The present invention relates to supporting interaction between user input and data related to the user input using a display screen and in particular, to providing an expanding search query input box to support interaction between user input and search results.
A search engine is a computer program that helps a user locate information from various data sources such as the internet, intranets, a local hard disk, a portable memory card, etc. To interact with the search engine, a user is often provided a visual prompt on a display screen to input a searchable text, or a search query. Based on the searchable text inputted by the user, the search engine performs its search and returns relevant search results for display on the display screen. Various means can be used to support inputting the searchable text. For example, to input the searchable text, a user may type the searchable text with a keyboard attached to a personal computer, enter the searchable text with a keypad coupled to a PDA, write the searchable text on a certain surface provided by a pen-based system, or tap a touch-sensitive screen of a suitable system.
Whatever input means is used, for the purpose of providing a visual feedback of what has been inputted by the user, a visual prompt is usually provided in the form of an input region on the display screen. As the searchable text is being inputted by the user into an electronic device, the electronic device concurrently renders the searchable text in the input region on the display screen.
The input region commonly is a fixed-sized graphically demarcated region on the display screen. In the context of informational search, the input region is often limited to a single line. Since the horizontal line size, or width, of a single line is limited, as the user adds more text into the searchable text, the amount of the searchable text may exceed what the input region could accommodate. When that happens, only a portion of the searchable text, rather than the entire searchable text, could be made visible. Thus, a disadvantage of these common techniques is that the user cannot see the entire searchable text with a single glance. Furthermore, it is somewhat cumbersome to view other portions of the searchable text; the user would have to take extra steps such as hitting arrow keys or moving a cursor inside the input region until another portion of the searchable text appears. Thus, a further disadvantage of these common techniques is that extra effort on the part of the user is often required to view a long searchable text. As a result, the purpose of providing a visual feedback is, to a large extent, defeated when a searchable text cannot be rendered in the input region in its entirety.
In the context of informational search, a longer search text should be encouraged as it better leads to a set of highly pertinent information. That is, the longer the user's search query, the more precise and relevant the information returned. Unfortunately, because of the shortcomings previously described, these common techniques serve to discourage longer searchable texts.
A solution to the problems described above could be to set the input region as large as the display screen could physically accommodate. In the case of a single line input region, the horizontal size of the input region could be set to or near a full size of the display screen, for example. However, a disadvantage of this solution would be that, if the searchable text were small, the input region would appear inordinately large. Furthermore, precious display space would be wasted in this approach. More problematic, however, the search text could still be larger than what the input region could accommodate; the same problem of not seeing the entire searchable text as previously described would still occur.
To use display space efficiently, a solution may be to extend the horizontal line size of the input region as new text is being added. In other words, the line size of the input region may be increased to accommodate new text input. This would prevent wasting horizontal space where the searchable text is small. However, a disadvantage of the present solution would be that the increased line size would affect other data displayed in the display screen. For instance, it may adversely impact displaying other data such as the search results or advertisement links in an adjacent section of the display screen.
Furthermore, under these approaches, a frequent increase in the line size of the input region would induce a correspondingly frequent change in the horizontal size of the adjacent section where other data is displayed. This frequent fluctuation in the horizontal sizes of the input region and the adjacent section where other data is displayed would certainly produce a bewildering user experience.
Thus, a need exists for improved ways of supporting interaction between user input and data related to the user input using a display screen.
The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
A method and apparatus for supporting interaction between user input and data related to the user input using a display screen is described. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
It has been observed that many users have preferences as to how information should be presented in a display screen. For example, in a European language, when searching for results that are related to a searchable text, a user may prefer an input box for inputting the searchable text on the left-hand side of a display screen and a display area for showing the search results on the right-hand side of the display screen. For a language such as Arabic or Hebrew, user preferences may differ from those for European languages; a user in an Arabic or Hebrew language may prefer an input box for inputting the searchable text on the right-hand side of a display screen and a display area for showing the search results on the left-hand side of the display screen. Given a particular language, users may prefer information to be presented in a certain desirable visual format that takes into account preferences associated with that particular language. In addition, given such preferences, sizes of display sections aligned along a first direction may preferably be unchanged irrespective of how many or few characters the searchable text contains; otherwise a bewildering experience may result from looking at a display screen containing fluctuating sizes of sections for various data displays.
