Expanding projectiles direct significant stopping power at a target (e.g., game, enemy combatants) that can help ensure a clean kill of the target. Supersonic projectiles (that is, projectiles discharged from a weapon at greater than about 1040 fps), are propelled with sufficient force so as to expand when hitting any target regardless of projectile profile. Typically, such projectiles are manufactured of lead or copper-jacketed lead, both of which are sufficiently ductile to expand and deform when hitting virtually any barrier or target. The propulsion force of subsonic projectiles, however, is typically insufficient to expand when hitting a target, unless the projectiles are constructed with a fairly blunt profile. Such low caliber projectiles are unable to be fed via a magazine into an automatic or semi-automatic firearm.
In one aspect, the technology relates to an expanding subsonic projectile having a body having a meplat and at least partially defining a hollow bore having a bore diameter; and an insert disposed at least partially in the bore, wherein the insert includes: an insert axis; a tip disposed on the insert axis; a leading section extending from the tip towards the meplat, wherein the leading section includes an expanding section diameter along the insert axis from the tip towards the meplat; and a waist extending from the leading section towards the meplat, wherein the waist has a contracting waist diameter along the insert axis from the leading section towards the meplat. In an embodiment, the body defines a maximum body diameter and a meplat body diameter of greater than about 30% of the maximum body diameter. In another embodiment, the body defines a maximum body diameter and a meplat body diameter of about 70% of the maximum body diameter. In yet another embodiment, the insert and bore form a friction fit. In still another embodiment, the body includes a plurality of discrete petals, wherein each petal is separated from an adjacent petal by a slot defined by the body.
In another aspect of the above embodiment, the body has three petals. In an embodiment, the body includes a body ogive radius and defines a reference curve extending from the meplat to the insert axis, wherein the reference curve includes a reference curve radius identical to the body ogive radius, and wherein the tip and leading section are contained within the reference curve. In another embodiment, the leading section includes a maximum section diameter between about 60% and about 65% of the bore diameter. In yet another embodiment, the waist has a waist diameter at the meplat, wherein the waist diameter at the meplat is between about 35% and about 40% of the maximum section diameter. In still another embodiment, the waist diameter at the meplat is between about 45% and about 50% of the bore diameter.
In still another aspect of the above embodiment, the expanding subsonic projectile further has a meplat distance from the tip to the meplat and a leading section distance from the tip to the waist, wherein the leading section distance is between about 95% and about 100% of the meplat distance. In an embodiment, the insert is adapted to direct a fluid flow within the bore towards the plurality of discrete petals when the projectile is discharged from a firearm at a subsonic speed into a wet target.
In another aspect, the technology relates to a cartridge having: a casing; a primer disposed at a first end of the casing; a body at least partially defining a hollow bore and having a meplat; an insert disposed at least partially in the bore, wherein the insert has an insert axis, a tip, and a leading section, and wherein the body has a body ogive radius and defines a reference curve extending from the meplat to the insert axis, wherein the reference curve includes a reference curve radius identical to the body ogive radius, and wherein the tip and leading section are contained within the reference curve. In an embodiment, the leading section extends from the tip towards the meplat, wherein the leading section has an expanding section diameter along the insert axis from the tip towards the meplat. In another embodiment, a waist extending from the leading section towards the meplat, wherein the waist has a contracting waist diameter along the insert axis from the leading section towards the meplat. In yet another embodiment, the leading section has a maximum section diameter between about 60% and about 65% of the bore diameter. In still another embodiment, the waist has a waist diameter at the meplat, wherein the waist diameter at the meplat is between about 35% and about 40% of the maximum section diameter.
In another embodiment of the above aspect, the waist diameter at the meplat is between about 45% and about 50% of the bore diameter. In an embodiment, a meplat distance from the tip to the meplat and a leading section distance from the tip to the waist, wherein the leading section distance is between about 95% and about 100% of the meplat distance. In another embodiment, the body has a plurality of discrete petals, wherein each petal is separated from an adjacent petal by a slot defined by the body, and wherein the insert is adapted to direct a fluid flow within the bore towards the plurality of discrete petals when the projectile is discharged from a firearm at a subsonic speed into a wet target.
