Spinal implants are often used in the surgical treatment of spinal disorders such as degenerative disc disease, disc herniations, scoliosis or other curvature abnormalities, and fractures. Many different types of treatments are used, including the removal of one or more vertebral bodies and/or intervertebral disc tissue. In some cases, spinal fusion is indicated to inhibit relative motion between vertebral bodies. In other cases, dynamic implants are used to preserve motion between vertebral bodies. In yet other cases, relatively static implants that exhibit some degree of flexibility may be inserted between vertebral bodies.
Regardless of the type of treatment and the type of implant used, surgical implantation tends to be a difficult for several reasons. For instance, access to the affected area may be limited by other anatomy. Further, a surgeon must be mindful of the spinal cord and neighboring nerve system. The size of the implant may present an additional obstacle. In some cases, a surgeon may discover that an implanted device has an inappropriate size for a particular application, which may require removal of the implant and insertion of a different implant. This trial and error approach may increase the opportunity for injury and is certainly time-consuming. Expandable implants are becoming more prevalent as a response to some of these concerns. However, the expansion mechanism in these devices tends to be complex and large. Consequently, existing devices do not appear to address each of these issues in a manner that improves the ease with which the device may be surgically implanted.
The present application is directed to a vertebral implant for insertion between vertebral bodies in a patient. The vertebral implant may include a spacer member and first and second end members positioned on opposing sides of the spacer member. Each end member may include a bone contact surface to contact one of the vertebral bodies, an opposing surface, and a perimeter surface extending between the bone contact surface and the opposing surface. The end members may further include overlapping first and second recesses that each extend inward from the perimeter surface and the opposing surface and are bounded by sidewalls formed by the end members. At least one attachment member may be coupled to each of the first and second end members and may be spaced away from the first and second recesses and the spacer member. The implant may include a longitudinal axis that extends through the spacer member and the first and second recesses of each of the end members. The second recesses may include a greater width measured perpendicular to the longitudinal axis than the first recesses with the second recesses extending outward beyond the first recesses in a direction perpendicular to the longitudinal axis. The attachment member may be positioned away from the longitudinal axis a greater distance than the sidewalls of the first and second recesses.
The vertebral implant may include a spacer member with a first end and a second end. A first end member may be positioned on the first end of the spacer member, and a second end member may be positioned on the second end of the spacer member. A longitudinal axis may extend through the spacer member, the first end member, and the second end member. The second end member may include an inner surface that faces towards the first end member with a recess extending into the inner surface, and may have a bottom surface opposite from the inner surface that contacts against the second end of the spacer member. The recess may be bounded by sidewalls that extend between the bottom surface and the inner surface. The recess may have a width measured perpendicular to the longitudinal axis that is greater at the inner surface than at the bottom surface. A first attachment member may include a first end attached to the first end member and a second end attached to the second end member to couple together the first and second end members. The first attachment member may be positioned a greater distance from the longitudinal axis than the sidewalls of the recess.
The vertebral implant may include a spacer member with a first end and a second end. The implant may include a first end member positioned on the first end of the spacer member, and a second end member positioned on the second end of the spacer member with a longitudinal axis extending through the spacer member, the first end member, and the second end member. First and second attachment members may couple together the first and second end members. Each of the first and second attachment members may have a first end attached to the first end member and a second end attached to the second end member. Each of the first and second end members may include an inner surface that faces inward, an outer surface that faces outward to contact against one of the vertebral bodies, and a perimeter that extends between the inner and outer surfaces. Each of the first and second end members may further include a recess extending into the inner surface and the perimeter and may have a bottom surface opposite from the inner surface that contacts against the spacer member. The recess may have sidewalls that extend between the bottom surface and the inner surface. The recess may have a width measured perpendicular to the longitudinal axis that is greater at the inner surface than at the bottom surface. Each of the first and second attachment members may be positioned away from the longitudinal axis, the spacer member, and the recesses.
