This invention generally relates to a filter media, and in particular to a composite filter media comprising an expanded substrate and fine fibers carried thereon, and method of making the same.
Fluid streams such as liquid flows and gaseous flows (e.g. air flows) often carry particulates that are often undesirable contaminants entrained in the fluid stream. Filters are commonly employed to remove some or all of the particulates from the fluid stream.
Filter media including fine fibers formed using an electrostatic spinning process is also known. Such prior art includes Filter Material Construction and Method, U.S. Pat. No. 5,672,399; Cellulosic/Polyamide Composite, U.S. Patent Publication No. 2007/0163217; Filtration Medias, Fine Fibers Under 100 Nanometers, And Methods, U.S. Provisional Patent Application No. 60/989,218; Integrated Nanofiber Filter Media, U.S. Provision Patent Application No. 61/047,459; Filter Media Having Bi-Component Nanofiber Layer, U.S. Provisional Patent No. 61,047,455, the entire disclosures of which are incorporated herein by reference thereto. As shown in these references nanofibers are commonly laid upon a finished preformed filtration media substrate.
The invention provides improvement in filter media including fine fibers. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
Fine fibers, such as and most preferably electrospun nanofibers according to certain embodiments, laid upon a substrate media can be reoriented after laying by modifying the substrate media, such as by modifying the thickness of that substrate media after the fine fibers are deposited. For example, an at least partially compacted substrate media (such as calendared media) can be expanded, in which larger fibers carry with them the smaller fibers thus also expanding the fine fiber layer. As a consequence, several advantages can flow from this, including greater volumetric coverage of nanofibers (more volumetric coverage for a same basis weight application—as the expansion can open up and expand the nanofibers into a 3D matrix); reduced pressure drop due to expansion; and/or slower pressure drop increase as it loads. Additionally, the undulating 3 dimensional characteristics of the nanofiber or other such fine fiber layer greatly increase dust holding capacity as it is believed to effectively create an undulating surface with a much greater volumetric holding area as opposed to merely flat, as in the case of prior systems—thus the effective volumetric area of the nanofiber layer can be increased.
In one embodiment, the substrate is a bi-component scrim including a high melt component and a low melt component. The fine fibers are electrospun polymer nanofibers. The high melt component and the electrospun polymer nanofibers have a higher melting temperature than the low melt component. The bi-component scrim has an unexpanded state and an expanded state, wherein the expanded bi-component scrim has a thickness greater than the unexpanded state. For example, the scrim in the unexpanded state may be preformed and calendared and thereby or otherwise at least partially compressed in which the fibers held in position in a biased state by being bonded and thereby held to one another (large fiber to fiber bonds holding these large fibers in place). In one embodiment, the unexpanded bi-component scrim carrying the fine fibers is expanded by heating, wherein the low melt component melts or softens and bonds with the fine fibers. During this heating, the larger fibers of the substrate are also freed from at least partially compressed state and allowed to slide about and move back toward a more natural state—such as at least partially toward uncompressed and expanded state (e.g. toward the uncompressed that occurred prior to the formation of the scrim in the first place). During heating, the larger fibers of the bi-component scrim are relaxed and reoriented, carrying the much smaller fine fibers therewith, wherein the fine fibers extend with expanding bi-component scrim. The resulting composite filter media has an undulating surface and an expanded thickness causing the fine fibers to not merely have a planar characteristic as is the case with conventional nanofiber laying techniques, but a 3 dimensional matrix. The expanded filter media has improved dust holding capacity, a slower pressure drop increase as dust loads, and/or lower initial pressure drop.
In one aspect, the invention provides a method of making a filter media. The method includes steps of depositing fine fibers on a surface of a substrate having a first thickness, the fine fibers having an average diameter of less than 1 micron, and expanding the substrate to a second thickness greater than the first thickness carrying the fine fibers therewith.