In accordance with this observation, techniques are described herein for a user interface (UI) mechanism that supports interaction between user input and data related to the user input using a display screen. The UI mechanism first determines initial dimensions for an input region. An example of the initial dimensions is a single line of 300 pixels or 100 characters along the first direction. That is, the input region is initially set to a first size of 300 pixels or 100 characters in the first direction and a second size of a single line (e.g., 12 pixels) in a second direction.
As a user inputs characters into the user input region through an input means, at a certain point, the user input region can no longer fit the user input in the initial dimensions unless the dimensions of the user input region are enlarged. Similarly, as the user deletes characters from the user input region, at a certain point, the user input region contains extra blank line(s). At that point, the UI mechanism enforces a constraint on the size of the user input region along the first direction and adapts the dimensions of the input region to fit the user input by shrinking or resizing the user input box in the second direction. In one embodiment, even when the entire contents of the input region are deleted, the dimension along the second direction of the input region is at least one line. Because the adjustment of the dimensions is restricted to the second direction only, other data displayed in a section aligned along the first direction is not impacted by additions or deletions of characters from the user input region, thereby avoiding fluctuation of sizes of display sections along the first direction.
Furthermore, since the user input region can be resized to adapt itself to the user input, the user input can be viewed in its entirety. This allows the user to see an entire searchable text in a single glance, for example. This encourages the user to enter more characters. As a result, as the user input more characters, or words, in the user input region, informational search related to the user input is narrowed, likely leading to a highly pertinent set of results or suggestions.
In one embodiment, a list of suggestions (i.e. first data) can be concurrently retrieved and rendered as the user inputs the searchable text in the user input region. This list of suggestions can be displayed in a manner in which the list is visually aligned with the searchable text on the display screen. In one embodiment, if the user is a European language user, the list is displayed just below the user input region. Thus, the user gets not only a visual feedback of what has been typed but also suggestions related to words in the searchable text that has been inputted. As the suggestions are displayed right below the user input region, the user can easily correlate the suggestions with the searchable text. In one embodiment, the suggestions on the list are ranked. The list may be displayed in such a way that a suggestion corresponding to the most popular search term is the first on the list. In one embodiment, the suggestions are predictions of what the searchable text would be if completely entered by the user. In this embodiment, the list of suggestions may be ranked based on the likelihood that the searchable text will complete to a particular suggestion.
In one embodiment, search results corresponding to a suggestion are also concurrently retrieved and rendered on the display screen as the user inputs the searchable text in the user input region. The search results initially may correspond to the suggestion that is ranked as the most popular search term as previously stated. The user, however, can also select a suggestion in the displayed list of suggestions, for example, by clicking a mouse button over the suggestion. As a result, search results corresponding to the selected suggestion are retrieved and rendered on the display screen. In one embodiment, if the user is a European language user, the user input region and the list of suggestions are displayed in a first section of the display screen; search results are displayed in a second section of the display screen; and the first and second sections are horizontally aligned. In some embodiments, the horizontal size of the first region is fixed and amounts to a fraction (e.g., ¼) of a full horizontal size of the display screen and the horizontal size of the user input region is restricted to no more than the horizontal size of the first section.
Thus, techniques under the present invention can accommodate both small and large searchable text input without wasting space. Furthermore, by constraining the user input region and the suggestions in a section within a fixed horizontal size, search results are displayed in a section in a dimensionally stable manner, resulting in a pleasant user experience.
The user input and search results as described herein may pertain to the World Wide Web. However, this invention is not so limited. More generally, the user input and results may pertain to any searchable data in any format. For example, the data may be a user's address book, saved links, personally stored images (such as jpeg files, .gif files, etc.), video, audio (.mp3 files, .wmv files, etc.), contact cards (e.g., v-cards), calendar objects, word processing documents, graphics files, or computer code (object files and source code).
According to one embodiment, as shown in
As used herein, the term “direction” refers to a positional relationship between geometric objects. Here, geometric objects are defined as any portion, and/or any section, of the display screen 100 (whether they are presently rendered for display or not), or any graphic objects rendered or displayed in the display screen 100. A direction can be represented by an imaginary directed line (such as 106 of
In one embodiment, a user input region 108 is rendered or displayed along the first direction 106. Here, the term “rendered . . . along the first direction” means additional characters to a user input 110 would be added along the first direction 106 if the additional characters could still fit in the user input region 108 without resizing the user input region 108. In accordance with an embodiment of the present invention, the user input region 108 is restricted from exceeding a fixed size 112 along the first direction 106. For example, in an embodiment where the user input region 108 is an input box graphic rendered in the horizontal direction, the input box is restricted from exceeding a fixed size, say, 300 pixels or 100 characters, in the horizontal direction.
