Not applicable.
Not applicable.
The present invention relates generally to methods and apparatus for drilling an enlarged sidetracked well bore from an existing primary well bore in geologic formations, and more particularly, to methods and apparatus for milling a window through casing lining a primary well bore, and drilling an enlarged sidetracked well bore through the casing window, all in one trip into the primary well bore.
Once a petroleum well has been drilled and cased, it may be desirable to drill one or more additional sidetracked well bores that branch off, or deviate, from the primary well bore. Such multilateral well bores are typically directed toward different targets within the surrounding formation, with the intent of increasing the production output of the well.
Multilateral technology provides operators several benefits and economic advantages, such as tapping isolated pockets of hydrocarbons that might otherwise be left unproduced, and improving reservoir drainage so as to increase the volume of recoverable reserves and enhance the economics of marginal pay zones. By utilizing multilateral technology, multiple reservoirs can also be drained simultaneously, and thin production intervals that might be uneconomical to produce alone may become economical when produced together. Multiple completions from one well bore also facilitate heavy oil drainage.
In addition to production cost savings, development costs also decrease through the use of existing infrastructure, such as surface equipment and the primary well bore. Multilateral technology expands platform capabilities where slots are limited and eliminates spacing problems by allowing more drain holes to be added within a reservoir. In addition, by sidetracking damaged formations or completions, the life of existing wells can be extended. For example, sidetracked well bores may be drilled below a problem area once the casing has been set, thereby reducing the risk of drilling through troubled zones. Finally, multilateral completions accommodate more wells with fewer footprints, making them ideal for environmentally sensitive or challenging areas.
To maximize the productivity of multilateral completions, it is desirable to enlarge at least some of the sidetracked well bores to thereby increase the production flow area through such boreholes. By drilling a sidetracked well bore through a casing window, and then enlarging the sidetracked well bore beyond the casing window, the far reaches of the reservoir can be reached with a comparatively larger diameter borehole, thereby providing more flow area for the production of oil and gas.
However, conventional methods for drilling an enlarged sidetracked well bore require multiple trips into the primary well bore. For example, a first trip may be made into the primary well bore to run and set an anchored whipstock comprising an inclined face that guides a window mill radially outwardly into the casing to cut a window in the casing. The window mill is then tripped out of the primary well bore, and a drill bit is lowered in a second trip to drill the sidetracked well bore through the casing window. The diameter of the sidetracked well bore is thereby limited by the diameter or gauge of the drill bit that can extend through the casing window. Once the sidetracked well bore has been drilled, the drill bit is then tripped out of the primary well bore, and another drilling assembly, such as a drill bit followed by a reamer, for example, is lowered in a third trip into the primary well bore to extend and enlarge the sidetracked well bore. It is both expensive and time consuming for an operator to make multiple trips into a primary well bore to drill and enlarge a single sidetracked well bore, and such concerns are only compounded when drilling more than one sidetracked well bore in a multilateral completion.
Thus, in recent years, a window milling bit comprising diamond cutters has been developed that is operable to mill a window through a standard metal casing and drill a sidetracked well bore through the casing window in a single trip into the primary well bore. This window milling bit with diamond cutters thereby eliminates one trip into the primary well bore, but at least another trip is still required to enlarge the sidetracked well bore. Therefore, a need exists for apparatus and methods that enable milling a window through a casing in a primary well bore, and drilling an enlarged sidetracked well bore through the casing window in one trip into the well bore.
To perform such a sidetracking operation, it would also be advantageous to provide a single cutting device capable of both milling the casing and drilling an enlarged sidetracked well bore. Such a device is desirable to provide a more compact drilling assembly for increased maneuverability and control while drilling the enlarged sidetracked well bore through the casing window.
Further, when operating a window milling bit to mill casing and drill formation, whether drilling an enlarged borehole or not, the cutting structures on such a bit may be worn down during operation. Thus, a need exists for a cutting device with multiple cutting structures adapted to recover gauge as the device is used to mill through casing and/or drill into formation. In addition, it may be desirable for the window milling bit to have at least a first cutting structure to perform the milling operation, and at least a second cutting structure to perform the drilling operation. Thus, a need exists for a cutting device with multiple cutting structures wherein at least one of the cutting structures is selectively presented when desired by the operator. Such a cutting device would be useful for many other purposes, including drilling through different types of formation rock, or replacing worn cutting structures when drilling a lengthy borehole, for example.
