no. 25791.40, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, attorney docket no. 25791.44, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, attorney docket no. 25791.45.07, which claims priority from provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, attorney docket no. 25791.46.07, which claims priority from provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, attorney docket no. 25791.47.03, which claims priority from provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, attorney docket no. 25791.48.06, which claims priority from provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, attorney docket no. 25791.51.06, which claims priority from provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, attorney docket no. 25791.53, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, attorney docket no. 25791.56, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, attorney docket no. 25791.57, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, attorney docket no. 25791.60, filed on Oct. 3, 2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, attorney docket no. 25791.62, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, attorney docket no. 25791.63, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, attorney docket no. 25791.64, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, attorney docket no. 25791.65, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, attorney docket no. 25791.66, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US02/25727, filed on Aug. 14, 2002, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (45) PCT application US02/39425, filed on Dec. 10, 2002, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US03/00609, filed on Jan. 9, 2003, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, attorney docket no. 25791.71, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, attorney docket no. 25791.74, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, attorney docket no. 25791.75, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, attorney docket no. 25791.76, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, attorney docket no. 25791.77, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, attorney docket no. 25791.78, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, attorney docket no. 25791.79, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, attorney docket no. 25791.80, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, attorney docket no. 25791.81, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, attorney docket no. 25791.82, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, attorney docket no. 25791.83, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, attorney docket no. 25791.84, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, attorney docket no. 25791.85, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, attorney docket no. 25791.86, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application U.S. Ser. No. 02/36157, filed on Nov. 12, 2002, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, (63) PCT application U.S. Ser. No. 02/36267, filed on Nov. 12, 2002, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88, filed on Nov. 12, 2001, (64) PCT application US03/11765, filed on Apr. 16, 2003, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, attorney docket no. 25791.89, filed on May 29, 2002, (65) PCT application US03/15020, filed on May 12, 2003, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002, (66) PCT application U.S. Ser. No. 02/39418, filed on Dec. 10, 2002, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, (67) PCT application U.S. Ser. No. 03/06544, filed on Mar. 4, 2003, attorney docket no. 25791.93.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, attorney docket no. 25791.94, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (69) PCT application US03/04837, filed on Feb. 29, 2003, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, attorney docket no. 25791.97, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, attorney docket no. 25791.98, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, attorney docket no. 25791.99, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, attorney docket no. 25791.100, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US03/10144, filed on Mar. 28, 2003, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, attorney docket no. 25791.102, filed on Sep. 20, 2002, (76) PCT application U.S. Ser. No. 03/14153, filed on May 6, 2003, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002, (77) PCT application US03/19993, filed on Jun. 24, 2003, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, (78) PCT application U.S. Ser. No. 03/13787, filed on May 5, 2003, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, (79) PCT application US03/18530, filed on Jun. 11, 2003, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002, (80) PCT application US03/20694, filed on Jul. 1, 2003, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, attorney docket no. 25791.110, filed on Jul. 24, 2002, (81) PCT application US03/20870, filed on Jul. 2, 2003, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, attorney docket no. 25791.111, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, attorney docket no. 25791.112, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, attorney docket no. 25791.114, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, attorney docket no. 25791.115, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, attorney docket no. 25791.117, filed, on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, attorney docket no. 25791.119, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, attorney docket no. 25791.120, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed on Sep. 20, 2002, (90) PCT application U.S. Ser. No. 03/24779, filed on Aug. 8, 2003, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, attorney docket no. 25791.125, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, attorney docket no. 25791.126, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, attorney docket no. 25791.127, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, attorney docket no. 25791.128, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, attorney docket no. 25791.145, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, attorney docket no. 25791.151, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, attorney docket no. 25791.157, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, attorney docket no. 25791.185, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, attorney docket no. 25791.186, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, attorney docket no. 25791.193, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, attorney docket no. 25791.200, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, attorney docket no. 25791.213, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, attorney docket no. 25791.225, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, attorney docket no. 25791.228, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, attorney