Unmanned underwater vehicles (UUVs) are used for a variety of purposes and can include cameras or other sensors to provide information about underwater objects. For example, UUVs are commonly used for inspection and data collection. A typical UUV includes a propulsion system for multi-axis flight control.
Disclosed embodiments of the invention provide expandable, steerable nozzles including a flexible bellows that expands beyond the confines of a cylindrical storage or launch housing upon deployment. By expanding into the surrounding water, such nozzles advantageously provide larger openings and permit larger volumes of water to traverse them than do conventional fixed nozzles made from a single, rigid component. Embodiments of the inventive nozzles have been experimentally measured to produce a significant increase in total thrust, allowing mission objectives to be completed more quickly. Moreover, the disclosed nozzles are steerable, and thus, include multi-axis control advantages.
Thus, a first embodiment comprises an expandable, steerable nozzle for a device. In such an embodiment, the nozzle comprises a first component having a first rigid member mounted to the device and operatively coupled to a steering mechanism of the device. A second component comprises a second rigid member. A third component comprises a flexible bellows coupling the first rigid member to the second rigid member according to a configurable operating angle. In this way, a fluid traversing the first rigid member produces, upon contacting the second rigid member, a reactive force according to the operating angle. The flexible bellows has a first configuration in which the nozzle does not extend beyond a bounding surface, and a second configuration in which the nozzle extends beyond the bounding surface.
The expandable, steerable nozzle may be embodied in different variations, which may be alternate to or cumulative with each other. In a first variant, either or both of the first rigid member and the second rigid member comprises a plastic, a metal, a composite material, or any combination of these. In a second variant, the flexible bellows comprises a rubber, a flexible plastic, a fabric, or any combination of these. In a third variant, the steering mechanism of the device comprises a gear, and the first rigid member comprises a ring having teeth that mesh with teeth of the gear. In a fourth variant, the flexible bellows is shaped so that, in the second configuration of the nozzle, the operating angle is between 0 and 90 degrees, and may be approximately 15 degrees. A fifth variant further includes a third rigid member for retaining the nozzle to the steering mechanism, the third rigid member mechanically coupled to the second rigid member. The first rigid member may include a bearing for the third rigid member, and the third rigid member may be a rod comprising a metal, a plastic, a composite material, or any combination of these.
A second embodiment comprises an unmanned underwater vehicle (UUV) comprising a steering mechanism and an expandable, steerable nozzle as described above. The nozzle has a first rigid member operatively coupled to the steering mechanism of the UUV, a second rigid member, and a flexible bellows coupling the first rigid member to the second rigid member according to a configurable operating angle, so that a fluid traversing the first rigid member produces a reactive force according to the operating angle upon contacting the second rigid member. Also, as before, the flexible bellows has a first configuration in which the nozzle does not extend beyond a bounding surface, and a second configuration in which the nozzle extends beyond the bounding surface. Such a UUV may embody its nozzle according to the variations described above.
A third embodiment comprises a method of operating the UUV described above (or one of its variants). Such a method includes containing the UUV within a housing, containing including compressing, by an interior surface of the housing, the flexible bellows into a first configuration. The method may include ejecting the UUV from the housing, thereby causing the flexible bellows to expand into a second configuration having a different operating angle than the first configuration. The method also may include causing water to traverse the first rigid member and contact the second rigid member, wherein the fluid produces a reactive force according to the operating angle of the second configuration.
In one further variant, a method embodiment further includes controlling the position or orientation of a UUV according to a guidance objective by automatically varying a volume of the water traversing the first rigid member, automatically steering the reactive force using the steering mechanism, automatically varying the operating angle of the flexible bellows, or any combination thereof.
The manner and process of making and using the disclosed embodiments may be appreciated by reference to the drawings, in which:
It should be appreciated that the UUV 10 illustrated in
In the stored or compressed configuration shown in
In some embodiments, the bounding surface 24 is defined by an interior surface of a storage housing that envelops the device 20. In such embodiments, the interior surface of such a housing may compress the nozzle 22 into the stored configuration. Persons of ordinary skill in the art should understand how such a storage housing exerts a compressive force on the nozzle 22, even though
In the case of an underwater vehicle, such a storage housing may be, for example, a cylindrical sonobuoy launch canister of molded plastic form manufactured from bonding multiple injection molded cylindrical sections together forming one long tube with a break-away muzzle cap and a launch initiating plunger. Alternate housings or launch canisters may include a cylindrical form made of PVC pipe or similar, metal pipe or tubing where the UUV is inserted directly. Persons of ordinary skill in the art may appreciate other storage housings that may be used in conjunction with devices disclosed herein, the respective interior surfaces of which each define a physical boundary beyond which a device housed therein cannot extend.
As indicated in
Alternately, the recess 28 may not be rotationally symmetric about the axis of rotation. Thus, the recess 28 may have a first shape forward of the nozzle 22 (i.e., toward the left of
The top rigid member 31 and the bottom rigid member 33 may be formed, for example, via 3D-printing using variable durometer plastics, while the flexible bellows 32 is formed using a rubber compound. Alternately, the top rigid member 31 and bottom rigid member 33 may be formed from hard plastic via injection molding. If this method of manufacturing is used, then the flexible bellows must be later bonded to these rigid members. One manner of doing so is by inserting the rigid members 31 and 33 into a second mold and forming the bellows 32 from a flexible rubber already bonded to the rigid members 31 and 33. Or, the bellows 32 may be made from a thin plastic membrane that is bonded to the rigid members 31 and 33 without using a mold. A person having ordinary skill in the art may appreciate other materials from which the nozzle 30 may be made, and associated techniques for making it.
