Expanded range DC-DC converter

Information

  • Patent Grant
  • 9374005
  • Patent Number
    9,374,005
  • Date Filed
    Wednesday, August 13, 2014
    10 years ago
  • Date Issued
    Tuesday, June 21, 2016
    8 years ago
Abstract
A DC-DC converter, which provides a converter output voltage using a DC source voltage, is disclosed. The DC-DC converter includes converter control circuitry and a boosting charge pump. The converter control circuitry selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage. During the boost disabled mode, the boosting charge pump presents a high impedance at a charge pump output of the boosting charge pump. Otherwise, the boosting charge pump provides a charge pump output voltage. During the first boost operating mode, a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage. During the second boost operating mode, a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.
Description
FIELD OF THE DISCLOSURE

Embodiments of the present disclosure relate to DC-DC converters, which may be used in RF communication systems.


BACKGROUND

Portable devices, such as portable wireless communications devices, are typically battery powered and need to be relatively small, and have low cost. As such, to minimize size, cost, and power consumption, DC-DC converters in such devices need to be as simple, small, and efficient as is practical. Thus, there is a need for DC-DC converters that are low cost, small, simple, and efficient.


SUMMARY

A DC-DC converter, which provides a converter output voltage using a DC source voltage, is disclosed according to one embodiment of the present disclosure. The DC-DC converter includes converter control circuitry and a boosting charge pump, which has a charge pump output. The converter control circuitry selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage. During the boost disabled mode, the boosting charge pump presents a high impedance at the charge pump output. During the first boost operating mode, the boosting charge pump provides a charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage. During the second boost operating mode, the boosting charge pump provides the charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.


Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 shows a DC-DC converter and a DC power source according to one embodiment of the DC-DC converter and the DC power source.



FIG. 2 shows details of a boosting charge pump illustrated in FIG. 1 according to one embodiment of the boosting charge pump.



FIG. 3 shows details of the boosting charge pump illustrated in FIG. 1 according to an alternate embodiment of the boosting charge pump.



FIG. 4 shows details of the boosting charge pump illustrated in FIG. 1 according to an additional embodiment of the boosting charge pump.



FIG. 5 shows details of the boosting charge pump illustrated in FIG. 1 according to another embodiment of the boosting charge pump.



FIG. 6 shows details of the boosting charge pump illustrated in FIG. 1 according to a further embodiment of the boosting charge pump.



FIG. 7 shows the DC-DC converter and the DC power source according to an alternate embodiment of the DC-DC converter and the DC power source.



FIG. 8 shows details of a buck converter illustrated in FIG. 7 according to one embodiment of the buck converter.



FIG. 9 shows an RF communications system according to one embodiment of the RF communications system.



FIG. 10 shows the RF communications system according to an alternate embodiment of the RF communications system.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


A DC-DC converter, which provides a converter output voltage using a DC source voltage, is disclosed according to one embodiment of the present disclosure. The DC-DC converter includes converter control circuitry and a boosting charge pump, which has a charge pump output. The converter control circuitry selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage. During the boost disabled mode, the boosting charge pump presents a high impedance at the charge pump output. During the first boost operating mode, the boosting charge pump provides a charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage. During the second boost operating mode, the boosting charge pump provides the charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.



FIG. 1 shows a DC-DC converter 10 and a DC power source 12 according to one embodiment of the DC-DC converter 10 and the DC power source 12. The DC-DC converter 10 includes converter control circuitry 14 and a boosting charge pump 16, which has a charge pump output CPO. The DC power source 12 provides a DC source signal VDC, which has a DC source voltage DCV, to the boosting charge pump 16. In one embodiment of the DC power source 12, the DC power source 12 is a battery. The boosting charge pump 16 receives power from the DC power source 12 via the DC source signal VDC and boosts the DC source voltage DCV to provide a charge pump output signal CPS, which has a charge pump output voltage CPV. In the embodiment shown, the charge pump output signal CPS is a converter output signal COS from the DC-DC converter 10. As such, the converter output signal COS has a converter output voltage COV. In this regard, in the embodiment of the DC-DC converter 10 illustrated in FIG. 1, the charge pump output voltage CPV is the converter output voltage COV. The converter control circuitry 14 receives a power supply control signal VRMP. In one embodiment of the power supply control signal VRMP, the power supply control signal VRMP is representative of a setpoint of the converter output voltage COV.


The converter control circuitry 14 provides a first charge pump switching control signal SCS1 to the boosting charge pump 16. As such, the converter control circuitry 14 controls operation of the boosting charge pump 16 via the first charge pump switching control signal SCS1. In one embodiment of the converter control circuitry 14, the converter control circuitry 14 controls the boosting charge pump 16 using switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2) in the boosting charge pump 16.


In one embodiment of the DC-DC converter 10, the DC-DC converter 10 provides the converter output voltage COV using the DC source voltage DCV. As such, the converter control circuitry 14 selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage DCV. The boosting charge pump 16 has a charge pump output CPO, such that during the boost disabled mode, the boosting charge pump 16 presents a high impedance at the charge pump output CPO. High impedance at the charge pump output CPO is defined, such that only undesirable paths to, from, or both, the charge pump output CPO are present. Such undesirable paths may include leakage currents, parasitic couplings, the like, or any combination thereof.


In one embodiment of the high impedance, the high impedance is greater than 10,000 ohms. In one embodiment of the high impedance, the high impedance is greater than 100,000 ohms. In one embodiment of the high impedance, the high impedance is greater than 1,000,000 ohms. In one embodiment of the high impedance, the high impedance is greater than 10,000,000 ohms. In one embodiment of the high impedance, the high impedance is greater than 100,000,000 ohms. In one embodiment of the high impedance, the high impedance is less than 100,000,000,000 ohms.


In one embodiment of the DC-DC converter 10, the boosting charge pump 16 provides the charge pump output voltage CPV via the charge pump output CPO, such that during the first boost operating mode, the charge pump output voltage CPV has first nominal value, and during the second boost operating mode, the charge pump output voltage CPV has second nominal value, which is greater than the first nominal value.


In one embodiment of the DC-DC converter 10, during the first boost operating mode, the boosting charge pump 16 provides the charge pump output voltage CPV via the charge pump output CPO, such that the first nominal value of the charge pump output voltage CPV is equal to about one and one-half times the DC source voltage DCV.


In one embodiment of the DC-DC converter 10, during the second boost operating mode, the boosting charge pump 16 provides the charge pump output voltage CPV via the charge pump output CPO, such that the second nominal value of the charge pump output voltage CPV is equal to about two times the DC source voltage DCV.


In one embodiment of the DC-DC converter 10, the DC-DC converter 10 is only capable of boosting the DC source voltage DCV to provide the converter output voltage COV. As such, the converter control circuitry 14 selects the boost disabled mode when the setpoint of the converter output voltage COV is less than the DC source voltage DCV minus an operating headroom. The operating headroom is an operating voltage drop inside the DC-DC converter 10, such that the DC-DC converter 10 is only capable of boosting the DC source voltage DCV to provide the converter output voltage COV after overcoming the operating headroom.


In one embodiment of the DC-DC converter 10, the converter control circuitry 14 selects the first boost operating mode when the DC source voltage DCV is above a first source threshold and when the setpoint of the converter output voltage COV is above the DC source voltage DCV. Conversely, in one embodiment of the DC-DC converter 10, the converter control circuitry 14 selects the second boost operating mode when the DC source voltage DCV is below the first source threshold and when the setpoint of the converter output voltage COV is above the DC source voltage DCV.


In one embodiment of the DC-DC converter 10, the first source threshold is representative of an operating point in the boosting charge pump 16, such that the second boost operating mode may be used without damaging the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2) in the boosting charge pump 16. In this regard, in one embodiment of the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2), a maximum voltage rating of the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2) is greater than two times the first source threshold. In an alternate embodiment of the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2), the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 (FIG. 2) are switching transistor elements, such that a maximum voltage rating of the switching transistor elements is greater than two times the first source threshold. In one embodiment of the DC-DC converter 10, the first source threshold is equal to about 2.9 volts and the maximum voltage rating of each of the switching transistor elements is greater than or equal to about six volts.



