Expanded nuclear fuel channel

Abstract
A fuel channel for housing a fuel rod bundle in a boiling water nuclear reactor includes an expanded section to create an increased flow area at a top of the fuel channel and thereby reduce a pressure drop through the fuel channel. The expanded section eliminates a need for channel spacers and a fastener guard.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a conventional fuel channel;



FIG. 2 is a perspective view of the expanded fuel channel design described herein;



FIG. 3 is an alternative embodiment of the expanded channel with integrated channel fastener springs; and



FIG. 4 is another alternative expanded fuel channel design.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIG. 2, a fuel channel 10 typically houses a fuel bundle assembly for boiling water nuclear reactor. The fuel bundle assembly includes a plurality of fuel rods, a pair of coolant rods, and the channel 10 surrounding the fuel rods and coolant rods. In some designs, a conventional upper tie plate is eliminated in favor of a handle or lifting bar assembly 20 as shown. The handle assembly 20 facilitates insertion and removal of the fuel bundle.


As shown in FIG. 1, a conventional fuel channel 1 typically includes a constant cross-section with channel spacers 2 and a channel fastener 3 for positioning the fuel bundle in the upper guide plate of the reactor. In an effort to reduce the number of individual components associated with the fuel channel and to create an increased flow area at the top of the fuel channel, the fuel channel 10 described herein expands at least two sides of the channel outward to approximately the width of the existing channel spacers and fastener guard. That is, the fuel channel 10 includes a bottom section 12 having a first four-sided perimeter sized to house a tie plate. An expanded section 14 is cooperable with the bottom section 12 and has a second four-sided perimeter, wherein lengths of at least two sides of the second perimeter are greater than lengths of a corresponding at least two sides of the first perimeter. See, for example, expanded sides 16 in FIG. 2.


The expanded section 14 preferably begins at an elevation above the top of the active fuel. By having the expanded section 14 below the grid of the upper tie plate, additional flow area is created, thereby reducing the pressure drop relative to current designs. Additionally, the expanded section 14 eliminates the need for separate spacers and the fastener guard.


The expansion of the channel 10 on only two sides enables the design to be compatible with existing power plants. In an alternate embodiment shown in FIG. 4, the channel is expanded on all four sides. This design is suited for future plant designs. Expansion of the channel 10 on all sides provides additional pressure drop performance improvements over the first embodiment.


The exact shape and location of the transition to the expanded section 14 can be determined through analysis and testing during product development. The transition could be a sharp step change, simple radius or very gradual angular change. The location of the elevation change could be at any point above where the control blades are positioned at maximum insertion. Alternatively, a small expansion may be formed down in the control blade zone with a larger one above the control blade or in the case of expanding on three or four sides, the non-control blade sides may expand below the control blade height.


In yet another alternative embodiment, the expanded section 14 may include a plurality of slots 22 therein defining one or more finger springs 24. The finger springs 24 serve the same purpose as the channel fastener springs in the conventional design. Additional or alternative slots may also be provided at the corners to make forming easier and to further reduce the pressure drop by creating more exit area for the bundle flow.


As a peripheral advantage, the expanded channel described herein may also enable a previously-proposed design for a top cover filter to be implemented. The top cover filter proposal was essentially a porous plate that would prevent debris from entering the fuel bundle from the top. A concern with the top filter, however, was the additional pressure drop. The expanded channel design described herein may create enough pressure drop margin to enable use of the top filter.


The expanded fuel channel described herein eliminates several components and the associated manufacturing, inspection and purchasing requirements associated with those components, thereby resulting in a cost savings. Moreover, the expanded channel reduces a pressure drop across the fuel bundle, increasing flow and bundle performance.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A fuel channel for housing a fuel rod bundle in a boiling water nuclear reactor, the fuel channel comprising: a bottom section having a first four-sided perimeter sized to house a tie plate; andat least one expanded section cooperable with the bottom section and having a second four-sided perimeter, wherein a length of at least one side of the second perimeter is greater than a length of a corresponding at least one side of the first perimeter.
  • 2. A fuel channel according to claim 1, wherein a transition between the bottom section and the expanded section is one of a step change, a simple radius, or a gradual angular change.
  • 3. A fuel channel according to claim 1, wherein the fuel channel is without channel spacers or a fastener guard.
  • 4. A fuel channel according to claim 1, wherein the expanded section comprises a top section of the fuel channel extending from below an upper tie plate matrix, thereby creating additional flow area and reducing a pressure drop.
  • 5. A fuel channel according to claim 1, wherein lengths of all four sides of the expanded section are greater than lengths of the four sides of the bottom section.
  • 6. A fuel channel according to claim 1, wherein the expanded section comprises a top section of the fuel channel, and wherein the expanded section includes a plurality of slots therein.
  • 7. A fuel channel according to claim 6, wherein the slots define at least one finger spring.
  • 8. A fuel channel for housing a fuel rod bundle in a boiling water nuclear reactor, the fuel channel comprising an expanded section to create an increased flow area at a top of the fuel channel and thereby reducing a pressure drop through the fuel channel.
  • 9. A fuel channel according to claim 8, wherein a transition to the expanded section is one of a step change, a simple radius, or a gradual angular change.