In another aspect, the invention provides a filter media comprising a substrate of first fibers having an average fiber diameter of greater than 1 micron carrying fine fibers having an average fiber diameter of less than 1 micron. The substrate has an undulating surface, wherein the fine fibers are integrated into 3-dimensional matrix with the first fibers of the undulating surface.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
To form the expanded composite filter media 10 of
In one embodiment, the expansion of the filter media 10 is accomplished through a heat treatment, although other relaxants such as a solvent spray (partially soluble to the substrate only), or other processing may be used for relaxing. For example, the scrim in the unexpanded state may be preformed and calendared or otherwise at least partially compressed in which the fibers are held in position in a biased state by being bonded and thereby held to one another (large fiber to large fiber bonds holding these large fibers in place). In one embodiment, the unexpanded bi-component scrim carrying the fine fibers is expanded by heating, wherein the low melt component melts or softens and bonds with the fine fibers. During this heating, the larger fibers of the substrate are also freed from at least partially compressed state and allowed to slide about and move back toward a more natural state—such as at least partially toward uncompressed and expanded state (e.g. toward the uncompressed state that occurred prior to the formation of the scrim in the first place). During the heat treatment, according to certain preferred embodiments, fibers of the substrate media 12 relax and reorient to increase an average distance between the fibers. As such, the substrate media 12 expands, wherein the thickness of the substrate media 12 increases and the surface of the substrate media 12 becomes undulated as opposed to flat in character. Further, as the fibers proximate the surface of the substrate media 12 relax and reorient, the fine fibers 14, which are carried by these fibers move and reorient with the fibers. Thus, fine fibers 14 are extended, pushed and pulled with the larger fibers.
Now that the composite filter media having an expanded thickness and an undulated surface is generally described, according to an embodiment of the present invention, some of its advantages will be discussed before providing further details and other embodiments of the composite filter media.
There are several factors that affect characteristics of a filter media. Filter or filtration capacity is the amount of particles that a filter captures during its service life. Generally, a higher filter capacity will provide a longer filter life, which can reduce a frequency of filter change or service. Filter capacity is often related to pressure drop or restriction, when the restriction to the desired fluid flow becomes too high (hence increased pressure drop), a filter needs to be changed to facilitate the desired amount of fluid flow. Pressure drop is related to resistance to a fluid flow created by the filter media. Pressure drop is the pressure differential from the dirty side to the clean side of the media. Generally, the higher the resistance, the greater the energy required and/or higher the pressure drop at a given flow rate. Thus, all other considerations being equal, the filter with a lower pressure drop is preferred. Filter efficiency is the percentage of particles that are removed from a fluid stream by the filter media, and is usually given for a particular particle size or sizes. Of course, it is often desirable to remove more particles from the fluid stream, but at the same time not be overly restrictive to fluid flow. The filter life is a duration before a filter needs to be changed or serviced due to the pressure drop becoming too large or blow-throughs.
The composite filter media, according to embodiments of the present invention, has an expanded thickness and undulating surface providing a greater filter media volume when compared to the unexpanded filter medias which have not been subjected to an expansion process. As it relates to the nanofiber layer 14 specifically, this is considered a surface loading type layer and by having the area expanded from planar to undulating in nature the effective volumetric area is increased. Thus, based on the expansion, more particles can be captured throughout the increased filter media volume. Further and as discussed above, the fibers of the substrate media and the fine fibers carried thereon are reoriented during the expansion process. Such reorientation of fibers can create improved filter media pore structures to capture particles more efficiently with a less fluid flow resistance. It may also allow a higher coverage level of nanofibers without causing increased resistance because of the nanofiber reorientation. Thus, an expanded composite filter media can improve filter efficiency while maintaining a same level of pressure drop, or lower pressure drop while maintaining a same filter efficiency, when compared to the composite filter media in its unexpanded state. Therefore, the composite filter media having an expanded thickness and an undulating surface can improve the filtration quality by providing an increased dust holding capacity, a reduced pressure drop and/or restriction, and/or a longer filter life.
Returning to
As used herein, the term “multi-component filter media”, “multi-component media” and other similar terms can be used interchangeably to refer to filter medias including at least two different materials. For example, a multi-component filter media can comprise fibers formed of a first material and fibers formed of a second material, wherein the first material and the second material are different materials. Alternatively, a multi-component filter media can be formed of fibers including at least two different materials, such as fibers including a core formed of the first material and a sheath formed of the second material, as described in detail below. A multi-component filter media including two different materials is refer to herein as “bi-component filter media”, “bi-component media”, and like terms.
In one preferred embodiment, the substrate media 12 is formed of bi-component fibers including two different materials having different melting points. A composite filter media comprising fine fibers and a substrate media formed of such multi-component fibers are described in Multi-Component Filter Media with Nanofiber Attachment, PCT Patent Application No. PCT/US09/50392, which is assigned to the assignee of the present application, the entire disclosure of which are incorporated herein by reference thereto.