As used herein, the term “a fixed size” does not mean that the fixed size 112 (of the user input region 108) cannot be changed at all, but rather simply means that the fixed size 112 is not responsive to any user input destined for the user input region 108. A user may still alter the fixed size 112 by invoking some preference configuration functionality. For example, a configuration page (not shown), similar to an “internet options” page provided by an internet browser, may be used to set an appropriate value for the fixed size 112.
In some embodiments, the fixed size 112 (of the user input region 108) is determined programmatically by an electronic device based on characteristics of the display screen. In one embodiment, the fixed size 112 thus determined or configured is smaller than a full size (e.g., ¼ of the full size), along the first direction, of the display screen.
In some embodiments, the user input region 108 is entirely located within the first section 102. Therefore, in one embodiment, the fixed size 112 that restricts the user input region 108 is less than a full size of the first section 102.
In contrast to the fixed size 112 along the first direction 106, the user input region has a non-fixed size 114 along a second direction 116. As used herein, the term “a non-fixed size” does not mean that the non-fixed size 114 changes all the time in response to any user input destined for the user input region 108, but rather changes when the user input 110 grows or shrinks to a point that the user input region 108 is deemed as not an appropriate size for the user input. For illustration purpose, the user input region 108 can be set to an initial value of a non-fixed size along the second direction 116 (which may be a downwards vertical direction, for example, as shown in
As noted before, the user input 110 can be received through any input means, which can be, but is not limited to, a keyboard attached to the electronic device. As part of receiving the user input, one or more characters can be added to the previously made user input. Conversely, as part of receiving the user input, one or more characters may be removed from the previously made user input. The user input 110 with its present content is rendered or displayed in the user input region 108. In one embodiment, a user may populate the user input region 108 by clicking on a suggestion that is presented to the user; and the user input region 108 may be repopulated with a text corresponding to the suggestion clicked. In one embodiment, a user may populate the user input region 108 by pasting; and the user input region 108 may be repopulated with a text pasted.
In accordance with an embodiment of the present invention, when the user input 110 is, or deemed as, no longer fitting the single line, the user input region 108 is resized along or against the second direction 116 to adapt the user input region 108 to the user input 110. That is, if two lines are needed to fit the user input 110, the user input region 108 is expanded in the second direction 116 and adapted to the user input 110. Here, the phrase “expanded in the second direction” refers to expansions either along or against the second direction 116.
In embodiments where the first direction 106 is the left-to-right horizontal direction and the second direction 116 is the downwards horizontal direction, a moment may be reached when the user input 110 could fit in a single horizontal line of the display screen 100 if the user input region 108 were to be resized horizontally. However as noted before, in accordance with an embodiment of the present invention, the user input region 108 is fixed in the first direction 106, i.e., the horizontal direction. In accordance with an embodiment of the present invention in which the user input region is fixed in the horizontal direction, to adapt the user input region 108 to the user input 110, the user input region 108 is expanded in the vertical direction. This expansion can be either along or against the vertical direction, as indicated in
Suppose that the user input region 108 now fits two lines, as shown in
In embodiments where the first direction 106 is the left-to-right horizontal direction and the second direction 116 is the downwards horizontal direction, as shown in
In one embodiment, expansion and shrinkage are correlated. Thus, in such an embodiment, if expansion would be along the second direction 116, then shrinkage would be against the second direction 116; conversely, if expansion would be against the second direction 116, then shrinkage would be along the second direction 116.
As this discussion shows, the user input 110 is displayed in the user input region 108, as resized to adapt the user input region 108 to the user input 110. In some embodiments, limits are placed by the UI mechanism as to the minimum and maximum non-fixed size 114 can be. In one embodiment, the minimum size of the non-fixed size 114 is a single line. In one embodiment, the maximum size of the non-fixed size 114 is four lines. However the present invention is not limited to just these minimum and maximum sizes. Other variations of minimum and maximum sizes are also within the scope of the present invention.
