Expansion and crack joint coupler

Information

  • Patent Grant
  • 6517277
  • Patent Number
    6,517,277
  • Date Filed
    Friday, April 27, 2001
    23 years ago
  • Date Issued
    Tuesday, February 11, 2003
    21 years ago
Abstract
An expansion or crack joint assembly (32) utilizes a coupler (20) with or without a bottom sheet (34) to join adjacent roadway concrete slabs (86, 90) formed separately initially or continuously cast and later separated by a saw cut, which induces cracking to form a crack joint. The coupler (20) includes a casing (22), an internal component (24,25,62,65), and outer sleeve (26), and end caps (28,30). The casing (22) defines an internal chamber (40) which receives the internal component (24,25,62,65) therein. The sleeve (26) and end caps (28,30) fit over the casing (22). The casing (22) and sleeve (26) transmit loads between the concrete slabs (86,90) while the sleeve (26) and end caps (86,90) operate to reduce stress concentrations. The bottom sheet (34) inhibits water from entering the expansion or crack joint assembly (32) from below, if used, and prevents pumping. In various embodiments, the internal component is a spring disk (24,25), a flat, circular disk (62), and a structural material (65), such as concrete, which substantially fills the internal chamber (40).
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is broadly concerned with improved, preferably prefabricated expansion or crack joint couplers particularly designed for use in joining concrete roadway slabs in order to properly transfer vertical forces between concrete slabs while minimizing stress concentrations experienced using conventional dowels at expansion or crack joints. More particularly, the invention pertains to an expansion or crack joint coupler including a steel which bridges joints between concrete slabs with the ends of the coupler embedded in the slabs. In preferred forms, substantially circular disks are inserted in the coupler and its ends are closed with end caps with a multifunction reinforcing sleeve centrally positioned around the outside of the coupler. Alternatively or additionally, the coupler is filled with a structural material such as concrete.




Our invention keeps the strength and stiffness of the pavement at a joint equal to that in the middle of a pavement slab to the extent possible, while keeping the tensile stress low in the slab at a joint so that in the normal shrinkage and expansion of pavements, adjacent slabs will separate at the joints instead of by developing cracks in the middle of the slabs. In doing this, the new coupler transfers bending moments as well as shearing forces.




One of the main purposes of this invention is to transfer shear forces and bending moments from the loaded slab to unloaded slab as heavily loaded wheels cross the joints or cracks while keeping the differential deflection between the slabs a minimum, and decreasing the vertical deflection of the slabs at the joints.




2. Description of Prior Art




In the construction of concrete roadways, it is common practice to install expansion or crack joint assemblies at spaced locations, so that the completed roadway can properly expand and contract under varying temperature and environmental conditions. Typical expansion or crack joint assemblies make use of a plurality of laterally spaced apart shear transfer devices having elongated force transmission members.




With the presently used expansion or crack joints the PCC (Portland Cement Concrete) slabs usually deteriorate near the crack joints. This deterioration is caused by excessive compressive or bearing stresses between the concrete and the dowels. These cause powdering of the concrete at the surface of the dowels near the joints between the slabs, which in turn creates voids around the dowels into which moisture and de-icing salt water flow causing serious corrosion of exposed steel. The powdered concrete abrades anti-corrosion coatings, which causes even previously coated dowels to corrode. Compressive stresses caused by heavy wheel loads also cause lateral splitting forces along the dowels, another compressive failure problem.




The bending stiffness of currently used steel dowels and other dowels in experimental stages are not great enough to transfer the moments required by current traffic, or to reduce warping at the corners of the slabs.




At extreme temperatures, the steel dowels can be compressed between the concrete slabs, again causing excessive stress in the concrete, and even deforming the dowel and crushing the concrete at the ends of the dowels.




SUMMARY OF THE INVENTION




The present invention overcomes the problems outlined above and provides an improved expansion or crack joint coupler. By virtue of a unique outer casing defining an internal chamber and having a structural component inserted in the internal chamber, the improved expansion or crack joint coupler provides increased stiffness, strength, and load transferring ability while reducing weight and stress concentrations.




Broadly speaking, the expansion or crack joint coupler of the present invention has a casing with two ends and a central region therebetween. The casing defines an internal chamber and is designed to be embedded in adjacent concrete slabs and to extend across an expansion or crack joint between the slabs. An internal structural component is inserted into the internal chamber to enhance the properties of the casing.




In a preferred embodiment, two tapered spring disks are inserted into the internal chamber of the casing, which is preferably structural steel pipe. The spring disks are positioned approximately equal distances on opposite sides of the casing center, and each spring disk includes a rigid smaller diameter portion and a compressible larger diameter portion which is ring-shaped. The compressible portion of the disk defines a plurality of slits equal spaced around the circumference of the disk, and the compressible portion preferably face outward toward the end of the casing.