In this embodiment, one component of the bi-component fibers of substrate 12 has a lower melting point than the other component. The low melt component can be any suitable polymers such as polypropylene, polyethylene, or polyester. The other component may be a polymer having a higher melting point than the low melt component, or other suitable fiber materials such as glass and/or cellulose. Preferably, the fibers are compressed to form the substrate media 12 in the form of a web of media or scrim having a certain thickness.
In one embodiment, the substrate media 12 is a scrim formed of bi-component fibers including a high melt polymer component and a low melt polymer component. For example the bi-component may comprise a high-melt polyester and a low-melt polyester, in which one has a higher melting temperature than the other.
The high melt polymer component is formed of a polymer having a higher melting temperature than the low melt polymer component. Suitable high melt polymers include, but are not limited to, polyester and polyamide. Suitable low melt polymers include polypropylene, polyethylene, co-polyester, or any other suitable polymers having a lower melting temperature than the selected high melt polymer. For example, bi-component fibers may be formed of a polyester core and a polypropylene sheath. In this embodiment, the bi-component fibers are formed of two different types of polyesters, one having a higher melting point than the other.
The fibers of the substrate media 12 are formed to have a larger average fiber diameter than that of the fine fibers 14. Preferably, the fibers of the substrate media 12 has an average fiber diameter of greater than about 1 micron, and more preferably, greater than 5 micron. In one embodiment, an average diameter of the fibers of the substrate media 12 are between about 1 micron and about 40 micron. In the unexpanded state, the coarser fibers are compressed, for example via a set of calendering rollers, to form the substrate media 12 having a thickness between about 0.05 and 1.0 mm, preferably between about 0.1 and 0.5 mm. Such bi-component fiber substrate media 12 can provide a structural support necessary for the fine fibers 14. Various thicknesses bi-component scrims suitable for the substrate media 12 are commercially available through HDK Industries, Inc. of Rogersville, Tenn., or other filter media suppliers. Thus, the substrate may be preformed off the shelf bi-component media.
Other types of bi-component fibers may be used to form the substrate media 12 in other embodiments. Some examples of different types of bi-component fibers are schematically illustrated in
A pie wedge type bi-component fiber 40 is schematically illustrated in
The bi-component fibers may be formed into different shapes. For example, some bi-component fibers may not have a cylindrical shape with a circular cross section as the bi-component fibers described above.
The fine fibers 14 can be deposited on the substrate media 12 as they are formed. Alternatively, the fine fibers 14 may be separately prepared as a web of a media, then laminated with the substrate media 12. Although, the fine fibers 14 may comprise fibers having various fiber diameters, preferably, the fine fibers 14 are nanofibers having very fine fiber diameter. Such fine fibers 14 can be formed by electrospinning or other suitable processes. In one embodiment, the fine fibers 14 are electrospun nanofibers having an average fiber diameter less than about 1 micron, preferably less than 0.5 micron, and more preferably between 0.01 and 0.3 microns. Such small diameter fine fibers can pack more fibers together without significantly increasing overall solidity of the filter, thus can increase filter efficiency without increasing pressure drop.
The fine fibers 14 may be formed by various suitable polymeric materials. In one embodiment, the fine fibers 14 can be formed of nylon-6 (polyamide-6, also referred to as “PA-6” herein) via electrospinning, wherein the electrospun fine fibers 14 are deposited directly on the substrate media 12, although any polymer may be used. To avoid destruction of the fine fibers during heat expansion, the fine fibers 14 are formed of a material having a higher melt temperature than the low-melt polymer of the bi-component. In this embodiment, the substrate media 12 is a scrim formed of bi-component staple fibers having a high melt polyester core and a low melt polyester sheath. The bi-component staple fibers are compressed between a set of calendering rollers to form a web of scrim. The bonding between the substrate media 12 and the fine fibers 14 may involve solvent bonding, pressure bonding, and/or thermal bonding. In one embodiment, the low melt may be used to bond the fine fibers to the coarser fibers of the substrate, as shown in
The composite filter media 10 before expansion has a thickness t′ and a substantially flat surface 20 as shown in
In one embodiment, the substrate media 12 is formed of a bi-component fiber scrim having an average fiber diameter between about 1 and 40 microns and a base weight between about 0.5 and 15 oz/yd2. The fine fibers 14 have an average fiber diameter between about 0.01 and 0.5 microns and fine fiber coverage between about 0.012 g/m2 and 0.025 g/m2. In this embodiment, the expanded composite filter media 10 has a Frazier air permeability between about 100 and 200 CFM; a MFP efficiency equivalent to MERV 11-16; and a MFP dust holding weight of about 400-600 mg/100 cm2 with a final pressure drop of about 1.5 inch W.G.
