1. Field of the Invention
The present invention relates to apparatus and methods for surgically anchoring replacement tendon constructs.
2. Description of the Related Art
When soft tissue such as a ligament or a tendon becomes detached from a bone, surgery is usually required to reattach or reconstruct the tissue. Often, a tissue graft is attached to the bone to facilitate regrowth and permanent attachment. Various fixation devices, including sutures, screws, staples, wedges, and plugs have been used in the past to secure soft tissue to bone. In typical interference screw fixation, for example, the graft is fixed to the bone by driving the screw into a blind hole or a tunnel in the bone while trapping the end of the graft between the screw and the bone tunnel. In other methods, the graft is simply pinned against the bone using staples or sutures tied around the end of the graft to the bone.
A need exists for secure and simplified methods and devices for anchoring tendon grafts.
The present invention overcomes disadvantages of the prior art, such as those noted above, by providing an expanding device or bolt for soft tissue fixation (for example, for tendon fixation). The expanding device or bolt is a flexible “A-Frame” that is configured to collapse when pushed in a first direction (for example, when pushed antegrade) within a tunnel or socket, and to expand and engage adjacent tissue (for example, bone of the tunnel or socket) when pulled in a second direction (for example, when pulled retrograde). Fixation devices of the flexible “A-Frame” device (for example, two arms of resilient material) are configured to expand diametrically to achieve interference fixation of soft tissue (for example, graft tendon) in a bone tunnel.
The present invention also provides a graft fixation surgical method employing an expanding device, comprising the steps of: (i) pre-forming a hole or tunnel (for example, a femoral or tibial tunnel); (ii) attaching a graft (for example, a soft tissue graft) to the expanding device or expanding bolt to form a graft/expanding device assembly; (iii) inserting the graft/expanding device assembly into the tunnel in an antegrade manner, so that the expanding device is in a collapsed state; and (iv) pulling the graft/expanding device assembly in a retrograde manner, so that the expanding device expands (in the fully deployed configuration) and engages bone to resist pullout.
Other features and advantages of the present invention will become apparent from the following description of the invention, which refers to the accompanying drawings.
a)-(f) illustrate various views of a fixation device according to the present invention;
In the following detailed description, reference is made to various specific embodiments in which the invention may be practiced. These embodiments are described with sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be employed, and that structural and logical changes may be made without departing from the spirit or scope of the present invention.
The expanded device (bolt) of the present invention is configured to expand diametrically to achieve interference fixation of a graft tendon in a bone tunnel. The graft (for example, tendon graft) is assembled to the expanding bolt and then situated within a bone tunnel. A passing strand (for example, suture) is used to pull a joint-line end of the expansion bolt into the tunnel in the collapsed state in a first direction. When pulled in a different direction (for example, when pulled retrograde), the fixation devices is configured to expand radially to achieve interference fixation of soft tissue (for example, graft tendon) in a bone tunnel.
Referring now to the drawings, where like elements are designated by like reference numerals, an exemplary expanding device 100 of the present invention is illustrated in
As shown in
A plurality of through holes 70 are provided within the inner part 54 (extending from un upper surface to a lower surface of the inner part 54) to allow a secure suturing to the graft and bone growth infiltration. Preferably, and as described below, the expanding device 100 is sutured to a graft (for example, a tendon or ligament graft) with multiple holes to fixate the graft free ends. The multiple holes 70 (three in the exemplary embodiment shown in
Flexible “A-Frame” device 100 comprises fixation devices 60a, 60b that are configured to expand diametrically and radially to achieve interference fixation of soft tissue (for example, graft tendon) in a bone tunnel. In an exemplary embodiment, fixation devices 60a, 60b comprise a plurality of arms or flanges (for example, two arms as shown in
Although body 50 and fixation devices 60 of the “A-Frame” device 100 have the profile and configuration shown in
Expanding devices or anchors according to the present invention can be used for arthroscopic procedures such as ligament repairs. The devices are also advantageous for open and mini-open surgical procedures. Specific examples of applicable procedures include cortical bone-soft tissue fixation, Bankart and SLAP shoulder repairs.
A surgical method employing an expanding device or bolt, such as the expanding bolt 100 of
The graft/plug assembly 200 is installed into a tunnel (for example, femoral tunnel) by guiding the assembly oriented with graft-end 7 (
To deploy expansion plug 100, a second step in conducted, in which graft end 7 is pulled in a second direction (i.e., the joint line end 9 is pulled in a second direction, using another set of passing strands (for example, suture strands)). The load is applied in an opposite direction (for example, in a retrograde manner) to that described above for the initial first step when the plug is in a collapsed or undeployed configuration. Pulling on joint-line end 9 of the graft/plug assembly 200 in the second direction allows the deployment of expanding plug 100. Joint-line end 9 of expansion plug 100 is urged by the load being applied by pulling on the passing suture to allow the resilient arms 60a, 60b to deploy from the unexpanded configuration to the expanded or deployed configuration shown in
Any expanding plastic polymer can be used for the expanding plug 100. Resilient arms 60a, 60b may be also formed out of a pseudoelastic shape memory alloy such as a nickel titanium alloy (for example, Nitinol). The use of such materials, in combination with the normal orientation of the arms relative to the anchor body, permits the arms to initially deflect inwardly to the extent required to permit the anchor to move forward in the bone tunnel, yet still resiliently “spring back” toward their normal, outwardly projecting position so as to prevent the anchor from withdrawing back out the bone tunnel.
The width of the plug and looped graft together preferably does not exceed about 10 mm, on average, with a double-wrapped autograft semitendinosis graft or a single tibialis tendon allograft. The width of the plug should be approximately 5 mm expanding to a minimum of 10 mm at body temperature. Maximum resistance of graft pullout in porcine bone sockets equal to the diameter of the graft preferably is not less than 500 N.
The present invention provides a low profile construction with the graft looped around the bottom and slots (through holes) on the side to accommodate the graft strands. It is not necessary to enlarge the overall bone tunnel size needed. Additional strands (for example, one to two no. 5 FiberWire sutures) may be attached to the base of the expandable plug for graft passing and backup fixation.
Advantageously, the expanding bolt 100 of the present invention is a self-reinforcing structure. The greater the load applied on the graft-end toward the knee, the more expanding and compression into the bone tunnel walls is achieved, resulting in higher pullout strength.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention is to be limited not by the specific disclosure herein, but only by the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/915,287, filed May 1, 2007, the entire disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60915287 | May 2007 | US |