For the purpose of illustration, resizing the user input region 108 has been described as physically expanding or shrinking the user input region 108. However, the term “resizing” here can also refer broadly to expansion or shrinkage of the user input region 108 in a logical, not just limited to a physical size or length-wise, sense. Here, the term “expansion or shrinkage in a logical sense” refers to any change of attributes associated with the user input region 108 so as to fit more or fewer characters without altering the fixed size 112 of the user input region 108 in the first direction 106 or, in one embodiment, the horizontal direction. Examples of the attributes associated with the user input region 108 are one or more attributes of a font that is used to render the user input 110 in the user input region 108. The one or more attributes of the font includes a font size. In some embodiments, resizing the user input region 108 to adapt it to the user input 110 is accomplished by a change of the font size with or without altering the non-fixed size 114.
In one embodiment, the user input 110 relates to first data 118. For example, in a situation where the user input 110 is a searchable text, the first data 118 can be some data based on the searchable text, such as suggested completions to the searchable text. In one embodiment, at the same time as the user inputs characters through the input means, the search engine concurrently retrieves the first data 118 related to the searchable text (whether the searchable text has been formally submitted for search by the user or not). In one embodiment, retrievals performed by the search engine occur more than once and are triggered upon certain criteria being met—for example, when a space character is inputted after a preceding word, after a carriage return is typed, or a “submit” icon or graphical button is clicked on, etc.
In one embodiment, the first data 118 retrieved is a list of suggestions related to the user input, as will be further illustrated later. In one embodiment, the list of suggestions is rendered or displayed in the first section 102 along a first axis 120 in a second direction 116. In some embodiments, the first axis 120 goes through the user input region 108. Furthermore, the user input 110 is visually aligned, along the first axis 120, with the first data 118. In one embodiment, displaying the first data comprises updating the first data to reflect the user input that is currently displayed in the user input region.
In embodiments where the first direction 106 is the left-to-right horizontal direction and the second direction 116 is the downwards horizontal direction, as shown in
As previously noted, in accordance with an embodiment of the present invention, the display screen comprises the first section 102 and the second section 104 along the first direction. The first section 102 is of a size (128 of
For example, in one of the embodiments where the first direction 106 is the left-to-right horizontal direction and the second direction 116 is the downwards vertical direction, as shown in
Similar to the phraseology relating to the fixed size 112 of the user input region 108, the phrase “size of the first section in the first direction is fixed” does not mean that the size 128 cannot be changed at any time, but simply means that the size 128 is not responsive to any user input 110 destined for the user input region 108. A user may still alter the size 128 of the first section 102 by invoking some preference configuration functionality. For example, a configuration page, such as an “internet options” page provided by an internet browser, may be used to set an appropriate value for the size 128 of the first section 102.
In some embodiments, similar to the fixed size 112 of the user input region 108, the size 128 of the first section 102 is determined programmatically by the electronic device based on characteristics of the display screen 100. Preferably, the size 128 of the first section 102 thus determined or configured is smaller than a full size, along the first direction 106, of the display screen 100.
For example, in some embodiments where the first direction 106 is the left-to-right horizontal direction and the second direction 116 is the downwards horizontal direction, as shown in
In one embodiment, in addition to relating to the first data 118, the user input 110 also relates to second data 130. For example, in a situation where the user input 110 is a searchable text, the second data 130 can be some data based on the searchable text, such as search results returned by a search engine. In one embodiment, where the first data 118 is a list of suggestions, the search results (i.e., the second data 130) are directly linked to one suggestion in the list of suggestions. Since the list of suggestions is related to the searchable text, the second data 130 (i.e., the search results) is also indirectly related to the searchable text. At the same time as the user inputs characters through the input means, the search engine may concurrently retrieve (or, in one particular embodiment, formulate based on data the search engine keeps) the second data 130 related to the searchable text (whether the searchable text has been formally submitted for search by the user or not). In one embodiment, retrievals, or formulation, of the second data 130 performed by the search engine occur more than once and are triggered upon certain criteria being met—for example, when a space character is inputted after a preceding word, after a carriage return is typed, etc.