In one embodiment, the substrate media 12 is a scrim formed of low melt polyester/high melt polyester bi-component fibers as described in the previous embodiment. The fine fibers 14 are electrospun nylon-6 nanofibers deposited on the substrate media 12. Similarly, the media 92 is deposited with the electrospun nylon-6 nanofibers forming the fine fibers 93. The substrate media 12 deposited with the fine fibers 14 and the media 92 deposited with the fine fibers 93 are laminated together such that the fine fibers 14 and the fine fibers 93 are facing each other to form the composite filter media 90 of
During the heat treatment, the bi-component fibers of the substrate media 12 and the media 92 are relaxed and reoriented to expand the thickness of the composite filter media 90 to t′″ and form an undulating surface 96, as shown in
Such composite filter media 90 having an expanded thickness and an undulating surface can have superior dust holding capability and reduced pressure drop when compared to the unexpanded composite filter media or other conventional filter medias. Further, the increased filter media volume due to the filter media expansion via the relaxation make the expanded composite filter media 90 (
While
Depth filter medias load particulates substantially throughout the volume or depth, and thus, the depth medias can be loaded with a higher weight and volume of particulates as compare with surface loading systems over the lifespan of the filter. Usually, however, depth media arrangements suffer from efficiency drawbacks. To facilitate such high holding capacity, a low solidity of media is often chosen for use. This results in large pore sizes that have the potential to allow some particulates to pass more readily. The expanded composite filter media according to embodiments of the present invention can provide superior dust holding capability and filtration efficiency while maintaining a same low level of pressure drop via expanded media and fine fibers.
In other embodiments, an expanded composite filter media can include multiple layers of fine fibers and multiple filter layers.
Further, the fine fiber layers 16, 102 may include a same amount of fine fibers or different amount of fine fibers. The materials of the filter layers 12, 92, 104 and the amount of fine fibers of the fine fiber layers 16, 102 can be selected to create a gradient depth media. For example, filter layers 12, 92, 104 can be formed of the bi-component fiber scrim similar to the bi-component scrim used for the substrate media 12 and the filter layer 92 of the previous embodiments. However, the bi-component fiber scrim of the filter layer 104 can have less solid density, and thereby less filtration efficiency, than the scrim selected for the filter layer 92. Further, the scrim selected for the substrate media 12 can have more solid density than the scrim used for the filter layer 92. Further, the fine fiber layer 16 can be formed to include more fine fibers than the fine fiber layer 102. For example, the fine fiber layer 102 can be formed to include electrospun fine fibers of PA-6 at about 0.015 g/m2, while the fine fiber layer 16 is formed to include electrospun fine fibers of PA-6 at about 0.025 g/m2. Preferably, each of the fine fiber layer(s) in the various embodiments has a nanofiber coverage level between about 0.005 g/m2 and 0.030 g/m2, and more preferably between about 0.012 g/m2 and 0.025 g/m2. It should be noted that due to the reorientation of fibers after the deposition/coverage into an undulating 3D matrix, much more fine fibers can be deposited (greater fine fiber coverage or basis weight) without unduly causing restriction or pressure drop issues, and in fact the reverse is true due to the greater effective volumetric area as a result of the expansion. Such gradient composite filter media 100 can allow more dust particles to be loaded throughout the thickness of the composite filter media 100.
In an embodiment, the composite filter media 100 in its unexpanded state includes the filter layers 12, 92, 104 formed of a bi-component fiber scrim having a thickness of about 0.005″ and the fine fiber layers 16, 102 comprising electrospun PA-6 nanofibers at a coverage level of about 0.019 g/m2. The unexpanded composite filter media 100 has a total thickness of about 0.015″. After the heat expansion, the thickness of the each of the filter layers 12, 92, 104 can increase about 2 to 3 times or even higher, thereby providing the expanded composite filter media 100 having the total thickness of 0.030″ or 0.045″ or higher.
Other configurations of the expanded composite filter media may be beneficial to different filtration applications to optimize dust holding and pressure drop characteristics. In other embodiments, an expanded composite filter media may include more than three filter layers and more than two fine fiber layers configured in various orders.