The various embodiments disclosed herein relate to a vertebral implant in which multiple components may be combined to establish a desired spacing between vertebral bodies in a patient. Advantageously, the implant components may be inserted at different times or in a compressed state with the components adjusted to the desired spacing in situ. Reference number 10 in
The implant 10 generally includes a first end member 22, a second end member 24, and one or more spacer members 26 coupled between the first and second end members 22, 24. In the illustrated embodiment, end member 22 is disposed in a superior position relative to an inferior opposite end member 24. In one embodiment, the end members 22, 24 and spacer member 26 are formed of a biocompatible material, such as, for example, a carbon fiber material, or non-metallic substances, including polymers or copolymers made from materials such as PEEK and UHMWPE. In further embodiments, the end members 22, 24 and spacer member 26 may be formed of other suitable biocompatible materials, such as, for example, stainless steel, titanium, cobalt-chrome, and shape memory alloys.
The end members 22, 24 are adapted to engage the endplates of upper and lower vertebral bodies V1, V2. The spacer member 26 is engaged between the end members 22, 24 to maintain an intervertebral axial space S between the upper and lower vertebral bodies V1, V2 following the removal of one or more vertebral levels (shown in phantom). To facilitate insertion of the implant 10, the spacer member 26 may be inserted separately from the end members 22, 24. That is, the end members 22, 24 may be inserted during a first insertion step and the spacer member 26 may be inserted during a second, subsequent insertion step. Further details regarding exemplary insertion steps are provided below.
In one embodiment, the spacer member 26 includes a fixed height. Thus, as
During implantation, a surgeon may select a spacer member 26, 26A, 26B from the set based upon an estimated or calculated desirable implant height. This estimation or calculation may be based at least partly upon radiograph information, the patient size and age, and the location of the implanted device 10. However, during such a procedure, a surgeon may determine that a different size is desirable. For instance, the surgeon may determine that a slightly smaller or larger implant height is desirable. Accordingly, the surgeon may remove a first implanted spacer member 26, 26A, 26B in favor of a more appropriate spacer member 26, 26A, 26B from the overall set 126.
As suggested, the spacer member 26 is separable from the end members 22, 24. To illustrate this characteristic,
The end members 22, 24 include respective bone-contact surfaces 42, 44. Each end member 22, 24 further includes an opposing surface 46, 48 that faces towards the spacer member 26 when inserted between the end members 22, 24. A peripheral wall 50, 52 extends about the perimeter of the end members 22, 24 between the respective bone contact surfaces 42, 44 and opposing, non-bone contact surfaces 46, 48. Note that the peripheral wall 50, 52 may be part of one or both the bone contact surfaces 42, 44 and opposing surfaces 46, 48, such as where the surfaces blend into one another. Thus, there is no express requirement that there be a sharp edge between the bone contact surfaces 42, 44, the peripheral surfaces 50, 52, or the opposing surfaces 46, 48 as illustrated.
In one embodiment, the end members 22, 24 have an outer profile that is substantially complementary to the size and shape of the peripheral portion or outlying region of the vertebral bodies V1, V2, such as the cortical rim or the apophyseal ring of the vertebral endplates. In this manner, some portion of the bone contact surfaces 42, 44 of end members 22, 24 may be engaged against the cortical region of the vertebral endplates, thereby minimizing the likelihood of subsidence into the relatively softer cancellous region of the vertebral bodies V1, V2 following insertion of the implant 10 within the intervertebral space S.
Additionally, the exemplary end members 22, 24 include one or more apertures 36 disposed about the bone contact surfaces 42, 44. The apertures 36 may have different size, quantity, and location that those illustrated. The apertures 36 may be blind holes in that they do not extend through the end members 22, 24. The apertures 36 may be through-holes in that they do extend through the end members 22, 24. The end members 22, 24 may be inserted in conjunction with bone growth materials (not shown) that may include, for example, bone graft, bone morphogenetic protein (BMP), allograft, autograft, and various types of cement, growth factors and mineralization proteins. These bone growth materials may be packed into the apertures 36 to promote osseointegration of the end members 22, 24 to the vertebral bodies V1, V2. In a further embodiment, the bone growth promoting materials may be provided in a carrier (not shown), such as, for example, a sponge, a block, a cage, folded sheets, or paste that may be inserted into the apertures 36.