FIG. 2 shows details of the boosting charge pump 16 illustrated in FIG. 1 according to one embodiment of the boosting charge pump 16. The boosting charge pump 16 includes a first switching element 18, a second switching element 20, a third switching element 22, a fourth switching element 24, a fifth switching element 26, a sixth switching element 28, a seventh switching element 30, an eighth switching element 32, a ninth switching element 34, a first flying capacitive element CF1, and a second flying capacitive element CF2. The converter control circuitry 14 controls each of the switching elements 18, 20, 22, 24, 26, 28, 30, 32, 34 using the first charge pump switching control signal SCS1. As such, each of the switching elements 18, 20, 22, 24, 26, 28, 30, 32 is selected to be in one of an OPEN state and a CLOSED state based on the first charge pump switching control signal SCS1. As such, the first charge pump switching control signal SCS1 is a multi-bit signal.


The first switching element 18 is coupled between the DC power source 12 and a first end of the first flying capacitive element CF1. The second switching element 20 is coupled between the DC power source 12 and a second end of the first flying capacitive element CF1. The third switching element 22 is coupled between the DC power source 12 and a first end of the second flying capacitive element CF2. The fourth switching element 24 is coupled between the DC power source 12 and a second end of the second flying capacitive element CF2.


The fifth switching element 26 is coupled between the charge pump output CPO and the first end of the first flying capacitive element CF1. The sixth switching element 28 is coupled between the second end of the first flying capacitive element CF1 and ground. The seventh switching element 30 is coupled between the charge pump output CPO and the first end of the second flying capacitive element CF2. The eighth switching element 32 is coupled between the second end of the second flying capacitive element CF2 and ground. The ninth switching element 34 is coupled between the second end of the first flying capacitive element CF1 and the first end of the second flying capacitive element CF2.



FIG. 3 shows details of the boosting charge pump 16 illustrated in FIG. 1 according to an alternate embodiment of the boosting charge pump 16. The boosting charge pump 16 illustrate in FIG. 3 is similar to the boosting charge pump 16 illustrated in FIG. 2, except in the boosting charge pump 16 illustrated in FIG. 3, the converter control circuitry 14 has selected the boost disabled mode to at least partially charge the first flying capacitive element CF1 and the second flying capacitive element CF2.


As such, in the boosting charge pump 16 illustrated in FIG. 3, the DC source voltage DCV is above the first source threshold and the setpoint of the converter output voltage COV is above the DC source voltage DCV. Therefore, the converter control circuitry 14 is preparing the boosting charge pump 16 for the first boost operating mode. As such, the first switching element 18, the eighth switching element 32, and the ninth switching element 34 are in the CLOSED state and the second switching element 20, the third switching element 22, the fourth switching element 24, the fifth switching element 26, the sixth switching element 28, and the seventh switching element 30 are in the OPEN state. As such, the charge pump output CPO is isolated from the first flying capacitive element CF1 and the second flying capacitive element CF2.


Additionally, the first flying capacitive element CF1 and the second flying capacitive element CF2 are coupled in series between the DC power source 12 and ground via the first switching element 18, the eighth switching element 32 and the ninth switching element 34. Therefore, if the boosting charge pump 16 remains in the boost disabled mode long enough, the first flying capacitive element CF1 and the second flying capacitive element CF2 will charge until a voltage across each of the first flying capacitive element CF1 and the second flying capacitive element CF2 is equal to around about one-half times the DC source voltage DCV.



FIG. 4 shows details of the boosting charge pump 16 illustrated in FIG. 1 according to an additional embodiment of the boosting charge pump 16. The boosting charge pump 16 illustrate in FIG. 4 shows a transition from the boost disabled mode illustrated in FIG. 3 to the first boost operating mode. While in the boost disabled mode, the converter control circuitry 14 prepares the boosting charge pump 16 for the first boost operating mode by charging the first flying capacitive element CF1 and the second flying capacitive element CF2 until the voltage across each of the first flying capacitive element CF1 and the second flying capacitive element CF2 is equal to around about one-half times the DC source voltage DCV.


However, during the first boost operating mode, the first switching element 18, the third switching element 22, the sixth switching element 28, the eighth switching element 32, and the ninth switching element 34 are in the OPEN state, and the second switching element 20, the fourth switching element 24, the fifth switching element 26, and the seventh switching element 30 are in the CLOSED state, thereby coupling the first flying capacitive element CF1 and the second flying capacitive element CF2 in parallel with one another to form a parallel combination, which is coupled between the DC power source 12 and the charge pump output CPO. Using the parallel combination instead of using a single flying capacitive element reduces a voltage drop across switching elements and flying capacitive elements, thereby increasing the efficiency of the DC-DC converter 10.


As such, the DC source voltage DCV provided by the DC power source 12 combined with the one-half times the DC source voltage DCV provided by the first flying capacitive element CF1 and the second flying capacitive element CF2 provides around about one and one-half times the DC source voltage DCV at the charge pump output CPO.



FIG. 5 shows details of the boosting charge pump 16 illustrated in FIG. 1 according to another embodiment of the boosting charge pump 16. The boosting charge pump 16 illustrated in FIG. 5 is similar to the boosting charge pump 16 illustrated in FIG. 2, except in the boosting charge pump 16 illustrated in FIG. 5, the converter control circuitry 14 has selected the boost disabled mode to at least partially charge the first flying capacitive element CF1 and the second flying capacitive element CF2.


As such, in the boosting charge pump 16 illustrated in FIG. 5, the DC source voltage DCV is below the first source threshold and the setpoint of the converter output voltage COV is above the DC source voltage DCV. Therefore, the converter control circuitry 14 is preparing the boosting charge pump 16 for the second boost operating mode. As such, the first switching element 18, the third switching element 22, the sixth switching element 28, and the eighth switching element 32 are in the CLOSED state, and the second switching element 20, the fourth switching element 24, the fifth switching element 26, the seventh switching element 30, and the ninth switching element 34 are in the OPEN state. As such, the charge pump output CPO is isolated from the first flying capacitive element CF1 and the second flying capacitive element CF2.


Additionally, the first flying capacitive element CF1 and the second flying capacitive element CF2 are coupled in parallel with one another to form a parallel via the first switching element 18, the third switching element 22, the sixth switching element 28, and the eighth switching element 32. The parallel combination is coupled between the DC power source 12 and ground. Therefore, if the boosting charge pump 16 remains in the boost disabled mode long enough, the first flying capacitive element CF1 and the second flying capacitive element CF2 will charge until a voltage across each of the first flying capacitive element CF1 and the second flying capacitive element CF2 is equal to around about the DC source voltage DCV.



FIG. 6 shows details of the boosting charge pump 16 illustrated in FIG. 1 according to a further embodiment of the boosting charge pump 16. The boosting charge pump 16 illustrate in FIG. 6 shows a transition from the boost disabled mode illustrated in FIG. 5 to the second boost operating mode. While in the boost disabled mode, the converter control circuitry 14 prepares the boosting charge pump 16 for the second boost operating mode by charging the first flying capacitive element CF1 and the second flying capacitive element CF2 until the voltage across each of the first flying capacitive element CF1 and the second flying capacitive element CF2 is equal to around about the DC source voltage DCV.


However, during the second boost operating mode, the first switching element 18, the third switching element 22, the sixth switching element 28, the eighth switching element 32, and the ninth switching element 34 are in the OPEN state, and the second switching element 20, the fourth switching element 24, the fifth switching element 26, and the seventh switching element 30 are in the CLOSED state, thereby coupling the first flying capacitive element CF1 and the second flying capacitive element CF2 in parallel with one another to form a parallel combination, which is coupled between the DC power source 12 and the charge pump output CPO. Using the parallel combination instead of using a single flying capacitive element reduces a voltage drop across switching elements and flying capacitive elements, thereby increasing the efficiency of the DC-DC converter 10.


As such, the DC source voltage DCV provided by the DC power source 12 combined with the additional DC source voltage DCV provided by the first flying capacitive element CF1 and the second flying capacitive element CF2 provides around about two times the DC source voltage DCV at the charge pump output CPO.