Additionally, after the expansion of the media resulting in the reorientation of fine fibers, the expanded composite filter media may then be configured into a filter element with a gathered configuration such as a fluted filter or a pleated filter or other such typical filter element arrangement. Such gathered filter arrangements may be in the form of a cylindrical or oval element with end caps, frames and the like and often times with an annular sealing gasket as indicated in some of the patents incorporated by reference herein. This media may also be incorporated into such filter elements. Further, the expanded composite filter media can be pleated and used in a panel filter.
Now that different embodiments of the expanded composite filter media, according to the present invention are described, methods of forming the expanded composite filter media will be explained.
In the system 200, a roll of scrim 210 is unwound from the unwinding station 202. In one embodiment, the roll of scrim 210 is formed of high melt polyester core/low melt polyester sheath bi-component staple fibers, which were already compressed via a set of calendering rollers to form the roll of scrim 210 having a desired thickness and solidity. The web of scrim 212 travels in a machine direction 214 toward the electrospinning station 204. In the electrospinning station 204, fine fibers 216 are formed and deposited on the web of scrim 212 to form a composite filer media 218. The composite filer media 218 then enters the heat treatment station 206, wherein the composite filter media 218 is heated to or near a melting temperature of the low melt polyester. During the heat treatment, the composite filter media 218 relaxes and expands to form an expanded composite filter media 220, which is rewound on the rewinding station 208. The bonding between the web of scrim 212 and the fine fibers 216 is also enhanced during the heat treatment. Each component of the system 200 is discussed in detail below.
The scrim may be formed in an upstream process of the system 200 (and either part of a continuous I line process or interrupted 2 line process) or may be purchased in a roll form from a suitable supplier such as HDK or other suitable media supplier such as H&V or Ahlstrom or the like. The scrim can be formed of various suitable materials, such as bi-component fibers of
In a different embodiment, a web comprising high melt polymer fibers such as polyester fibers and a web comprising low melt polymer fibers such as polypropylene fibers can be formed, separated and laminated together to form the roll of bi-component filter media or scrim. In such embodiment, the fine fibers 216 are deposited on the low melt side of the scrim 212. In this embodiment, the low melt web is substantially thinner than the high melt web, such that the low melt component does not clog the surface of the high melt web when heated and melted.
In another embodiment, the bi-component fiber scrim can be formed via a melt blowing process. For example, molten polyester and molten polypropylene can be extruded and drawn with heated, high velocity air to form coarse fibers. The fibers can be collected as a web on a moving screen to form a bi-component scrim 210.
The multi-component fiber filter media or scrim may also be spun-bounded using at least two different polymeric materials. In a typical spun-bounding process, a molten polymeric material passes through a plurality of extrusion orifices to form a multifilamentary spinline. The multifilamentary spinline is drawn in order to increase its tenacity and passed through a quench zone wherein solidification occurs which is collected on a support such as a moving screen. The spun-bounding process is similar to the melt blowing process, but melt blown fibers are usually finer than spun-bounded fibers.
In yet another embodiment, the multi-component filter media is web-laid. In a wet laying process, high melt fibers and low melt fibers are dispersed on a conveying belt, and the fibers are spread in a uniform web while still wet. Wet-laid operations typically use ¼″ to ¾″ long fibers, but sometimes longer if the fiber is stiff or thick. The above discussed fibers, according to various embodiments, are compressed to form a scrim 210 or a filter media having a desired thickness.
Referring back to
The electrospinning process produces synthetic fibers of small diameter, which are also known as nanofibers. The basic process of electrostatic spinning involves the introduction or electrostatic charge to a stream of polymer melt or solution in the presence of a strong electric field, such as a high voltage gradient. Introduction of electrostatic charge to polymeric fluid in the electrospinning cells 222 results in formation of a jet of charged fluid. The charged jet accelerates and thins in the electrostatic field, attracted toward a ground collector. In such process, viscoelastic forces of polymeric fluids stabilize the jet, forming a small diameter filaments. An average diameter of fibers may be controlled by the design of eletrospinning cells 222 and formulation of polymeric solutions.