docket no. 25791.236, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, attorney docket no. 25791.238, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, attorney docket no. 25791.239, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, attorney docket no. 25791.241, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, attorney docket no. 25791.253, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, attorney docket no. 25791.256, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, attorney docket no. 25791.260, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, attorney docket no. 25791.262, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, attorney docket no. 25791.268, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, attorney docket no. 25791.270, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, attorney docket no. 25791.272, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, attorney docket no. 25791.273, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, attorney docket no. 25791.277, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, attorney docket no. 25791.286, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, attorney docket no. 25791.292, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 12001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, attorney docket no. 25791.257, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (122) PCT patent application serial no. PCT/US04/06246, attorney docket no. 25791.238.02, filed on Feb. 26, 2004, (123) PCT patent application serial number PCT/US04/08170, attorney docket number 25791.40.02, filed on Mar. 15, 2004, (124) PCT patent application serial number PCT/US04/08171, attorney docket number 25791.236.02, filed on Mar. 15, 2004, (125) PCT patent application serial number PCT/US04/08073, attorney docket number 25791.262.02, filed on Mar. 18, 2004, (126) PCT patent application serial number PCT/US04/07711, attorney docket number 25791.253.02, filed on Mar. 11, 2004, (127) PCT patent application serial number PCT/US2004/009434, attorney docket number 25791.260.02, filed on Mar. 26, 2004, (128) PCT patent application serial number PCT/US2004/010317, attorney docket number 25791.270.02, filed on Apr. 2, 2004, (129) PCT patent application serial number PCT/US2004/010712, attorney docket number 25791.272.02, filed on Apr. 7, 2004, (130) PCT patent application serial number PCT/US2004/010762, attorney docket number 25791.273.02, filed on Apr. 6, 2004, (131) PCT patent application serial number PCT/2004/011973, attorney docket number 25791.277.02, filed on Apr. 15, 2004, (132) U.S. provisional patent application Ser. No. 60/495,056, attorney docket number 25791.301, filed on Aug. 14, 2003, (133) U.S. provisional patent application Ser. No. 60/600,679, attorney docket number 25791.194, filed on Aug. 11, 2004, (134) PCT patent application serial number PCT/US2005/027318, attorney docket number 25791.329.02, filed on Jul. 29, 2005, the disclosures of which are incorporated herein by reference. (135) PCT patent application serial number PCT/US2005/028936, attorney docket number 25791.338.02, filed on Aug. 12, 2005, (136) PCT patent application serial number PCT/US2005/028669, attorney docket number 25791.194.02, filed on Aug. 11, 2005, (137) PCT patent application serial number PCT/US2005/028453, attorney docket number 25791.371, filed on Aug. 11, 2005, (138) PCT patent application serial number PCT/US2005/028641, attorney docket number 25791.372, filed on Aug. 11, 2005, (139) PCT patent application serial number PCT/US2005/028819, attorney docket number 25791.373, filed on Aug. 11, 2005, (140) PCT patent application serial number PCT/US2005/028446, attorney docket number 25791.374, filed on Aug. 11, 2005, (141) PCT patent application serial number PCT/US2005/028642, attorney docket number 25791.375, filed on Aug. 11, 2005, (142) PCT patent application serial number PCT/US2005/028451, attorney docket number 25791.376, filed on Aug. 11, 2005, and (143). PCT patent application serial number PCT/US2005/028473, attorney docket number 25791.377, filed on Jul. 29, 2005, (144) U.S. National Stage application Ser. No. 10/546,084, attorney docket no. 25791.185.05, filed on Aug. 17, 2005; (145) U.S. National Stage application Ser. No. 10/546,082, attorney docket no. 25791.378, filed on Aug. 17, 2005; (146) U.S. National Stage application Ser. No. 10/546,076, attorney docket no. 25791.379, filed on Aug. 17, 2005; (147) U.S. National Stage application Ser. No. 10/546,936, attorney docket no. 25791.380, filed on Aug. 17, 2005; (148) U.S. National Stage application Ser. No. 10/546,079, attorney docket no. 25791.381, filed on Aug. 17, 2005; (149) U.S. National Stage application Ser. No. 10/545,941, attorney docket no. 25791.382, filed on Aug. 17, 2005; (150) U.S. National Stage application Ser. No. 10/546,078, attorney docket no. 25791.383, filed on Aug. 17, 2005; (151) U.S. Provisional Patent Application No. 60/702,935, attorney docket no. 25791.133 filed on Jul. 27, 2005; (152) U.S. National Stage application Ser. No. 10/548,934, attorney docket no. 25791.253.05, filed on Sep. 12, 2005; (153) U.S. National Stage application Ser. No. 10/549,410, attorney docket no. 25791.262.05, filed on Sep. 13, 2005; (154) U.S. Provisional Patent Application No. 60/717,391, attorney docket no. 25791.214 filed on Sep. 15, 2005; (155) U.S. National Stage application Ser. No. 10/550,906, attorney docket no. 25791.260.06, filed on Sep. 27, 2005; (156) U.S. Provisional Patent Application No. 60/721,579, attorney docket no. 25791.327 filed on Sep. 28, 2005; (157) U.S. National Stage application Ser. No. 10/551,880, attorney docket no. 25791.270.06, filed on Sep. 30, 2005; (158) U.S. National Stage application Ser. No. 10/552,253, attorney docket no. 25791.273.06, filed on Oct. 4, 2005; (159) U.S. National Stage application Ser. No. 10/552,790, attorney docket no. 25791.272.06, filed on Oct. 11, 2005; (160) U.S. Provisional Patent Application No. 60/7251,81, attorney docket no. 25791.184 filed on Oct. 11, 2005; (161) U.S. National Stage application Ser. No. 10/553,094, attorney docket no. 25791.193.03, filed on Oct. 13, 2005; (162) U.S. Utility patent application Ser. No. 11/249,967, attorney docket no. 25791.384 filed on Oct. 13, 2005; (163) U.S. National Stage application Ser. No. 10/553,566, attorney docket no. 25791.277.06, filed on Oct. 17, 2005; (164) U.S. Provisional Patent Application No. 60/721,579, attorney docket no. 25791.327 filed on Nov. 4, 2005; (165) U.S. Provisional Patent Application No. 60/734,302, attorney docket no. 25791.24 filed on Nov. 7, 2005; (166) PCT Patent Application No. PCT/US2005/______, attorney docket no. 25791.326.02; (167) PCT Patent Application No. PCT/US2006/______, attorney docket no. 25791.324.02 filed on Jan. 20, 2006, and (168) PCT Patent Application No. PCT/US2006/______, attorney docket no. 25791.348.02 filed on Feb. 9, 2006 the disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/26345 | 8/13/2004 | WO | 4/5/2007 |
Number | Date | Country | |
---|---|---|---|
60495056 | Aug 2003 | US | |
60585370 | Jul 2004 | US |