FIG. 7 shows the DC-DC converter 10 and the DC power source 12 according to an alternate embodiment of the DC-DC converter 10 and the DC power source 12. The DC-DC converter 10 illustrated in FIG. 7 is similar to the DC-DC converter 10 illustrated in FIG. 1, except the DC-DC converter 10 illustrated in FIG. 7 further includes a buck converter 36 coupled to the boosting charge pump 16. The buck converter 36 has a buck converter output BCO, such that the buck converter 36 provides the charge pump output signal CPS via the buck converter output BCO. As such, the buck converter 36 provides the converter output voltage COV via the buck converter output BCO.


The converter control circuitry 14 provides a second charge pump switching control signal SCS2 to the boosting charge pump 16. As such, the converter control circuitry 14 controls operation of the boosting charge pump 16 via the second charge pump switching control signal SCS2. During the first boost operating mode and the second boost operating mode, the buck converter 36 provides the converter output signal COS using the charge pump output signal CPS. Therefore, during the first boost operating mode and the second boost operating mode, the buck converter 36 provides the converter output voltage COV via the buck converter output BCO using the charge pump output voltage CPV.



FIG. 8 shows details of the buck converter 36 illustrated in FIG. 7 according to one embodiment of the buck converter 36. The buck converter 36 includes a tenth switching element 38, an eleventh switching element 40, a buck inductive element LB, and a buck capacitive element CB. The tenth switching element 38 is coupled between the DC power source 12 and the charge pump output CPO. The eleventh switching element 40 is coupled between the charge pump output CPO and ground. The buck inductive element LB is coupled between the charge pump output CPO and the buck converter output BCO. The buck capacitive element CB is coupled between the buck converter output BCO and ground. The buck inductive element LB and the buck capacitive element CB form a lowpass filter.


The converter control circuitry 14 controls each of the switching elements 38, 40 in the buck converter 36 using the second charge pump switching control signal SCS2. As such, each of the switching elements 38, 40 is selected to be in one of an OPEN state and a CLOSED state based on the second charge pump switching control signal SCS2. As such, the second charge pump switching control signal SCS2 is a multi-bit signal. Further, during the boost disabled mode, since the boosting charge pump 16 presents a high impedance at the charge pump output CPO, either the tenth switching element 38 or the eleventh switching element 40, but not both simultaneously, are in the CLOSED state based on the second charge pump switching control signal SCS2.


In this regard, in one embodiment of the buck converter 36, during the boost disabled mode, when the tenth switching element 38 is in the CLOSED state, the eleventh switching element 40 is in the OPEN state and the DC power source 12 is coupled to the charge pump output CPO, such that a nominal value of the charge pump output voltage CPV is equal to about the DC source voltage DCV. Conversely, during the boost disabled mode, when the tenth switching element 38 is in the OPEN state and the eleventh switching element 40 is in the CLOSED state, ground is coupled to the charge pump output CPO, such that a nominal value of the charge pump output voltage CPV is equal to about zero volts.


As previously mentioned, during the first boost operating mode, the nominal value of the charge pump output voltage CPV is equal to about one and one-half times the DC source voltage DCV. During the second boost operating mode, the nominal value of the charge pump output voltage CPV is equal to about two times the DC source voltage DCV. However, in one embodiment of the DC-DC converter 10, the converter control circuitry 14 will only select one of the first boost operating mode and the second boost operating mode based on the DC source voltage DCV. If the DC source voltage DCV is too high, the converter control circuitry 14 will not select the second boost operating mode. Instead, the converter control circuitry 14 will select the first boost operating mode if a boosting voltage is needed. However, if the DC source voltage DCV is too low, the converter control circuitry 14 will not select the first boost operating mode. Instead, the converter control circuitry 14 will select the second boost operating mode if a boosting voltage is needed.


As such, when a boosting voltage is needed, the converter control circuitry 14 selects a first voltage for the charge pump output voltage CPV, which may nominally be equal to either about one and one-half times the DC source voltage DCV or about two times the DC source voltage DCV. As such, the converter control circuitry 14 uses the first charge pump switching control signal SCS1 to select either the first boost operating mode or the second boost operating mode. Further, the converter control circuitry 14 uses the second charge pump switching control signal SCS2 to de-select the tenth switching element 38 and the eleventh switching element 40 by placing the tenth switching element 38 and the eleventh switching element 40 in their respective OPEN states. As such, the converter control circuitry 14 uses both the first charge pump switching control signal SCS1 and the second charge pump switching control signal SCS2 to select the first voltage for the charge pump output voltage CPV.


If a boosting voltage is not needed, the converter control circuitry 14 selects the boost disabled mode. As such, during the boost disabled mode, the converter control circuitry 14 selects either a second voltage for the charge pump output voltage CPV or a third voltage for the charge pump output voltage CPV using the first charge pump switching control signal SCS1 and the second charge pump switching control signal SCS2. In one embodiment of the converter control circuitry 14, the second voltage for the charge pump output voltage CPV is nominally equal to about the DC source voltage DCV. In one embodiment of the converter control circuitry 14, the third voltage for the charge pump output voltage CPV is nominally equal to about zero volts, which is a bucking voltage.


In one embodiment of the converter control circuitry 14, the converter output voltage COV is fed back to the converter control circuitry 14, such that the converter control circuitry 14 selects between the first voltage, the second voltage, and the third voltage for the charge pump output voltage CPV using the first charge pump switching control signal SCS1 and the second charge pump switching control signal SCS2 to regulate the converter output voltage COV based on the setpoint of the converter output voltage COV.



FIG. 9 shows an RF communications system 100 according to one embodiment of the RF communications system 100. The RF communications system 100 includes RF transmitter circuitry 112, RF system control circuitry 114, RF front-end circuitry 116, an RF antenna 118, and the DC power source 12. The RF transmitter circuitry 112 includes transmitter control circuitry 122, an RF power amplifier (PA) 124, the DC-DC converter 10, and PA bias circuitry 128.


In one embodiment of the RF communications system 100, the RF front-end circuitry 116 receives via the RF antenna 118, processes, and forwards an RF receive signal RFR to the RF system control circuitry 114. The RF system control circuitry 114 provides the power supply control signal VRMP and a transmitter configuration signal PACS to the transmitter control circuitry 122. The transmitter control circuitry 122 forwards the power supply control signal VRMP to the DC-DC converter 10.


Control circuitry selects one of an envelope tracking mode and an average power tracking mode. In one embodiment of the RF communications system 100, the RF system control circuitry 114 includes the control circuitry. As such, the transmitter configuration signal PACS is indicative of the selection of the one of the envelope tracking mode and the average power tracking mode. In an alternate embodiment of the RF communications system 100, the transmitter control circuitry 122 includes the control circuitry that selects the one of the envelope tracking mode and the average power tracking mode. In one embodiment of the control circuitry, the control circuitry selects the average power tracking mode when an average output power from the RF PA 124 is less than a power threshold.


The RF system control circuitry 114 provides an RF input signal RFI to the RF PA 124. The DC power source 12 provides the DC source signal VDC to the DC-DC converter 10. In one embodiment of the DC power source 12, the DC power source 12 is a battery. The DC source signal VDC has the DC source voltage DCV. The transmitter control circuitry 122 is coupled to the DC-DC converter 10 and to the PA bias circuitry 128. The DC-DC converter 10 provides the converter output signal COS, which is an envelope power supply signal EPS, to the RF PA 124 based on the power supply control signal VRMP. The envelope power supply signal EPS has an envelope power supply voltage EPV. The DC source signal VDC provides power to the DC-DC converter 10. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The power supply control signal VRMP is representative of a setpoint of the envelope power supply signal EPS.


During both the envelope tracking mode and the average power tracking mode, the RF PA 124 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply signal EPS. The envelope power supply signal EPS provides power for amplification. In one embodiment of the RF communications system 100, during the envelope tracking mode, the envelope power supply signal EPS at least partially envelope tracks the RF transmit signal RFT. In one embodiment of the RF communications system 100, during the average power tracking mode the envelope power supply voltage EPV is about equal to the DC source voltage DCV.


The RF front-end circuitry 116 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 118. In one embodiment of the RF transmitter circuitry 112, the transmitter control circuitry 122 configures the RF transmitter circuitry 112 based on the transmitter configuration signal PACS. The PA bias circuitry 128 provides a PA bias signal PAB to the RF PA 124. In this regard, the PA bias circuitry 128 biases the RF PA 124 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 128, the PA bias circuitry 128 biases the RF PA 124 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 116, the RF front-end circuitry 116 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, at least one RF amplifier, the like, or any combination thereof.