The end members 22, 24 include a spacer recess 38 that is sized and shaped to accept the spacer member 26. Each member 22, 24 may have a similarly formed spacer recess 38. Alternatively, end member 22 may have a spacer recess 38 that is different in size or shape than a corresponding spacer recess 38 in the opposite end member 24. Each end member 22, 24 further includes a distractor recess 40 that is sized and shaped to accept a distractor as discussed below. In short, a distractor (see e.g.,
In one embodiment as illustrated in
The implant 10 may be inserted into a patient according to the process steps illustrated in
In the illustrated embodiment, the distractor 300 includes a threaded rod 320 having a first end portion 320a rotatably coupled with the proximal end portion 304a of the distractor arm 304, and a second end portion 320b engaged within a threaded aperture (not specifically shown) extending through the proximal end portion 302a of the distractor arm 302. As should be appreciated, the position of rod 320 may be adjusted relative to the distractor arm 302 by threading the rod 320 with a rotary knob 312 to correspondingly control the amount of distraction provided by the distractor arms 302, 304. In one embodiment, the distractor 300 is provided with a gauge or stop member 310 that is adapted to limit outward displacement of the distal end portion 302b, 304b, which in turn correspondingly limits that amount of distraction provided by the distractor arms 302, 304. In this manner, over distraction of the intervertebral space S is avoided.
The distal end of the distal end portions 302b, 304b include geometry that engages the distractor recesses 40 of the end members 22, 24.
With the distractor 300 engaged in the distractor recesses 40 as shown in
Once the spacer member 26 is seated as desired in the spacer recesses 38, the distractor 300 may be disengaged along the longitudinal axis L. Again, since the distractor recess 40 is open to the peripheral walls 50, 52 of the end members 22, 24, the distractor 300 does not necessarily have to be compressed by turning the rotary knob 312 prior to removal. Once the distractor 300 is removed, the implant 10 remains in the vertebral space S as shown in
The embodiments described above have contemplated a vertebral implant 10 including one end member 22, 24 at each end of a spacer member 26. Further, the insertion of the implant 10 has been depicted using an exemplary anterior approach as is known in the art. However, other implant devices may be inserted using known posterior or trans-foraminal approaches. Accordingly, the end members 122a, 122b, 124a, 124b shown in
The end members 22, 24 described above were embodied as separate members. In embodiments depicted in
Furthermore, embodiments disclosed above have not included any particular surface geometry, coating, or porosity as are found in conventionally known vertebral implants. Surface features such as these are used to promote bone growth and adhesion at the interface between an implant and a vertebral end plate. Examples of features used for this purpose include, for example, teeth, scales, keels, knurls, and roughened surfaces. Some of these features may be applied through post-processing techniques such as blasting, chemical etching, and coating, such as with hydroxyapatite. The bone interface surfaces, including the osteoconductive inserts, may also include growth-promoting additives such as bone morphogenetic proteins. Alternatively, pores, cavities, or other recesses into which bone may grow may be incorporated via a molding process. Other types of coatings or surface preparation may be used to improve bone growth into or through the bone-contact surfaces. However, the inserts that include these types of features may still be formed and characterized by the aspects disclosed herein.
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. For instance, the end member embodiments disclosed herein have included a single spacer recess and a single distractor recess. In alternative implementations, each end member may include multiple spacer recesses or multiple distractor recesses for implementation in different locations or different implantation procedures. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
This application is a continuation of U.S. patent application Ser. No. 11/489,189, filed on Jul. 19, 2006, and herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11489189 | Jul 2006 | US |
Child | 12962246 | US |