The polymeric solutions used to form the fine fibers can comprise various polymeric materials and solvents. Examples of polymeric materials include polyvinyl chloride (PVC), polyolefin, polyacetal, polyester, cellulous ether, polyalkylene sulfide, polyarylene oxide, polysulfone, modified polysulfone polymers and polyvinyl alcohol, polyamide, polystyrene, polyacrylonitrile, polyvinylidene chloride, polymethyl methacrylate, polyvinylidene fluoride. Solvents for making polymeric solution for electrostatic spinning may include acetic acid, formic acid, m-cresol, tri-fluoro ethanol, hexafluoro isopropanol chlorinated solvents, alcohols, water, ethanol, isopropanol, acetone, and N-methylpyrrolidone, and methanol. The solvent and the polymer can be matched for appropriated use based on sufficient solubility of the polymer in a given solvent and/or solvent mixture (both of which may be referred to as “solvent”.) For example, formic acid may be chosen for polyamide, which is also commonly known as nylon-6. Reference can be had to the aforementioned patents for further details on electrospinning of fine fibers.
In the system 200, an electrostatic field is generated between electrodes in the electrospinning cells 222 and a vacuum collector conveyor 224, provided by a high voltage supply generating a high voltage differential. As shown in
In one embodiment, the electrospinning cells 222 contain a polymeric solution comprising polyamide-6 (PA-6) and a suitable solvent consisting of ⅔ acetic acid and ⅓ formic acid. In such a solvent, both acetic acid and formic acid act as a dissolving agent to dissolve PA-6, and acetic acid controls conductivity and surface tension of the polymeric solution. The electrospinning cells 222 generate fine fibers formed of PA-6, which are deposited onto the surface of the web of scrim 212. As the fine fibers 216 are deposited on the surface of the web of scrim 212, some fine fibers 216 entangle with fibers of the scrim proximate the surface facing the electrospinning cells 222. When some fine fibers 216 entangle with some fibers proximate the surface of the scrim, some solvent remaining in the fine fibers 216 from the electrospinning process can effectuate a solvent bonding between the fine fibers 216 and the fibers of the web of scrim 212. To effectuate the solvent bonding, the fibers of the web of scrim 212 need to be soluble or at least react with the solvent in the fine fibers. A cross-sectional view of the composite filter media 218 formed in the electrospinning station 202 may look like the unexpanded composite filter media 10 of
Upon exiting the electrospinning station 206, the composite filter media 218 proceeds to an expansion process. In this embodiment, the expansion of the composite filter media 218 is accomplished in the heat treatment station 206. The heat treatment station 206 can be any suitable conventional oven such as a convection oven, or a heating device utilizing other suitable types of heating mechanism such as an infrared oven. Wherein the scrim 212 comprises high melt/low melt bi-component fibers, the composite filter media 218 is heated to or near a melting temperature of the low melt polymer component of the bi-component fibers. As the bi-component fibers of the scrim 212 are heated to or near the melting temperature of the low melt polymer component, the bi-component fibers relax and reposition. Some bi-component fibers, such as the eccentric sheath/core type bi-component fibers of
Further, as the bi-component fibers proximate the surface carrying the fine fibers 216 move and reorient, the fine fibers 216 also move with the bi-component fibers. As discussed above, the fine fibers 216 are deposited on the surface of the web of scrim 212, wherein some fine fibers 216 come in contact with the bi-component fibers proximate the surface of the web of scrim 212 and may be bonded via solvent bonding. The bonding between bi-component fibers and the fine fibers 216 is enhanced during the heat treatment as the outer low melt polymer component of the bi-component fibers softens or melts and embeds the fine fibers 216. During the heat treatment, the composite filter media 218 is heated to at least above the glass transition temperature of the low melt component, and more preferably to or near the melting temperature of the low melt component. For example, the composite filter media 218 is heated to or near the melt point of low melt polyester, such that the outer low melt polyester layer of the bi-component fibers melts and bonds with the fine fibers 216 formed of PA-6. In such embodiments, PA-6 fine fibers 216 and the high melt polyester core of the bi-component fibers do not melt, since PA-6 and the high melt polyester have a significantly higher melting temperature than that of the low melt polyester. The low melt polyester, which has the lowest melting temperature, melts or softens, and adjacent PA-6 fine fibers 216 are embedded in the softened or melted low melt polyester, thereby bonding the fine fibers 216 and the web of scrim 212 together. Thus, the low melt polyester acts as a bonding agent between the bi-component fiber scrim 212 and the fine fibers 216.