In one embodiment of the RF system control circuitry 114, the RF system control circuitry 114 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof. In one embodiment of the DC-DC converter 10, the DC-DC converter 10 operates in the selected one of the envelope tracking mode and the average power tracking mode. During both the envelope tracking mode and the average power tracking mode, the DC-DC converter 10 regulates the envelope power supply signal EPS to be about equal to the setpoint of the envelope power supply signal EPS.



FIG. 10 shows the RF communications system 100 according to an alternate embodiment of the RF communications system 100. The RF communications system 100 illustrated in FIG. 10 is similar to the RF communications system 100 illustrated in FIG. 9, except in the RF communications system 100 illustrated in FIG. 10, the RF transmitter circuitry 112 further includes a digital communications interface 134, which is coupled between the transmitter control circuitry 122 and a digital communications bus 136. The digital communications bus 136 is also coupled to the RF system control circuitry 114. As such, the RF system control circuitry 114 provides the power supply control signal VRMP (FIG. 9) and the transmitter configuration signal PACS (FIG. 9) to the transmitter control circuitry 122 via the digital communications bus 136 and the digital communications interface 134.


Some of the circuitry previously described may use discrete circuitry, integrated circuitry, programmable circuitry, non-volatile circuitry, volatile circuitry, software executing instructions on computing hardware, firmware executing instructions on computing hardware, the like, or any combination thereof. The computing hardware may include mainframes, micro-processors, micro-controllers, DSPs, the like, or any combination thereof.


None of the embodiments of the present disclosure are intended to limit the scope of any other embodiment of the present disclosure. Any or all of any embodiment of the present disclosure may be combined with any or all of any other embodiment of the present disclosure to create new embodiments of the present disclosure.


Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A DC-DC converter configured to provide a converter output voltage using a DC source voltage and comprising: converter control circuitry configured to select one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage, and further configured to select the boost disabled mode when a setpoint of the converter output voltage is less than the DC source voltage minus an operating headroom; anda boosting charge pump having a charge pump output and configured to: during the boost disabled mode, present a high impedance at the charge pump output;during the first boost operating mode, provide a charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage; andduring the second boost operating mode, provide the charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.
  • 2. The DC-DC converter of claim 1 wherein the converter control circuitry is further configured to select the first boost operating mode when the DC source voltage is above a first source threshold and when a setpoint of the converter output voltage is above the DC source voltage.
  • 3. The DC-DC converter of claim 2 wherein a maximum voltage rating of switching transistor elements in the DC-DC converter is greater than two times the first source threshold.
  • 4. The DC-DC converter of claim 1 wherein the converter control circuitry is further configured to select the second boost operating mode when the DC source voltage is below a first source threshold and when a setpoint of the converter output voltage is above the DC source voltage.
  • 5. The DC-DC converter of claim 4 wherein a maximum voltage rating of switching transistor elements in the DC-DC converter is greater than two times the first source threshold.
  • 6. The DC-DC converter of claim 1 wherein the charge pump output voltage is the converter output voltage.
  • 7. A DC-DC converter configured to provide a converter output voltage using a DC source voltage and comprising: converter control circuitry configured to select one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage, and further configured to select the boost disabled mode to at least partially charge a first flying capacitive element and at least partially charge a second flying capacitive element; anda boosting charge pump comprising the first flying capacitive element and the second flying capacitive element and having a charge pump output and configured to: during the boost disabled mode, present a high impedance at the charge pump output;during the first boost operating mode, provide a charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage; andduring the second boost operating mode, provide the charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.
  • 8. The DC-DC converter of claim 7 wherein during the boost disabled mode, when the DC source voltage is above a first source threshold and when a setpoint of the converter output voltage is above the DC source voltage, the first flying capacitive element and the second flying capacitive element are coupled in series between a DC power source and a ground, such that a voltage across each of the first flying capacitive element and the second flying capacitive element is equal to around about one-half times the DC source voltage.
  • 9. The DC-DC converter of claim 7 wherein during the boost disabled mode, when the DC source voltage is below a first source threshold and when a setpoint of the converter output voltage is above the DC source voltage, the first flying capacitive element and the second flying capacitive element are coupled in parallel with one another to form a parallel combination, which is coupled between a DC power source and a ground.
  • 10. The DC-DC converter of claim 7 wherein during the first boost operating mode and the second boost operating mode, the first flying capacitive element and the second flying capacitive element are coupled in parallel with one another to form a parallel combination, which is coupled between a DC power source and the charge pump output.
  • 11. The DC-DC converter of claim 1 wherein a DC power source is configured to provide the DC source voltage.
  • 12. The DC-DC converter of claim 11 wherein the DC power source is a battery.
  • 13. The DC-DC converter of claim 1 wherein the converter control circuitry is further configured to receive a power supply control signal, which is representative of a setpoint of the converter output voltage.
  • 14. The DC-DC converter of claim 1 wherein the converter control circuitry is further configured to control operation of the boosting charge pump using a first charge pump switching control signal.
  • 15. A DC-DC converter configured to provide a converter output voltage using a DC source voltage and comprising: converter control circuitry configured to select one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage;a boosting charge pump having a charge pump output and configured to: during the boost disabled mode, present a high impedance at the charge pump output;during the first boost operating mode, provide a charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage; andduring the second boost operating mode, provide the charge pump output voltage via the charge pump output, such that a nominal value of the charge pump output voltage is equal to about two times the DC source voltage; anda buck converter having a buck converter output and coupled to the boosting charge pump, such that during the first boost operating mode and the second boost operating mode, the buck converter is configured to provide the converter output voltage via the buck converter output using the charge pump output voltage.
  • 16. The DC-DC converter of claim 1 wherein the converter control circuitry is further configured to select between a first voltage, a second voltage, and a third voltage for the charge pump output voltage using a first charge pump switching control signal and a second charge pump switching control signal to regulate the converter output voltage based on a setpoint of the converter output voltage.
  • 17. The DC-DC converter of claim 16 wherein the first voltage is nominally equal to one of about one and one-half times the DC source voltage and about two times the DC source voltage, the second voltage is nominally equal to about the DC source voltage, and the third voltage is nominally equal to about zero volts.
  • 18. The DC-DC converter of claim 1 wherein the DC-DC converter is further configured to provide a converter output signal, which has the converter output voltage, such that the converter output signal is an envelope power supply signal, which provides power for amplification to a radio frequency power amplifier.
  • 19. The DC-DC converter of claim 18 wherein the radio frequency power amplifier is configured to receive and amplify a radio frequency input signal to provide a radio frequency transmit signal using the envelope power supply signal.
RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 61/865,456, filed Aug. 13, 2013, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (398)
Number Name Date Kind
3969682 Rossum Jul 1976 A
3980964 Grodinsky Sep 1976 A
4587552 Chin May 1986 A
4692889 McNeely Sep 1987 A
4831258 Paulk et al. May 1989 A
4996500 Larson et al. Feb 1991 A
5099203 Weaver et al. Mar 1992 A
5146504 Pinckley Sep 1992 A
5187396 Armstrong, II et al. Feb 1993 A
5311309 Ersoz et al. May 1994 A
5317217 Rieger et al. May 1994 A
5339041 Nitardy Aug 1994 A
5351087 Christopher et al. Sep 1994 A
5414614 Fette et al. May 1995 A
5420643 Romesburg et al. May 1995 A
5457620 Dromgoole Oct 1995 A
5486871 Filliman et al. Jan 1996 A
5532916 Tamagawa Jul 1996 A
5541547 Lam Jul 1996 A
5581454 Collins Dec 1996 A
5646621 Cabler et al. Jul 1997 A
5715526 Weaver, Jr. et al. Feb 1998 A
5767744 Irwin et al. Jun 1998 A
5822318 Tiedemann, Jr. et al. Oct 1998 A
5898342 Bell Apr 1999 A
5905407 Midya May 1999 A
5936464 Grondahl Aug 1999 A
6043610 Buell Mar 2000 A
6043707 Budnik Mar 2000 A
6055168 Kotowski et al. Apr 2000 A
6070181 Yeh May 2000 A
6118343 Winslow Sep 2000 A
6133777 Savelli Oct 2000 A
6141541 Midya et al. Oct 2000 A
6147478 Skelton et al. Nov 2000 A
6166598 Schlueter Dec 2000 A
6198645 Kotowski et al. Mar 2001 B1
6204731 Jiang et al. Mar 2001 B1
6256482 Raab Jul 2001 B1
6300826 Mathe et al. Oct 2001 B1
6313681 Yoshikawa Nov 2001 B1
6348780 Grant Feb 2002 B1
6400775 Gourgue et al. Jun 2002 B1
6483281 Hwang Nov 2002 B2
6559689 Clark May 2003 B1
6566935 Renous May 2003 B1
6583610 Groom et al. Jun 2003 B2
6617930 Nitta Sep 2003 B2
6621808 Sadri Sep 2003 B1
6624712 Cygan et al. Sep 2003 B1
6646501 Wessel Nov 2003 B1
6658445 Gau et al. Dec 2003 B1
6681101 Eidson et al. Jan 2004 B1
6686727 Ledenev et al. Feb 2004 B2
6690652 Sadri Feb 2004 B1
6701141 Lam Mar 2004 B2
6703080 Reyzelman et al. Mar 2004 B2
6728163 Gomm et al. Apr 2004 B2
6744151 Jackson et al. Jun 2004 B2
6819938 Sahota Nov 2004 B2
6885176 Librizzi Apr 2005 B2
6958596 Sferrazza et al. Oct 2005 B1
6995995 Zeng et al. Feb 2006 B2
7038536 Cioffi et al. May 2006 B2
7043213 Robinson et al. May 2006 B2
7053718 Dupuis et al. May 2006 B2
7058373 Grigore Jun 2006 B2
7099635 McCune Aug 2006 B2
7164893 Leizerovich et al. Jan 2007 B2
7170341 Conrad et al. Jan 2007 B2
7200365 Watanabe et al. Apr 2007 B2
7233130 Kay Jun 2007 B1
7253589 Potanin et al. Aug 2007 B1
7254157 Crotty et al. Aug 2007 B1
7262658 Ramaswamy et al. Aug 2007 B2
7279875 Gan et al. Oct 2007 B2