The present invention addresses the deficiencies of the prior art.
In one aspect, the present disclosure relates to a method of milling a window through a casing in a primary well bore and drilling an enlarged sidetracked well bore. In an embodiment, the method comprises running into the primary well bore a drilling assembly comprising at least one cutting apparatus adapted to drill an enlarged borehole, milling a window through the casing, and drilling the enlarged sidetracked well bore, wherein the milling and drilling steps are performed in one trip into the primary well bore. The method may further comprise steering the drilling assembly and/or stabilizing the drilling assembly.
In another aspect, the present disclosure relates to a drilling assembly comprising at least one cutting apparatus operable to drill an enlarged borehole, wherein the drilling assembly is operable to mill a window through a casing in a primary well bore and drill an enlarged sidetracked well bore through the window in one trip into the primary well bore. In various embodiments, the drilling assembly may further comprise a bent housing motor, a rotary steerable system, and/or a stabilizer. In one embodiment, the at least one cutting apparatus comprises an expandable window milling bit having at least a collapsed position and an expanded position, and the expandable bit may comprise on/off control and/or diamond cutters operable to mill the window in the collapsed position and drill the enlarged sidetracked well bore in the expanded position. In another embodiment, the at least one cutting apparatus comprises a window milling bit and a reamer. The window milling bit may comprise a stationary cutting structure and a movable cutting structure. Further, an original operable gauge of the moveable cutting structure may substantially equal an original gauge of the stationary cutting structure. In yet another embodiment, one or both of the window milling bit and the reamer are expandable, and at least one expandable component may comprise on/off control. In still another embodiment, the at least one cutting apparatus comprises a bi-center bit.
In another aspect, the present disclosure relates to a method of milling a window through a casing in a primary well bore and drilling an enlarged sidetracked well bore into a formation comprising running into the primary well bore a system comprising a reamer and a mill with diamond cutters, milling a window through the casing with the diamond cutters, and drilling the enlarged sidetracked well bore, wherein the milling and drilling steps are performed in one trip into the primary well bore. The method may further comprise steering the system and/or stabilizing the system. In an embodiment, the drilling step comprises operating at least one of the mill and the reamer in an expanded position. The method may further comprise controlling whether an expandable component is on or off. In an embodiment, drilling the enlarged sidetracked well bore comprises creating an initial sidetracked well bore with the mill and enlarging the initial sidetracked well bore with the reamer. The method may further comprise using a first cutting structure of the mill during the milling step and using a second cutting structure of the mill during the drilling step. In an embodiment, the first cutting structure protects the second cutting structure during the milling step.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
For a more detailed description of the present invention, reference will now be made to the accompanying drawings, wherein:
Certain terms are used throughout the following description and claims to refer to particular assembly components. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”.
Reference to up or down will be made for purposes of description with “up”, “upper”, or “upstream” meaning toward the earth's surface or toward the entrance of a well bore; and “down”, “lower”, or “downstream” meaning toward the bottom or terminal end of a well bore.
Various embodiments of methods and apparatus for milling a casing window and drilling an enlarged sidetracked well bore in one trip into a primary well bore, and various embodiments of a cutting device comprising multiple cutting structures, will now be described with reference to the accompanying drawings, wherein like reference numerals are used for like features throughout the several views. There are shown in the drawings, and herein will be described in detail, specific embodiments of drilling assemblies and cutting devices with the understanding that this disclosure is representative only, and is not intended to limit the invention to those embodiments illustrated and described herein. The embodiments of the apparatus disclosed herein may be utilized in any type of milling, drilling or sidetracking operations. It is to be fully recognized that the different teachings of the embodiments disclosed herein may be employed separately or in any suitable combination to produce desired results.