There are shown in the drawings, embodiments which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.
The projectile body 202 has a length L and a caliber Ø (e.g., the maximum body diameter). The bore 204 has a depth D, as measured along an axis A of the projectile body 202, from the meplat 210. The meplat 210 has a meplat diameter ØMEP at the reference plane P. The bore 204 comprises a bore diameter ØB. The depicted projectile body 202 includes three petals 206, separated by an equal number of slots 208. In other embodiments, a greater or fewer number of petals may be utilized as required or desired for a particular application. Projectiles having as few as two or as many as eight petals are contemplated. As can be seen specifically in
Typically, expanding projectiles are manufactured of lead or copper-jacketed lead. In a subsonic application, there is very little energy in the moving projectile. Accordingly, a very soft material such as lead is used as the media for expansion. Lead, however, expands erratically, deforming randomly when it comes in contact with any hard surface, be it hide, hair, bone, etc. Once a lead projectile expands, often with a misshapen lump on the front of the projectile, it slows down quickly and changes its path based on the resistance of the misshapen lump at the tip. The expanding subsonic projectile described herein, however, may be monolithic solid copper or brass. The insert 300 may be manufactured of copper, aluminum, or other materials. Other acceptable materials include copper-jacketed lead, copper-jacketed zinc, copper-jacketed tin, powdered copper, powdered brass, powdered tungsten matrix, and like materials. The projectile expands only when the hydraulic energy inside the projectile exceeds the tensile strength of the body 202. Thus, the projectile only expands when it hits a so-called “wet target.” Wet targets include, for example, animals and persons, as well as water (in discharge testing tanks), and gel ordnance test blocks. Thus, the projectiles described herein are barrier-blind to hide, hair, bone, clothing, drywall, car doors, etc. Barriers that would destroy a lead or lead-core projectile are easily breached with a projectile manufactured as described herein. Also, in projectiles where the petals are arranged symmetrically about the axis, the expansion is substantially predictable.
Returning to
The relationships between the various components of the cartridge 100 help ensure proper operation during firing and striking of a target. Once discharged from a firearm, the projectile (e.g., the body 202 and insert 300 as a unit) flies towards a target. When striking a wet target, fluid within the target is forced around the tip 302 of the insert 300. This fluid continues to spread outward as the projectile advances within the target along the length LS of the leading section 304, due to the expanding leading section diameter ØS. Once the fluid reaches the waist 306, a contracting portion of the waist diameter ØW creates a low pressure region into which the fluid is drawn. At a position proximate the meplat waist diameter ØWMEP, the fluid is forced into the bore 204. Beyond the minimum waist diameter ØWMIN, an expanding portion of the waist diameter ØW forces the fluid outward into the petals 206 of the body 202. As the petals 206 spread, the hydrostatic force acts further upon the slightly spread petals 206 forcing them to expand to their maximum expansion point, as the projectile advances in the target. Depending on the material utilized in manufacture of the body 202, one or more of the petals 206 may break from the main portion of the body 202. Thus, in the absence of further failure of individual components, as many as five discrete components (three petals 206, the insert 300, and the remaining portion of the body 202) travel at high speed through the target, likely resulting in more damage and a cleaner kill.
The various dimensions of the components described above may be modified as required or desired for a particular application. Certain ratios have been discovered to be particularly beneficial to ensure proper expansion during contact with a wet target as well as to ensure proper feeding from a magazine of an automatic weapon. For example, the bore depth D may be about 35% to about 40% of the body length L. The bore depth D may be also about 75% to about 80% of the slot length S. The slot length S may be about 45% to about 50% the body length L. The leading section length LS can be about 15% to about 20% of the total length of the insert LI. The exposed waist length LWE may be about 95% to about 100% of the leading section length LS. Additionally, the meplat waist diameter ØWMEP can be about 45% to about 50% of the bore diameter ØB. The meplat waist diameter ØWMEP can be about 35% to about 40% of the maximum leading section diameter ØSM. The meplat waist diameter ØWMEP can be about 45% to about 50% of the bore diameter ØB. Other dimensional relationships are contemplated. The dimensions of the various elements of the disclosed projectiles assist in enabling those projectiles to expand when hitting a wet target, after being discharged from a weapon at a subsonic speed.