7304537 Kwon et al. Dec 2007 B2
7348847 Whittaker Mar 2008 B2
7394233 Trayling et al. Jul 2008 B1
7405618 Lee et al. Jul 2008 B2
7411316 Pai Aug 2008 B2
7414330 Chen Aug 2008 B2
7454238 Vinayak et al. Nov 2008 B2
7515885 Sander et al. Apr 2009 B2
7528807 Kim et al. May 2009 B2
7529523 Young et al. May 2009 B1
7539466 Tan et al. May 2009 B2
7595569 Amerom et al. Sep 2009 B2
7609114 Hsieh et al. Oct 2009 B2
7615979 Caldwell Nov 2009 B2
7627622 Conrad et al. Dec 2009 B2
7646108 Paillet et al. Jan 2010 B2
7653366 Grigore Jan 2010 B2
7679433 Li Mar 2010 B1
7684216 Choi et al. Mar 2010 B2
7696735 Oraw et al. Apr 2010 B2
7715811 Kenington May 2010 B2
7724837 Filimonov et al. May 2010 B2
7755431 Sun Jul 2010 B2
7764060 Wilson Jul 2010 B2
7773691 Khlat et al. Aug 2010 B2
7773965 Van Brunt et al. Aug 2010 B1
7777459 Williams Aug 2010 B2
7782036 Wong et al. Aug 2010 B1
7783269 Vinayak et al. Aug 2010 B2
7800427 Chae et al. Sep 2010 B2
7805115 McMorrow et al. Sep 2010 B1
7852150 Arknaes-Pedersen Dec 2010 B1
7856048 Smaini et al. Dec 2010 B1
7859336 Markowski et al. Dec 2010 B2
7880547 Lee et al. Feb 2011 B2
7884681 Khlat et al. Feb 2011 B1
7894216 Melanson Feb 2011 B2
7898268 Bernardon et al. Mar 2011 B2
7898327 Nentwig Mar 2011 B2
7907010 Wendt et al. Mar 2011 B2
7915961 Li Mar 2011 B1
7920023 Witchard Apr 2011 B2
7923974 Martin et al. Apr 2011 B2
7965140 Takahashi Jun 2011 B2
7994864 Chen et al. Aug 2011 B2
8000117 Petricek Aug 2011 B2
8008970 Homol et al. Aug 2011 B1
8022761 Drogi et al. Sep 2011 B2
8026765 Giovannotto Sep 2011 B2
8044639 Tamegai et al. Oct 2011 B2
8054126 Yang et al. Nov 2011 B2
8068622 Melanson et al. Nov 2011 B2
8081199 Takata et al. Dec 2011 B2
8093951 Zhang et al. Jan 2012 B1
8159297 Kumagai Apr 2012 B2
8164388 Iwamatsu Apr 2012 B2
8174313 Vice May 2012 B2
8183917 Drogi et al. May 2012 B2
8183929 Grondahl May 2012 B2
8198941 Lesso Jun 2012 B2
8204456 Xu et al. Jun 2012 B2
8242813 Wile et al. Aug 2012 B1
8253485 Clifton Aug 2012 B2
8253487 Hou et al. Aug 2012 B2
8274332 Cho et al. Sep 2012 B2
8289084 Morimoto et al. Oct 2012 B2
8358113 Cheng et al. Jan 2013 B2
8362837 Koren et al. Jan 2013 B2
8493141 Khlat et al. Jul 2013 B2
8519788 Khlat Aug 2013 B2
8541993 Notman et al. Sep 2013 B2
8542061 Levesque et al. Sep 2013 B2
8548398 Baxter et al. Oct 2013 B2
8558616 Shizawa et al. Oct 2013 B2
8571498 Khlat Oct 2013 B2
8588713 Khlat Nov 2013 B2
8611402 Chiron Dec 2013 B2
8618868 Khlat et al. Dec 2013 B2
8624576 Khlat et al. Jan 2014 B2
8624760 Ngo et al. Jan 2014 B2
8626091 Khlat et al. Jan 2014 B2
8633766 Khlat et al. Jan 2014 B2
8638165 Shah et al. Jan 2014 B2
8648657 Rozenblit Feb 2014 B1
8659355 Henshaw et al. Feb 2014 B2
8693676 Xiao Apr 2014 B2
8717100 Reisner et al. May 2014 B2
8718579 Drogi May 2014 B2
8718582 See et al. May 2014 B2
8725218 Brown et al. May 2014 B2
8744382 Hou et al. Jun 2014 B2
8749307 Zhu et al. Jun 2014 B2
8760228 Khlat Jun 2014 B2
8782107 Myara et al. Jul 2014 B2
8792840 Khlat et al. Jul 2014 B2
8803605 Fowers et al. Aug 2014 B2
8824978 Briffa et al. Sep 2014 B2
8829993 Briffa et al. Sep 2014 B2
8878606 Khlat et al. Nov 2014 B2
8884696 Langer Nov 2014 B2
8909175 McCallister Dec 2014 B1
8942313 Khlat et al. Jan 2015 B2
8942651 Jones Jan 2015 B2
8942652 Khlat et al. Jan 2015 B2
8947161 Khlat et al. Feb 2015 B2
8947162 Wimpenny et al. Feb 2015 B2
8952710 Retz et al. Feb 2015 B2
8957728 Gorisse Feb 2015 B2
8975959 Khlat Mar 2015 B2
8981839 Kay et al. Mar 2015 B2
8981847 Balteanu Mar 2015 B2
8981848 Kay et al. Mar 2015 B2
8994345 Wilson Mar 2015 B2
9019011 Hietala et al. Apr 2015 B2
9020451 Khlat Apr 2015 B2
9024688 Kay et al. May 2015 B2
9041364 Khlat May 2015 B2
9041365 Kay et al. May 2015 B2
9075673 Khlat et al. Jul 2015 B2
9077405 Jones et al. Jul 2015 B2
9099961 Kay et al. Aug 2015 B2
9112452 Khlat Aug 2015 B1
20020071497 Bengtsson et al. Jun 2002 A1
20020125869 Groom et al. Sep 2002 A1
20030031271 Bozeki et al. Feb 2003 A1
20030062950 Hamada et al. Apr 2003 A1
20030137286 Kimball et al. Jul 2003 A1
20030146791 Shvarts et al. Aug 2003 A1
20030153289 Hughes et al. Aug 2003 A1
20030198063 Smyth Oct 2003 A1
20030206603 Husted Nov 2003 A1
20030220953 Allred Nov 2003 A1
20030232622 Seo et al. Dec 2003 A1
20040047329 Zheng Mar 2004 A1
20040051384 Jackson et al. Mar 2004 A1
20040124913 Midya et al. Jul 2004 A1
20040127173 Leizerovich Jul 2004 A1
20040132424 Aytur et al. Jul 2004 A1
20040184569 Challa et al. Sep 2004 A1
20040196095 Nonaka Oct 2004 A1
20040219891 Hadjichristos Nov 2004 A1
20040239301 Kobayashi Dec 2004 A1
20040266366 Robinson et al. Dec 2004 A1
20040267842 Allred Dec 2004 A1
20050008093 Matsuura et al. Jan 2005 A1
20050032499 Cho Feb 2005 A1
20050047180 Kim Mar 2005 A1
20050064830 Grigore Mar 2005 A1
20050079835 Takabayashi et al. Apr 2005 A1
20050093630 Whittaker et al. May 2005 A1
20050110562 Robinson et al. May 2005 A1
20050122171 Miki et al. Jun 2005 A1
20050156582 Redl et al. Jul 2005 A1
20050156662 Raghupathy et al. Jul 2005 A1
20050157778 Trachewsky et al. Jul 2005 A1
20050184713 Xu et al. Aug 2005 A1
20050200407 Arai et al. Sep 2005 A1
20050208907 Yamazaki et al. Sep 2005 A1
20050286616 Kodavati Dec 2005 A1
20060006946 Burns et al. Jan 2006 A1
20060062324 Naito et al. Mar 2006 A1
20060097711 Brandt May 2006 A1
20060128324 Tan et al. Jun 2006 A1
20060147062 Niwa Jul 2006 A1
20060154637 Eyries et al. Jul 2006 A1
20060178119 Jarvinen Aug 2006 A1
20060181340 Dhuyvetter Aug 2006 A1
20060220627 Koh Oct 2006 A1
20060244513 Yen et al. Nov 2006 A1
20070008804 Lu Jan 2007 A1
20070014382 Shakeshaft et al. Jan 2007 A1
20070024360 Markowski Feb 2007 A1
20070024365 Ramaswamy et al. Feb 2007 A1
20070054635 Black et al. Mar 2007 A1
20070063681 Liu Mar 2007 A1
20070082622 Leinonen et al. Apr 2007 A1
20070146076 Baba Jun 2007 A1
20070159256 Ishikawa et al. Jul 2007 A1
20070182392 Nishida Aug 2007 A1
20070183532 Matero Aug 2007 A1
20070184794 Drogi et al. Aug 2007 A1
20070249304 Snelgrove et al. Oct 2007 A1
20070259628 Carmel et al. Nov 2007 A1
20070290749 Woo et al. Dec 2007 A1
20080003950 Haapoja et al. Jan 2008 A1
20080044041 Tucker et al. Feb 2008 A1
20080081572 Rofougaran Apr 2008 A1
20080104432 Vinayak et al. May 2008 A1
20080150619 Lesso et al. Jun 2008 A1
20080157745 Nakata Jul 2008 A1
20080205095 Pinon et al. Aug 2008 A1
20080224769 Markowski et al. Sep 2008 A1
20080242246 Minnis et al. Oct 2008 A1
20080252278 Lindeberg et al. Oct 2008 A1
20080258831 Kunihiro et al. Oct 2008 A1
20080259656 Grant Oct 2008 A1
20080280577 Beukema et al. Nov 2008 A1
20090004981 Eliezer et al. Jan 2009 A1
20090015229 Kotikalapoodi Jan 2009 A1
20090045872 Kenington Feb 2009 A1
20090082006 Pozsgay et al. Mar 2009 A1
20090097591 Kim Apr 2009 A1
20090140706 Taufik et al. Jun 2009 A1
20090160548 Ishikawa et al. Jun 2009 A1
20090167260 Pauritsch et al. Jul 2009 A1
20090174466 Hsieh et al. Jul 2009 A1
20090184764 Markowski et al. Jul 2009 A1
20090190699 Kazakevich et al. Jul 2009 A1
20090191826 Takinami et al. Jul 2009 A1
20090218995 Ahn Sep 2009 A1
20090230934 Hooijschuur et al. Sep 2009 A1
20090261908 Markowski Oct 2009 A1
20090284235 Weng et al. Nov 2009 A1
20090289720 Takinami et al. Nov 2009 A1
20090319065 Risbo Dec 2009 A1
20100001793 Van Zeijl et al. Jan 2010 A1
20100002473 Williams Jan 2010 A1
20100019749 Katsuya et al. Jan 2010 A1
20100019840 Takahashi Jan 2010 A1
20100026250 Petty Feb 2010 A1
20100027301 Hoyerby Feb 2010 A1
20100045247 Blanken et al. Feb 2010 A1
20100171553 Okubo et al. Jul 2010 A1
20100181973 Pauritsch et al. Jul 2010 A1
20100253309 Xi et al. Oct 2010 A1
20100266066 Takahashi Oct 2010 A1
20100289568 Eschauzier et al. Nov 2010 A1
20100301947 Fujioka et al. Dec 2010 A1
20100308654 Chen Dec 2010 A1
20100311365 Vinayak et al. Dec 2010 A1
20100321127 Watanabe et al. Dec 2010 A1
20100327825 Mehas et al. Dec 2010 A1
20100327971 Kumagai Dec 2010 A1
20110018626 Kojima Jan 2011 A1
20110058601 Kim et al. Mar 2011 A1
20110084756 Saman et al. Apr 2011 A1
20110084760 Guo et al. Apr 2011 A1
20110109387 Lee May 2011 A1
20110148375 Tsuji Jun 2011 A1
20110193629 Hou et al. Aug 2011 A1
20110234182 Wilson Sep 2011 A1
20110235827 Lesso et al. Sep 2011 A1
20110260706 Nishijima Oct 2011 A1
20110279180 Yamanouchi et al. Nov 2011 A1
20110298433 Tam Dec 2011 A1
20110298539 Drogi et al. Dec 2011 A1
20110304400 Stanley Dec 2011 A1
20120025907 Koo et al. Feb 2012 A1
20120025919 Huynh Feb 2012 A1
20120032658 Casey et al. Feb 2012 A1
20120034893 Baxter et al. Feb 2012 A1
20120049894 Berchtold et al. Mar 2012 A1
20120049953 Khlat Mar 2012 A1
20120068767 Henshaw et al. Mar 2012 A1
20120074916 Trochut Mar 2012 A1
20120098595 Stockert Apr 2012 A1
20120119813 Khlat et al. May 2012 A1
20120133299 Capodivacca et al. May 2012 A1
20120139516 Tsai et al. Jun 2012 A1
20120154035 Hongo et al. Jun 2012 A1
20120154054 Kaczman et al. Jun 2012 A1
20120170334 Menegoli et al. Jul 2012 A1
20120170690 Ngo et al. Jul 2012 A1
20120176196 Khlat Jul 2012 A1
20120194274 Fowers et al. Aug 2012 A1
20120200354 Ripley et al. Aug 2012 A1
20120212197 Fayed et al. Aug 2012 A1
20120236444 Srivastava et al. Sep 2012 A1
20120244916 Brown et al. Sep 2012 A1
20120269240 Balteanu et al. Oct 2012 A1
20120274235 Lee et al. Nov 2012 A1
20120299647 Honjo et al. Nov 2012 A1
20120313701 Khlat et al. Dec 2012 A1
20130024142 Folkmann et al. Jan 2013 A1
20130034139 Khlat et al. Feb 2013 A1
20130038305 Arno et al. Feb 2013 A1
20130094553 Paek et al. Apr 2013 A1
20130106378 Khlat May 2013 A1
20130107769 Khlat et al. May 2013 A1
20130134956 Khlat May 2013 A1