The fine fibers 216 which are embedded on the surface of the bi-component fibers move with the bi-component fibers as the bi-component fibers are relaxed and reoriented during the heat treatment. The bi-component fibers may curl, twist and move in different directions as the bi-component fibers are heated. Some bi-component fibers carrying the fine fibers 216 may move outwardly expanding the surface while some bi-component carrying the fine fibers 216 may stay at the original surface level or even move inwardly in the opposite direction. As such, the substantially flat surface of the composite filter media 218 becomes undulated as the fibers orient during the heat treatment. Further, the fined fibers 216 which were deposited at the surface level of the scrim 212 are extended as they move with the bi-component fibers, thereby increasing the depth of the fine fibers 216 integration into the web of scrim 212 as the composite filter media 218 expands during the heat treatment. The reorientation of the bi-component fibers and the fine fibers 216 can also improve overall pore structure of the expanded composite filter media 218. Therefore, the decrease in percent solid due to the expansion (same amount of fibers with increased volume) and the improved pore structure of the expanded composite filter media 218 provide improved filter capacity and a slower pressure drop increase. The expanded composite filter media 220 may resemble the expanded composite filter media of
In some embodiments, the expanded composite filter media 220 may be processed through a set of rollers downstream of the heat treatment station. A small amount of pressure may be applied to the expanded composite filter media 220 to facilitate adhesion between the fine fibers 216 and the substrate scrim 212 and/or to slightly reduce the thickness the composite filter media 220 to a desired thickness. However, the expanded composite filter media 220 substantially retains the undulating surface and the expanded thickness from the heat treatment through the set of rollers.
The substrate media 236 and the filter layer 238 may be formed of various suitable materials and methods. Further, the substrate media 236 and the filter layer 238 may be formed of a same filter media or scrim, or different filter medias or scrims. In one embodiment, the substrate media 236 and the filter layer 238 are formed of a same bi-component fiber scrim. In this embodiment, bi-component staple fibers comprising a high melt polyester core and a low melt polyester sheath are formed in to a web of scrim having a desired thickness and width in the equipment 232 and the equipment 234.
The substrate media 236 comprising the bi-component fiber scrim enters the electrospinning station 240, wherein PA-6 nanofibers 254 are formed and deposited on the surface of the substrate media 236 in the manner described for the electrospinning station 204 of
The composite filter media 248 then enters the heat treatment station 244. In the heat treatment station 244, the composite filter media 248 is heated to or near the melting point of the low melt polyester component of the bi-component fibers. The bi-component fibers of the substrate media 236 and the filter 238 relax and reorient as described above with regard to the embodiment of
Two layers of the fine fiber coated medias 410, 412 are laminated together between a set of rollers 422, wherein a pressure is applied to facilitate adhesion between layers 414, 418, 420, 416. In some embodiments, the set of rollers 422 may be heated to enhance adhesion between layer 414, 418, 420, 416. The laminated composite filter media 424, before entering the oven 406, looks similar the unexpanded composite filter media 90 shown in
The fine fibers 452, 454 are deposited on the substrate media 448, 450 via an electrospinning method such as the electrospinning method described in the system 200 of
Test samples for the expanded composite filter media 100 of
The fine fibers were formed via an electrospinning process from a polymeric solution comprising PA-6. The PA-6 nanofibers were formed and deposited on the bi-component fiber scrim at a coverage level of about 0.019 g/m2. Two layers of such bi-component fiber scrim carrying the fine fibers and an uncoated bi-component fiber scrim were laminated together, such that the fine fibers are sandwiched between the bi-component fiber scrim layers as shown in
The samples were tested for efficiency and dust holding capacity, and the test results of the samples were compared with that of other comparable filter medias available in the market. The test protocols for MFP Dust Holding test were: ISO Fine test dust at a concentration of 140 mg/m3, sample size of 1002 cm, face velocity 10 cm/s. The test protocols for MFP Efficiency test were: ISO Fine test dust at a concentration of 70 mg/m3, sample size of 1002 cm, face velocity 20 cm/s.
As shown in
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 61/308,488 filed Feb. 26, 2010; and U.S. Provisional Patent Application No. 61/330,462 filed May 3, 2010; and U.S. Provisional Patent Application No. 61/383,487 filed Sep. 16, 2010; and U.S. Provisional Patent Application No. 61/383,569 filed Sep. 16, 2010, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
61383487 | Sep 2010 | US | |
61383569 | Sep 2010 | US | |
61330462 | May 2010 | US | |
61308488 | Feb 2010 | US |