Manufacturing tolerances are not reflected in the figures or Table 1. Thus, for the depicted body 500 having a body ogive radius OB-RAD of 3.930 inches and a caliber Ø of 0.308 inches, the ogive is about 12.8 calibers, since ogive equals ØB-RAD divided by 0. Additionally, for the insert 600 having a leading section ogive radius ØS-RAD and a leading section maximum diameter of ØSM (i.e., caliber), the ogive is about 16.9 calibers. An ogive expressed in calibers is scalable.
The embodiment depicted in
A 170 gr projectile (with insert described in EXAMPLE 1) is designed for 0.308 subsonic applications in bolt or single shot weapons with a 1:10 twist or tighter. The subsonic projectile is designed to penetrate approximately 1.5 inches in 10% gel then expand and fracture the petals. The petals, having extremely sharp edges, cut soft tissue very well and radiate outward creating additional wound paths. In addition to the petals, the 20 gr insert is released creating another wound channel. After the controlled fracturing process and the creation of the temporary cavity, the bullet base, with a truncated nose, penetrates in a straight path to a final depth of greater than 18 inches.
Due to limitations in calculating a dual-density or tri-density ballistic coefficient, the following method was used. The bullet was designed using a fixed density value and the design weight was documented. The bullet was then produced and the actual weight measured. The density value was then modified so the design weight and the actual weight are the same. The ballistic coefficient was calculated from this homogenous density value.
The projectile was discharged into a 10% ballistic ordnance gelatin test block manufactured and calibrated in accordance with the FBI Ammunition Testing Protocol, developed by the FBI Academy Firearms Training Unit. The base powder material utilized for the 10% ordnance gelatin test block was VYSE™ Professional Grade Ballistic & Ordnance Gelatin Powder available from Gelatin Innovations, of Schiller Park, Ill. The block was manufactured at the test site in accordance with the formulations and instructions provided by the powder manufacturer. After manufacture of the gelatin test block, the test block was calibrated. Calibration requires discharging a 0.177 steel BB at 590 feet per second (fps), plus or minus 15 fps, into the gelatin test block. The test block is considered calibrated if the shot penetrates 8.5 centimeters (cm), plus or minus 1 cm (that is, 2.95 inches-3.74 inches). The calibrated block is then used in the terminal performance testing of the projectile.
The projectile 400, when utilized in a cartridge having an appropriate casing and primer (such as a 300 Blackout cartridge), can be fed from a magazine of five, 10, 20, 30, and 60 rounds capacity.
Manufacture of expanding subsonic projectiles consistent with the technologies described herein may be by processes typically used in the manufacture of other projectiles. The projectiles may be cast from molten material, or formed from powdered metal alloys. Projections in the mold may form the depicted slots and bore, or the slots and bore may be cut into the projectiles after casting. The projectiles, inserts, casings, primers, and propellants may be assembled using one or more pieces of automated equipment. In some embodiments, the inserts may be inserted into the projectiles, then shipped to a second location for assembly into a final cartridge.
Unless otherwise indicated, all numbers expressing dimensions, speed, weight, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present technology.
As used herein, “about” refers to a degree of deviation based on experimental error typical for the particular property identified. The latitude provided the term “about” will depend on the specific context and particular property and can be readily discerned by those skilled in the art. The term “about” is not intended to either expand or limit the degree of equivalents that may otherwise be afforded a particular value. Further, unless otherwise stated, the term “about” shall expressly include “exactly,” consistent with the discussions regarding ranges and numerical data. Lengths, sizes, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. This same principle applies to ranges reciting only one numerical value. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
While there have been described herein what are to be considered exemplary and preferred embodiments of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.