The present application claims priority to Chinese Patent Application No. 202110387919.0 filed on Apr. 9, 2021. The entire contents of the above-listed application is hereby incorporated by reference for all purposes.
The present disclosure belongs to the field of adsorption technologies, and is directed to an expansion radiation flowing mechanism.
A parallel radiative flow mechanism is a type of apparatus widely applied to automatic production lines, and has a non-contact adsorption function.
A flow cross section of the parallel radiative flow gradually increases in a flow direction, i.e., a farther distance from the fluid supply port indicates a larger cross-sectional flow area. Due to mass conservation of fluids, a larger cross-sectional flow area indicates a smaller fluid velocity. That is, the flow from the fluid supply port to the periphery is a decelerated flow. According to a fluid motion equation (Navier-Strokes equation), an inertia effect
where μr is a radial velocity, r is a radial location, and
is a radial velocity gradient) of the decelerated flow may form a positive pressure gradient
where P is a pressure), and the positive pressure gradient may form an inside-low outside-high pressure distribution in the parallel gap, as shown in
To overcome the defects in the prior art, the present disclosure provides an expanding and radiative flow mechanism. With improvements to a parallel radiative flow mechanism, this mechanism can further effectively increase an absorption force of this mechanism, which is conducive to subsequent applications thereof.
The technical solution adopted by the present disclosure is as follows.
Disclosed is an expanding and radiative flow mechanism. The mechanism has a bottom surface. The bottom surface is provided with a fluid supply port. The bottom surface of the mechanism and a surface of a to-be-adsorbed object form a gap during use. A fluid flows out from the fluid supply port, enters the gap and flows out along the gap. The gap is an expanding gap and meets the following: a radial length exists with the fluid supply port (i.e., a fluid inlet of the expanding gap) as an initial point, and a height of the gap continuously increases in an outward radial direction within this length.
In the solution described above, further, the surface of the to-be-adsorbed object may be a flat surface; or the bottom surface of the mechanism may be a flat surface.
Further, the height of the gap may linearly or nonlinearly increase in the outward radial direction within the radial length; and still further, the height of the gap may keep unchanged in the outward radial direction beyond the radial length.
Further, the gap may meet the following: the height of the gap continuously and linearly increases in the outward radial direction with the fluid supply port as the initial point.
Further, the radial length should meet the following: the radial length is 10 or more times a height of the gap at the fluid inlet of the expanding gap, and therefore a negative pressure and an absorption force can be more sufficiently and effectively increased.
The present disclosure increases the absorption force by changing a flow form of the fluid.
The following further describes the solution of the present disclosure with reference to the embodiments and the accompanying drawings.
The present disclosure provides an expanding and radiative flow mechanism by making improvements to a parallel radiative flow mechanism, to be specific, by changing a flow form of a fluid to increase an absorption force. The mechanism has a bottom surface. The bottom surface is provided with a fluid supply port. The bottom surface of the mechanism and a surface of a to-be-adsorbed object form a gap during use. A fluid flows out from the fluid supply port, enters the gap and flows out along the gap. The gap is an expanding gap and meets the following: a radial length exists with the fluid supply port as an initial point, and a height of the gap continuously increases in an outward radial direction within this length.
The following provides a description by using the embodiments.
As shown in
The fluid flows from the fluid supply port to a periphery to form an expanding and radiative flow. It was found through experimental tests that, an absorption force of the expanding and radiative flow mechanism is significantly greater than that of the parallel radiative flow mechanism. For example, under the conditions that the fluid is air, a flow rate is 26 g/min, a spacing (i.e., a height of the expanding gap at a fluid inlet) is 0.35 mm, a diameter of a parallel surface (assuming that a flat surface of the bottom surface opposite to the to-be-adsorbed surface is circular) is 50 mm, a diameter of the fluid supply port is 4 mm, and an expansion angle of the conical surface is 0.025 rad, the expanding and radiative flow mechanism can generate an absorption force of 0.1 N, while the parallel radiative flow mechanism can generate an absorption force less than 0.05 N under the same conditions.
According to research, the expanding and radiative flow mechanism can greatly increase an absorption force mainly because a radial velocity distribution of the expanding and radiative flow is changed. While a radial velocity distribution of the parallel radiative flow approaches a parabola (as shown in
and the velocity gradient determines a magnitude of an inertia effect
of the decelerated flow. Theoretical calculation proves that the inertia effect of the Jeffery-Hamel velocity distribution is greater than that of the parabola velocity distribution and can generate a larger pressure gradient
It can be seen that the expanding and radiative flow mechanism can form a lower pressure distribution and accordingly a higher absorption force.
The effect of the expanding and radiative flow may be improved by increasing an expansion degree of the radiative flow.
In this embodiment, as shown in
after the fluid enters the expanding gap from the fluid supply port. Therefore, the arc-shaped surface can enhance the inertia effect of the flow and lead to a lower pressure and a higher absorption force.
In the present disclosure, a shape of the bottom surface of the mechanism in the present disclosure may be designed based on a shape of the surface of the to-be-adsorbed object, provided that an expanding gap may be formed in between. That is, an absorption force can be increased as long as the height of the flow cross section of the fluid increases in the flow direction of the fluid within a certain radial length with the fluid inlet of the expanding gap as the initial point of the flow.
In this embodiment, as shown in
This embodiment is shown by a structure in
According to further research, an enhancement brought by the expanding and radiative flow to the inertia effect thereof is more obvious in the small-radius region and becomes weaker in a large-radius region. Because a cross-sectional flow area of the fluid is small in the small-radius region (
In addition, a length of the expanding gap is an important design parameter. If the length of the expanding gap is excessively small, the inertia effect of the expanding and radiative flow in the small-radius region cannot be sufficiently utilized to increase the negative pressure. It was found through theoretical and experimental research that, if the length of the expanding gap is 10 or more times the height of the gap at the fluid inlet, the inertia effect of the expanding and radiative flow can be sufficiently utilized to increase the negative pressure and the absorption force. The conical surface in this embodiment may be replaced with an arc-shaped surface, as shown in
Number | Date | Country | Kind |
---|---|---|---|
202110387919.0 | Apr 2021 | CN | national |