Referring first to
The drilling assembly 100 may further comprise various other components 120, 130, 140, 150, 160, 170 and 180. For example, in addition to the window milling bit 110, the drilling assembly 100 may comprise a directional device 120, a measurement-while-drilling (MWD) tool 130, a logging-while-drilling (LWD) tool 140, one or more additional mills 150, a borehole enlarging device 160, one or more drill collars 170, and a stabilizer 180, for example. Although components 120, 130, 140, 150 and 170 may be provided in the drilling assembly 100, such apparatus are entirely optional and would not be required to perform any of the methods disclosed herein. Further, in some embodiments of the methods of the present invention, the bore hole enlarging device 160 and/or the stabilizer 180 may not be required.
When the drilling assembly 100, whipstock 200 and anchor 300 have been lowered to a desired depth in the primary well bore 20 by the drill string 50, the whipstock 200 is angularly oriented so that an inclined surface 210 of the whipstock 200 faces in the desired direction for drilling the enlarged sidetracked well bore 25. Once the whipstock 200 is oriented, it is then set into place via the anchor 300 disposed at the lower end thereof, as shown in
When the whipstock 200 has been angularly oriented and set into place by the anchor 300 in the primary well bore 20, the drilling assembly 100 disconnects from the whipstock 200 and proceeds to mill the window 35 through the casing 30. Specifically, the window milling bit 110 is rotated and lowered while engaging the inclined surface 210 of the whipstock 200, which acts to guide the window milling bit 110 radially outwardly into cutting engagement with the casing 30 to mill a window 35 therethrough.
As depicted in
In one embodiment of the method for forming an enlarged sidetracked well bore 25, the drilling assembly 100 comprises at least the window milling bit 110, which is adapted to drill an initial sidetracked well bore, and a well bore enlarging device 160, such as a reamer, for example, that follows behind the window milling bit 110 to expand the initial borehole and thereby form the enlarged sidetracked well bore 25. The window milling bit 110 can drill the initial sidetracked well bore at the same time as the reamer 160 enlarges the borehole to form the enlarged sidetracked well bore 25.
In one embodiment, the reamer 160 is expandable and has basically two operative states—a closed or collapsed state, where the diameter of the reamer 160 is sufficiently small to allow it to pass through the casing window 35, and an open or partly expanded state, where one or more arms with cutters on the ends thereof extend from the body of the reamer 160. In this latter position, the reamer 160 expands the diameter of the initial sidetracked well bore to form the enlarged sidetracked well bore 25 as the reamer 160 is rotated and advanced in the borehole.
As one of ordinary skill in the art will readily recognize, there are a wide variety of expandable reamers 160 capable of forming an enlarged sidetracked well bore 25. For purposes of example, and not by way of limitation, one type of expandable reamer 160 is depicted and described in U.S. Pat. No. 6,732,817, hereby incorporated herein by reference for all purposes. Such a reamer 160 comprises moveable arms with borehole engaging pads comprising cutting structures. The arms translate axially upwardly along a plurality of angled channels disposed in the body of the reamer 160, while simultaneously extending radially outwardly from the body. The reamer 160 alternates between collapsed and expanded positions in response to differential fluid pressure between a flowbore in the reamer 160 and the wellbore annulus. Specifically, fluid flowing through the flowbore enters a piston chamber through ports in a mandrel to actuate a spring-biased piston, which drives the moveable arms axially upwardly and radially outwardly into the expanded position. When the fluid flow ceases, the differential pressure is eliminated, and the reamer 160 returns to the collapsed position.
In a first embodiment, the ports into the piston chamber remain open, so the reamer 160 expands and contracts automatically in response to changes in differential pressure. In a second embodiment, the reamer 160 includes on/off control. For example, the reamer 160 may comprise an internal stinger biased to block the ports into the piston chamber to prevent the piston from actuating in response to differential pressure between the flowbore and the wellbore annulus. This internal stinger may be aligned using an actuator, such as the flow switch depicted and described in U.S. Pat. No. 6,289,999, to open the ports into the piston chamber. Once these ports are open, differential pressure between the flowbore and the wellbore annulus will actuate the piston. Thus, this second embodiment of the reamer 160 is selectively actuatable, thereby providing the operator with on/off control.