In the deployed configuration shown in
In accordance with some embodiments, the nozzle 30 is steerable. Thus, the bottom rigid member 33 may be mounted to a device that has a steering mechanism for providing steering inputs to the nozzle 30. Such a device may be a UUV, described above in connection with
In accordance with some embodiments, the nozzle 30 is retained to the steering mechanism using a third rigid member (e.g. a headed pin) attached to the top rigid member 31. In the embodiment of
The third rigid member, shown in
Note that in
A first process 71 includes containing the UUV within a housing. Containing the UUV includes compressing a flexible bellows of the nozzle by an interior surface of the housing into a stored configuration. So contained, the underwater vehicle may be easily stored and, if necessary, transported to the proximity of its deployment location. It should be appreciated that, in one embodiment the underwater vehicle is provided already housed within the housing and wherein the flexible bellows is already compressed into the stored configuration. In an alternate embodiment, the housing and underwater vehicle are provided separately, and process 71 includes placing the underwater vehicle inside the housing.
A second process 72 ejects the UUV from the housing. Ejection may be performed according to a variety of techniques known in the art. For example, the UUV may be ejected using an explosive charge that forces a piston against the aft end of the UUV and pushes it out of the housing. An alternate method of ejecting includes first orienting the housing at a downward angle, then opening a hatch that allows the UUV to slide out of the housing due to gravity. In accordance with various embodiments, ejection directly causes the flexible bellows, previously compressed into the stored configuration, to automatically expand into a deployed configuration. Such expansion may be caused by one or more factors, such as the flexibility and spring force of the bellows, or a fluid traversing the nozzle in accordance with the normal operation of the underwater vehicle. In any event, expansion of the flexible bellows causes the first and second rigid members to obtain an operating angle between them, so that water traversing the first rigid member produces a reactive force according to the operating angle upon contacting the second rigid member.
A third process 73 includes causing water to traverse the nozzle to produce a reactive force according to the operating angle. In more detail, water traverses the first rigid member and contacts the second rigid member, which is positioned according to the operating angle—such contact causes a reactive force, as described above in connection with
A position or orientation of the underwater vehicle may be controlled, after ejection, in a variety of ways that use the capabilities of expandable, steerable nozzles as described above. Thus, for example, causing water to traverse the nozzle may provide a propulsive thrust. Also, an underwater vehicle having several such steerable nozzles may be configured to independently steer the nozzles or vary their respective operating angles. Moreover, an underwater vehicle advantageously may automatically perform any combination of these techniques according to a guidance objective. Such an objective may be, for example, keeping station in rough or turbulent waters, or navigating toward a target of interest according to a navigation solution. It should be appreciated that such automatic control may require the underwater vehicle to have several expandable, steerable nozzles, as well as components known in the art but not otherwise described herein, such as a navigational computer, various sensors, and so on.
The techniques and structures described herein may be implemented in any of a variety of different forms. For example, features of the invention may be embodied within various forms of communication devices, both wired and wireless; television sets; set top boxes; audio/video devices; laptop, palmtop, desktop, and tablet computers with or without wireless capability; personal digital assistants (PDAs); telephones; pagers; satellite communicators; cameras having communication capability; network interface cards (NICs) and other network interface structures; base stations; access points; integrated circuits; as instructions and/or data structures stored on machine readable media; and/or in other formats. Examples of different types of machine readable media that may be used include floppy diskettes, hard disks, optical disks, compact disc read only memories (CD-ROMs), digital video disks (DVDs), Blu-ray disks, magneto-optical disks, read only memories (ROMs), random access memories (RAMs), erasable programmable ROMs (EPROMs), electrically erasable programmable ROMs (EEPROMs), magnetic or optical cards, flash memory, and/or other types of media suitable for storing electronic instructions or data.
In the foregoing detailed description, various features of the invention are grouped together in one or more individual embodiments to streamline the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, inventive aspects may lie in less than all features of each disclosed embodiment.
Having described implementations which serve to illustrate various concepts, structures, and techniques which are the subject of this disclosure, it will now become apparent to those of ordinary skill in the art that other implementations incorporating these concepts, structures, and techniques may be used. Accordingly, it is submitted that that scope of the patent should not be limited to the described implementations but rather should be limited only by the spirit and scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2983244 | Young | May 1961 | A |
3710748 | Baer et al. | Jan 1973 | A |
5267883 | Gudmundsen | Dec 1993 | A |
6089177 | Müller | Jul 2000 | A |
6571725 | Lee | Jun 2003 | B1 |
8449255 | Tadayon et al. | May 2013 | B2 |
9174713 | Item et al. | Nov 2015 | B2 |
9394804 | Rusovici | Jul 2016 | B2 |
9551298 | Binks et al. | Jan 2017 | B2 |
9745918 | Gilson et al. | Aug 2017 | B2 |
20140213126 | Item et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
198 40 078 | Mar 2000 | DE |
1312353 | Dec 1962 | FR |
10082 | May 1899 | GB |
Entry |
---|
“Pratt & Whitney's F119 Powers F-22 Raptor to 500,000 Engine Flight Hours,” Pratt & Whitney MediaRoom; Paris Air Show, Jun. 20, 2017; Retrieved from http://newsroom.pw.utc.com/2017-06-20-Pratt-Whitneys-F119-Powers-F-22-Raptor-to-500-000-Engine-Flight-Hours; 3 Pages. |
“F119-PW-100, Turbofan Engine,” Proven Power for the F-22 Raptor, Military Engines; Product Facts; 2016; Retrieved from http://www.pw.utc.com/Content/Press_Kits/pdf/me_f119_pCard.pdf; 2 Pages. |
PCT International Search Report and Written Opinion dated Feb. 21, 2020 for International Application No. PCT/US2019/017250; 15 Pages. |
Number | Date | Country | |
---|---|---|---|
20190248458 A1 | Aug 2019 | US |