For the purpose of illustration, only three suggestions are shown in
In one embodiment, among the suggestions, one suggestion is identified as a primary interaction path 210. In one embodiment, the UI mechanism highlights the primary interaction path 210 by boldfacing it. For instance, in the current example, the primary interaction path is identified as “the con . . . of the uni . . . ”, which is shown as the first item of the three suggestions in boldface in
In one embodiment, a primary interaction path is identified using ranking information associated with each suggestion. In one particular embodiment, the UI mechanism identifies the primary interaction path. In another embodiment, a server such as the search engine identifies the primary interaction path. In one embodiment, the ranking information associated with each suggestion is included in the first data 118 and displayed in the portion 126, and provides an indication of popularity of that particular suggestion as a search term. In one embodiment, a suggestion is identified as a primary interaction path if the suggestion represents the most popular search term among all the suggestions that are related to the user input 110.
As a suggestion is identified as the primary interaction path 210, the UI mechanism can make a request to retrieve search results for the suggestion, in one embodiment. In another embodiment, a server, which is operatively coupled to the electronic device and may or may not be the search engine, automatically identifies the primary interaction path 210 and returns the search results associated with the primary interaction path 210. The search results associated with the primary interaction path 210 constitute second data.
In one embodiment, the search results comprise first search results 220 and second search results 230. The first search results 220 are related to sponsor links in one embodiment. The second search results 230 come from searching the internet in one embodiment. In one embodiment, as shown in
As shown in
In one embodiment, referring to
In one embodiment, the tooltip 270 displays a non-truncated version of the suggestion that is displayed in the portion 122 of the display screen 100. Furthermore, physical dimensions of the tooltip 270 may extend beyond the first section 102, for example, into the second section 104.
In block 320, user input 110, which could fit in a single horizontal line of the display screen 100 if the user input region 108 were to be resized horizontally, is received through an input means. In block 330, the UI mechanism determines that the user input region 108 no longer fits the user input 110 and, as a result, resizes the user input region 108 vertically to adapt it to the user input 108.
In block 340, the user input 110 is rendered or displayed in the user input region 108, which has been resized to adapt the user input 110. In block 350, first data 118 that is related to the user input 110 is displayed or rendered in a portion 122 of the display screen 100. In one embodiment, the user input 110 and the first data 118 is visually aligned along a vertical axis 120.
Computer system 400 may be coupled via bus 402 to a display 412, such as a cathode ray tube (CRT), for displaying information to a computer user. An input device 414, including alphanumeric and other keys, is coupled to bus 402 for communicating information and command selections to processor 404. Another type of user input device is cursor control 416, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 404 and for controlling cursor movement on display 412. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
Computer system 400 may be used to implement the techniques described herein. According to one embodiment of the invention, those techniques are performed by computer system 400 in response to processor 404 executing one or more sequences of one or more instructions contained in main memory 406. Such instructions may be read into main memory 406 from another computer-readable medium, such as storage device 410. Execution of the sequences of instructions contained in main memory 406 causes processor 404 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention. Thus, embodiments of the invention are not limited to any specific combination of hardware circuitry and software.
The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 404 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 410. Volatile media includes dynamic memory, such as main memory 406. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 402. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punchcards, papertape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 404 for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 400 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 402. Bus 402 carries the data to main memory 406, from which processor 404 retrieves and executes the instructions. The instructions received by main memory 406 may optionally be stored on storage device 410 either before or after execution by processor 404.
Computer system 400 also includes a communication interface 418 coupled to bus 402. Communication interface 418 provides a two-way data communication coupling to a network link 420 that is connected to a local network 422. For example, communication interface 418 may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 418 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, communication interface 418 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
Network link 420 typically provides data communication through one or more networks to other data devices. For example, network link 420 may provide a connection through local network 422 to a host computer 424 or to data equipment operated by an Internet Service Provider (ISP) 426. ISP 426 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 428. Local network 422 and Internet 428 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 420 and through communication interface 418, which carry the digital data to and from computer system 400, are exemplary forms of carrier waves transporting the information.
Computer system 400 can send messages and receive data, including program code, through the network(s), network link 420 and communication interface 418. In the Internet example, a server 430 might transmit a requested code for an application program through Internet 428, ISP 426, local network 422 and communication interface 418.
The received code may be executed by processor 404 as it is received, and/or stored in storage device 410, or other non-volatile storage for later execution. In this manner, computer system 400 may obtain application code in the form of a carrier wave.
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.