Another representative type of expandable reamer 160 is depicted and described in U.S. Patent Publication No. US 2004/0222022-A1, hereby incorporated herein by reference for all purposes. This type of reamer 160 comprises moveable arms that are radially translatable between a retracted position and a wellbore engaging position, and a piston mechanically supports the moveable arms in the wellbore engaging position when an opposing force is exerted. The piston is actuated by differential pressure between a flowbore within the reamer 160 and the wellbore annulus. This type of reamer 160 may also include on/off control. For example, in one embodiment, the reamer 160 may comprise a sliding sleeve biased to isolate the piston from the flowbore, thereby preventing the moveable arms from translating between the retracted position and the wellbore engaging position. A droppable or pumpable actuator may be used to align the sliding sleeve to expose the piston to the flowbore and actuate the piston. Thus, this embodiment of the reamer 160 is selectively actuatable to provide the operator with on/off control.
Another representative type of expandable reamer 160 utilizes swing out cutter arms that are hinged and pivoted at an end opposite the cutting end of the arms, which have roller cones attached thereto. The cutter arms are actuated by mechanical or hydraulic forces acting on the arms to extend or retract them. Typical examples of this type of reamer 160 are found in U.S. Pat. Nos. 3,224,507; 3,425,500 and 4,055,226, hereby incorporated herein by reference for all purposes. As one of ordinary skill in the art will readily understand, while specific embodiments of expandable reamers 160 have been explained for purposes of illustration, there are many other types of expandable reamers 160 that would be suitable for use in forming an enlarged sidetracked well bore 25. Therefore, the methods and apparatus of the present invention are not limited to the particular embodiments of the expandable reamers 160 discussed herein.
In another embodiment of the method for forming an enlarged sidetracked well bore 25, the well bore enlarging device 160 that follows the window milling bit 110 is a winged reamer. A winged reamer 160 generally comprises a tubular body with one or more longitudinally extending “wings” or blades projecting radially outwardly from the tubular body. Once the winged reamer 160 has passed through the casing window 35, the window milling bit 110 rotates about the centerline of the drilling axis to drill an initial sidetracked borehole on center in the desired trajectory of the well path, while the eccentric winged reamer 160 follows the bit 110 and engages the formation 10 to enlarge the initial borehole to the desired diameter of the enlarged sidetracked well bore 25. Winged reamers 160 are well known to those of ordinary skill in the art.
Yet another method for milling the casing window 35 and drilling the enlarged sidetracked well bore 25 comprises replacing the standard window milling bit 110 with a bi-center bit, which is a one-piece drilling structure that provides a combination reamer and pilot bit. The pilot bit is disposed on the lowermost end of the drilling assembly 100, and the eccentric reamer bit is disposed slightly above the pilot bit. Once the bi-center bit passes through the casing window 35, the pilot bit portion rotates about the centerline of the drilling axis and drills an initial sidetracked borehole on center in the desired trajectory of the well path, while the eccentric reamer bit portion follows the pilot bit and engages the formation 10 to enlarge the initial borehole to the desired diameter of the enlarged sidetracked well bore 25. The diameter of the pilot bit is made as large as possible for stability while still being capable of passing through the cased primary well bore 20. Examples of bi-center bits may be found in U.S. Pat. Nos. 6,039,131 and 6,269,893.
Another method for milling the casing window 35 and drilling the enlarged sidetracked well bore 25 comprises replacing the standard window milling bit 110 with an expandable cutting device. One embodiment of such an expandable device is the cutting device 300 shown in
The cutting device 300 comprises an upper section 310 with an internal flow bore 315, a body 320 with angled tracks 322 and an internal chamber 325, one or more stationary cutting structures 330 disposed on the lower end of the body 320, one or more moveable cutter blocks 340, a moveable piston 370 with an internal flowbore 375, and one or more links 380 that connect the moveable cutter blocks 340 to the piston 370. Thus, at least one and any number of multiple moveable cutter blocks 340 may be connected to the piston 370. In the embodiments shown in
A threaded connection 312 is provided between the upper section 310 and the lower section. The piston 370 extends into both the upper section flowbore 315 and the internal chamber 325, and seals 372, 376 are provided between the piston 370 and the body 320, and between the piston 370 and the upper section 310, respectively. An upper end 374 of the piston 370 is in fluid communication with the primary well bore 20 via a port 324 in the body 320, and a lower end 378 of the piston 370 is in fluid communication with the internal chamber 325 of the body 320.