20130135043 Hietala et al. May 2013 A1
20130141064 Kay et al. Jun 2013 A1
20130141068 Kay et al. Jun 2013 A1
20130141072 Khlat et al. Jun 2013 A1
20130141169 Khlat et al. Jun 2013 A1
20130147445 Levesque et al. Jun 2013 A1
20130154728 Basaran et al. Jun 2013 A1
20130154729 Folkmann et al. Jun 2013 A1
20130169245 Kay et al. Jul 2013 A1
20130181521 Khlat Jul 2013 A1
20130214858 Tournatory et al. Aug 2013 A1
20130229235 Ohnishi Sep 2013 A1
20130238913 Huang et al. Sep 2013 A1
20130271221 Levesque et al. Oct 2013 A1
20130307617 Khlat et al. Nov 2013 A1
20130328613 Kay et al. Dec 2013 A1
20140009200 Kay et al. Jan 2014 A1
20140009227 Kay et al. Jan 2014 A1
20140028370 Wimpenny Jan 2014 A1
20140028392 Wimpenny Jan 2014 A1
20140042999 Barth et al. Feb 2014 A1
20140049321 Gebeyehu et al. Feb 2014 A1
20140055197 Khlat et al. Feb 2014 A1
20140057684 Khlat Feb 2014 A1
20140062590 Khlat et al. Mar 2014 A1
20140077787 Gorisse et al. Mar 2014 A1
20140097895 Khlat et al. Apr 2014 A1
20140099906 Khlat Apr 2014 A1
20140099907 Chiron Apr 2014 A1
20140103995 Langer Apr 2014 A1
20140111178 Khlat et al. Apr 2014 A1
20140125408 Kay et al. May 2014 A1
20140139199 Khlat et al. May 2014 A1
20140184335 Nobbe et al. Jul 2014 A1
20140203868 Khlat et al. Jul 2014 A1
20140203869 Khlat et al. Jul 2014 A1
20140225674 Folkmann et al. Aug 2014 A1
20140266427 Chiron Sep 2014 A1
20140285164 Oishi et al. Sep 2014 A1
20140306769 Khlat et al. Oct 2014 A1
20150180422 Khlat et al. Jun 2015 A1
20150234402 Kay et al. Aug 2015 A1
Foreign Referenced Citations (43)
Number Date Country
1076567 Sep 1993 CN
1211355 Mar 1999 CN
1518209 Aug 2004 CN
1898860 Jan 2007 CN
101106357 Jan 2008 CN
101201891 Jun 2008 CN
101379695 Mar 2009 CN
101405671 Apr 2009 CN
101416385 Apr 2009 CN
101427459 May 2009 CN
101548476 Sep 2009 CN
101626355 Jan 2010 CN
101635697 Jan 2010 CN
101669280 Mar 2010 CN
101867284 Oct 2010 CN
201674399 Dec 2010 CN
0755121 Jan 1997 EP
1047188 Oct 2000 EP
1317105 Jun 2003 EP
1492227 Dec 2004 EP
1557955 Jul 2005 EP
1569330 Aug 2005 EP
2214304 Aug 2010 EP
2244366 Oct 2010 EP
2372904 Oct 2011 EP
2579456 Apr 2013 EP
2398648 Aug 2004 GB
2462204 Feb 2010 GB
2465552 May 2010 GB
2484475 Apr 2012 GB
2010166157 Jul 2010 JP
461168 Oct 2001 TW
0048306 Aug 2000 WO
2004002006 Dec 2003 WO
2004082135 Sep 2004 WO
2005013084 Feb 2005 WO
2006021774 Mar 2006 WO
2006070319 Jul 2006 WO
2006073208 Jul 2006 WO
2007107919 Sep 2007 WO
2007149346 Dec 2007 WO
2012151594 Nov 2012 WO
2012172544 Dec 2012 WO
Non-Patent Literature Citations (232)
Entry
Author Unknown, “Automatically,” Definition, Dictionary.com Unabridged, 2015, pp. 1-6, http://dictionary.reference.com/browse/automatically.
Final Office Action for U.S. Appl. No. 13/689,883, mailed Dec. 23, 2015, 12 pages.
Final Office Action for U.S. Appl. No. 13/714,600, mailed Dec. 24, 2015, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Oct. 28, 2015, 9 pages.
Advisory Action for U.S. Appl. No. 13/689,922, mailed Dec. 18, 2015, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/727,911, mailed Nov. 10, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/163,229, mailed Nov. 5, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 14/163,256, mailed Nov. 2, 2015, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/689,940, mailed Nov. 17, 2015, 4 pages.
Final Office Action for U.S. Appl. No. 14/082,629, mailed Nov. 4, 2015, 17 pages.
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802.
Cidronali, A. et al., “A 240W dual-band 870 and 2140 MHz envelope tracking GaN PA designed by a probability distribution conscious approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages.
Dixon, N., “Standardisation Boosts Momentum for Envelope Tracking,” Microwave Engineering, Europe, Apr. 20, 2011, 2 pages, http://www.mwee.com/en/standardisation-boosts-momentum-for-envelope-tracking.html? cmp—ids=71&news—ids=222901746.
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 2012, pp. 1185-1198.
Hekkala, A. et al., “Adaptive Time Misalignment Compensation in Envelope Tracking Amplifiers,” 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765.
Hoversten, John, et al., “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020.
Kim et al., “High Efficiency and Wideband Envelope Tracking Power Amplifiers with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258.
Kim, N. et al, “Ripple Feedback Filter Suitable for Analog/Digital Mixed-Mode Audio Amplifier for Improved Efficiency and Stability,” 2002 IEEE Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49.
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE International Conference on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752.
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mmΛ2 at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212.
Li, Y. et al., “A Highly Efficient SiGe Differential Power Amplifier Using an Envelope-Tracking Technique for 3GPP LTE Applications,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124.
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350.
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529.
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages.
Unknown Author, “Nujira Files 100th Envelope Tracking Patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=19733338&key=Nujire%20Files%20100th%20Envelope%20Tracking%20Patent&type=n.
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556.
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7.
Non-final Office Action for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed Feb. 1, 2008, 17 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed Jul. 30, 2008, 19 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed Nov. 26, 2008, 22 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed May 4, 2009, 20 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed Feb. 3, 2010, 21 pages.
Notice of Allowance for U.S. Appl. No. 11/113,873, now U.S. Pat. No. 7,773,691, mailed Jun. 9, 2010, 7 pages.
International Search Report for PCT/US06/12619, mailed May 8, 2007, 2 pages.
Extended European Search Report for application 06740532.4, mailed Dec. 7, 2010, 7 pages.
Non-Final Office Action for U.S. Appl. No. 12/112,006, mailed Apr. 5, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/112,006, mailed Jul. 19, 2010, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307, mailed May 5, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/089,917, mailed Nov. 23, 2012, 6 pages.
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages.
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages.
European Search Report for European Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages.
International Search Report for PCT/US11/033037, mailed Aug. 9, 2011, 10 pages.
International Preliminary Report on Patentability for PCT/US2011/033037, mailed Nov. 1, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/747,749, mailed Oct. 2, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/552,768, mailed Sep. 22, 2015, 9 pages.
Final Office Action for U.S. Appl. No. 13/689,922, mailed Oct. 6, 2015, 20 pages.
Notice of Allowance for U.S. Appl. No. 13/727,911, mailed Sep. 14, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/689,940, mailed Sep. 16, 2015, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/101,770, mailed Sep. 21, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/702,192, mailed Oct. 7, 2015, 7 pages.
Second Office Action for Chinese Patent Application No. 201180030273.5, issued Aug. 14, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2014/028089, mailed Sep. 24, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2014/028178, mailed Sep. 24, 2015, 11 pages.
Notice of Allowance for U.S. Appl. No. 13/661,164, mailed Oct. 21, 2015, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/254,215, mailed Oct. 15, 2015, 5 pages.
First Office Action for Chinese Patent Application No. 201180067293.X, mailed Aug. 6, 2015, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages.
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages.
International Search Report for PCT/US2012/046887, mailed Dec. 21, 2012, 12 pages.
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/222,484, mailed Nov. 8, 2012, 9 pages.
Final Office Action for U.S. Appl. No. 13/222,484, mailed Apr. 10, 2013, 10 pages.
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/053654, mailed Feb. 15, 2013, 11 pages.
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/647,815, mailed May 2, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Mar. 27, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages.
Final Office Action for U.S. Appl. No. 13/689,883, mailed Jan. 2, 2015, 13 pages.
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages.
International Preliminary Report on Patentability for PCT/US2012/062070, mailed May 8, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages.
International Search Report and Written Opinion for PCT/US2012/062110, issued Apr. 8, 2014, 12 pages.
International Preliminary Report on Patentability for PCT/US2012/062110, mailed May 8, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages.
Non-Final Office Action for U.S. Appl. No. 13/692,084, mailed Apr. 10, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/692,084, mailed Jul. 23, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Dec. 19, 2014, 8 pages.
International Search Report and Written Opinion for PCT/US2012/067230, mailed Feb. 21, 2013, 10 pages.
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/684,826, mailed Apr. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Jul. 18, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed May 9, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/747,694, mailed Dec. 22, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/951,976, mailed Apr. 4, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/951,976, mailed Dec. 26, 2014, 9 pages.
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages.
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages.
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages.
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014/028178, mailed Jul. 24, 2014, 7 pages.
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages.
Notice of Allowance for U.S. Appl. No. 13/948,291, mailed Feb. 11, 2015, 7 pages.
First Office Action for Chinese Patent Application No. 201180030273.5, issued Dec. 3, 2014, 15 pages. (with English translation).
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Feb. 17, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/072,225, mailed Jan. 22, 2015, 7 pages.
Final Office Action for U.S. Appl. No. 13/661,227, mailed Feb. 6, 2015, 24 pages.
International Preliminary Report on Patentability for PCT/US2013/052277, mailed Feb. 5, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/048,109, mailed Feb. 18, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Feb. 2, 2015, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307, mailed Mar. 2, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Feb. 25, 2015, 15 pages.
Corrected Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Apr. 6, 2015, 11 pages.
European Search Report for European Patent Application No. 14190851.7, issued Mar. 5, 2015, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/122,852, mailed Feb. 27, 2015, 5 pages.
Final Office Action for U.S. Appl. No. 13/714,600, mailed Mar. 10, 2015, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/056,292, mailed Mar. 6, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 13/747,749, mailed Mar. 20, 2015, 35 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,120, mailed Apr. 14, 2015, 8 pages.
European Examination Report for European Patent Application No. 14162682.0, mailed May 22, 2015, 5 pages.
Corrected Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Jun. 5, 2015, 11 pages.
Advisory Action for U.S. Appl. No. 13/689,883, mailed Apr. 20, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/661,227, mailed May 12, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/714,600, mailed May 26, 2015, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed May 13, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/747,749, mailed Jun. 4, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/552,768, mailed Apr. 20, 2015, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,922, mailed Apr. 20, 2015, 19 pages.
Non-Final Office Action for U.S. Appl. No. 13/727,911, mailed Apr. 20, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 14/163,229, mailed Apr. 23, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/163,256, mailed Apr. 23, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/176,611, mailed Apr. 27, 2015, 7 pages.
International Preliminary Report on Patentability for PCT/US2013/065403, mailed Apr. 30, 2015, 8 pages.
Quayle Action for U.S. Appl. No. 13/689,940, mailed May 14, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/661,164, mailed Jun. 3, 2015, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/082,629, mailed Jun. 18, 2015, 15 pages.
First Office Action for Chinese Patent Application No. 201280052694.2, issued Mar. 24, 2015, 35 pages.
Notice of Allowance for U.S. Appl. No. 13/948,291, mailed Jul. 17, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Jul. 24, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Jul. 27, 2015, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Jul. 17, 2015, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/212,154, mailed Jul. 17, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/212,199, mailed Jul. 20, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/072,120, mailed Jul. 30, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/689,940, mailed Aug. 3, 2015, 6 pages.
First Office Action and Search Report for Chinese Patent Application No. 201280007941.7, issued May 13, 2015, 13 pages.
Yun, Hu et al., “Study of envelope tracking power amplifier design,” Journal of Circuits and Systems, vol. 15, No. 6, Dec. 2010, pp. 6-10.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 20, 2015, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 18, 2015, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Sep. 1, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/027,416, mailed Aug. 11, 2015, 9 pages.
International Preliminary Report on Patentability for PCT/US2014/012927, mailed Aug. 6, 2015, 9 pages.
First Office Action and Search Report for Chinese Patent Application No. 201210596632.X, mailed Jun. 25, 2015, 16 pages.
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 8 pages.
International Search Report for PCT/US2011/044857, mailed Oct. 24, 2011, 10 pages.
International Preliminary Report on Patentability for PCT/US2011/044857, mailed Mar. 7, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/218,400, mailed Nov. 8, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/218,400, mailed Apr. 11, 2013, 7 pages.
International Search Report for PCT/US11/49243, mailed Dec. 22, 2011, 9 pages.
International Preliminary Report on Patentability for PCT/US11/49243, mailed Nov. 13, 2012, 33 pages.
International Search Report for PCT/US2011/054106, mailed Feb. 9, 2012, 11 pages.
International Preliminary Report on Patentability for PCT/US2011/054106, mailed Apr. 11, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages.
Invitation to Pay Additional Fees for PCT/US2011/061007, mailed Feb. 13, 2012, 7 pages.
International Search Report for PCT/US2011/061007, mailed Aug. 16, 2012, 16 pages.
International Preliminary Report on Patentability for PCT/US2011/061007, mailed May 30, 2013, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed May 8, 2013, 15 pages.
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages.
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages.
International Search Report for PCT/US2011/061009, mailed Feb. 8, 2012, 14 pages.
International Preliminary Report on Patentability for PCT/US2011/061009, mailed May 30, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed May 27, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages.
International Search Report for PCT/US2012/023495, mailed May 7, 2012, 13 pages.
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/222,453, mailed Dec. 6, 2012, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Feb. 21, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Apr. 25, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124, mailed Jun. 1, 2012, 7 pages.
International Search Report for PCT/US2012/024124, mailed Aug. 24, 2012, 14 pages.
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 27, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Dec. 2, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Nov. 14, 2012, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages.
International Search Report for PCT/US2011/064255, mailed Apr. 3, 2012, 12 pages.
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages.
First Office Action for Chinese Patent Application No. 201280026559.0, issued Nov. 3, 2014, 14 pages (with English translation).
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages.
International Search Report for PCT/US2012/40317, mailed Sep. 7, 2012, 7 pages.
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages.
First Office Action for Chinese Patent Application No. 201280042523.1, issued Dec. 4, 2015, 12 pages.
Notice of Allowance for U.S. Appl. No. 14/072,225, mailed Feb. 3, 2016, 7 pages.
Final Office Action for U.S. Appl. No. 13/661,227, mailed Feb. 9, 2016, 28 pages.
Advisory Action for U.S. Appl. No. 14/082,629, mailed Jan. 22, 2016, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/876,518, mailed Jan. 20, 2016, 16 pages.
Notice of Allowance for U.S. Appl. No. 14/163,256, mailed Feb. 10, 2016, 8 pages.
First Office Action for Chinese Patent Application No. 201280052739.6, mailed Mar. 3, 2016, 31 pages.
Communication under Rule 164(2)(a) EPC for European Patent Application No. 12725911.7, mailed Feb. 17, 2016, 8 pages.
Examination Report for European Patent Application No. 14190851.7, mailed May 2, 2016, 5 pages.
Advisory Action for U.S. Appl. No. 13/689,883, mailed Mar. 4, 2016, 3 pages.
Advisory Action for U.S. Appl. No. 13/714,600, mailed Mar. 14, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/689,922, mailed Mar. 18, 2016, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/101,770, mailed Apr. 11, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/151,167, mailed Mar. 4, 2016, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/082,629, mailed Mar. 16, 2016, 23 pages.
Notice of Allowance for U.S. Appl. No. 14/702,192, mailed Feb. 22, 2016, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/254,215, mailed Feb. 18, 2016, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Apr. 20, 2016, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed May 4, 2016, 14 pages.
Related Publications (1)
Number Date Country
20150048891 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61865456 Aug 2013 US