In operation, the cutting device 300 is run into the primary well bore 20 in the collapsed position shown in
As shown in
When the casing window 35 is complete, the cutting device 300 continues to drill ahead into the formation 10 at least until the upper section 310 is clear of the window 35. Then the cutting device 300 may be actuated to the expanded position shown in
To actuate the cutting device 300 to the expanded position, the piston 370 must be released from the position shown in
In other embodiments, the cutting device 300 may include on/off control. For example, the cutting device 300 may comprise a slideable sleeve capable of blocking the port 324 that provides fluid communication between the piston 370 and the primary well bore 20. In this blocked configuration, the cutting device 300 would be “off” since there would be no differential pressure acting on the piston 370 to make it retract or extend. However, selectively moving the slideable sleeve to open the port 324 would turn the cutting device 300 “on” since the piston 370 could then actuate in response to differential pressure as described above.
In the expanded position, the cutting device 300 will drill the enlarged sidetracked well bore 25. In the embodiments shown in
Referring again to
In another embodiment, the alternative cutting device 400 may comprise tracks 422 that are substantially parallel to the axis of the cutting device 400. In this embodiment, the cutting device 400 may comprise, for example, a first cutting structure presented for milling and a second cutting structure selectively presented for drilling. For example, if the cutting device 400 of
As one of ordinary skill in the art will readily appreciate, such a cutting device 400 with substantially parallel tracks 422 could comprise multiple cutting structures of various types, such as PDC cutters and tungsten carbide cutters, for example, wherein each type of cutting structure is designed for a specific purpose. Such a cutting device 400 could also be used for a variety of different purposes. For example, the cutting device 400 could be used to drill any type of borehole into the formation 10, with each of the multiple cutting structures being presented as necessary due to a change in the type of rock comprising the formation 10, or due to a shift in the integrity of the formation 10, for example. It may also be advantageous to provide multiple cutting structures of the same type so that as one cutting structure becomes worn, another cutting structure can be presented. One of ordinary skill in the art will readily understand that many other variations are possible and are well within the scope of the present application.
The foregoing descriptions of specific embodiments have been presented for purposes of illustration and description and are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously many other modifications and variations are possible. In particular, the specific type and quantity of components that make up the drilling assembly 100 could be varied. Further, the quantity of cutting structures 330, 340 provided on the cutting devices 300, 400 could be varied, as well as the specific means by which such cutting structures 330, 340 are presented. For example, instead of retracting the piston 370, in other embodiments, the piston 370 may be advanced to actuate the cutting devices 300, 400. In other embodiments, the piston 370 may be retracted and extended multiple times. In addition, the materials comprising the cutting structures 330, 340 could be varied as required for the milling or drilling operation. Further, the tracks 322, 422 may have any angle, including a reverse angle, such that the moveable cutter blocks 340 are moved radially inwardly when the piston 370 retracts. In addition, the expandable cutting device 300 may be expanded at different times in the method, such as during milling of the casing window 35, for example.
While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit or teaching of this invention. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the system and apparatus are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims which follow, the scope of which shall include all equivalents of the subject matter of the claims.
The present application is a continuation application, and thus claims benefit pursuant to 35 U.S.C. §120 of U.S. patent application Ser. No. 11/175,565 filed Jul. 6, 2005, which is related to U.S. patent application Ser. No. 11/175,567, filed Jul. 6, 2005, now U.S. Pat No. 7,753,139, issued Jul. 13, 2010, both of which are incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 11175565 | Jul 2005 | US |
Child | 13481470 | US |