In another preferred embodiment, a single solid disk is centrally positioned in the internal chamber. The disk is rigid and preferably fits tightly in the casing chamber.




In still another preferred embodiment, the casing is filled with a structural material. The structural material is preferably concrete, but can be any material with appropriate stiffness.




There is further provided in the practice of the invention a novel outer reinforcing sleeve and a novel pair of end caps. The sleeve is preferably shorter than the casing and is centrally positioned on the casing. The ends of the sleeve are advantageously rounded to reduce stress concentrations, and if a steel sleeve is used, rubber end rings with rounded corners preferably abut the ends of the sleeve. The end caps close the ends of the casing and preferably define an opening receiving the ends of the casing therein. The end caps can also include a plurality of gripping bumps on their outer surface. Both the sleeve and the end caps are preferably formed with a material that is softer than the casing thereby reducing stress concentrations.




There is still further provided in the practice of the invention a novel expansion or crack joint assembly in which two adjacent concrete slabs are positioned to define a narrow gap therebetween. A sheet is positioned beneath the slabs and covers the gap to prevent pumping effects. Preferably, the coupler described above is embedded in the concrete slabs and extends across the expansion or crack joint.




The invention can be used to connect slabs having expansion joints provided for beforehand; or for those which are cast continuously and then caused to crack at predetermined places (where the couplers are placed before casting) by the use of saw cuts made in the pavement at the proper time after casting the continuous pavement. The invention can be used for expansion joints of concrete structures other than pavements.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a transverse cross sectional view of an expansion joint assembly according to the present invention and including an expansion or crack joint coupler according to the present invention;





FIG. 2

is a fragmentary, enlarged, cross sectional view of an end cap of the expansion or crack joint coupler of

FIG. 1

;





FIG. 3

is a perspective view of an internal structural component of the expansion or crack joint coupler of

FIG. 1

;





FIG. 4

is a cross sectional view of the internal structural component of

FIG. 3

having a tapered feature thereof exaggerated for illustrative purposes;





FIG. 5

is a transverse cross sectional view of an alternate expansion or crack joint coupler according to the present invention; and





FIG. 6

is a transverse cross sectional view of another alternate expansion or crack joint coupler according to the present invention and having an adhesive coating thereof enlarged for illustrative purposes.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Turning now to the drawings,

FIG. 1

depicts a preferred expansion or crack joint coupler


20


having a casing


22


, internal structural components


24


,


25


, a reinforcing sleeve


26


, and end caps


28


,


30


. The coupler


20


is part of an expansion or crack joint assembly


32


. In a crack joint, there is no initial separation between slabs


86


,


90


, but saw cuts are made in the top of a continuous concrete slab to induce cracks where the couplers


20


are located. A bottom sheet


34


is used where local conditions make its use advisable.




In greater detail, the casing


22


is elongated between two ends


36


,


38


having a center therebetween and defines an internal chamber


40


therein. The casing normally ranges in length from approximately 18 inches to approximately 20 inches, but the length is not critical. The casing is preferably a hollow tubular body and has a constant annular wall having an outer surface


42


and an inner surface


44


with a preferred inner diameter of approximately 1.5 inches. Thus, the internal chamber is essentially cylindrical. The preferred casing material is structural steel. Therefore, the casing is preferably a standard size of extra strong steel pipe.




Referring additionally to

FIGS. 3 and 4

, the internal structural components


24


,


25


are preferably identical and comprise tapered spring disks. Each tapered spring disk


24


includes a substantially rigid portion


46


and an integral, compressible portion


48


. The disk


24


is substantially circular but its outer annular surface


52


tapers slightly inward from the rigid portion


46


to the compressible portion


48


.




The rigid portion


46


is solid and has a smallest outer diameter approximately equal to the inner diameter of the casing. The rigid portion has an inner side


54


, and an outer side


56


. The rigid portion forms a base for the compressible portion.




The compressible portion


48


is an annular ring, and the outer diameter of the compressible portion is slightly larger than the inner diameter of the casing


22


. Thus, the compressible portion outer diameter is generally larger than the smaller rigid portion outer diameter. The compressible portion defines a plurality of slits


58


substantially evenly spaced around the circumference of the compressible portion. The slits


58


form spring tabs


60


extending from the outer side


56


of the rigid portion


46


to form a cup shape.




The spring disks


24


,


25


are positioned inside the internal chamber


40


on opposite sides of the casing center with the outer sides


56


facing the ends


36


,


38


of the casing and with the inner sides


54


facing each other. The spring disks are preferably positioned equal distances of approximately 1.5 inches from the casing center.




Referring to

FIG. 5

, in an alternate embodiment, a coupler


61


has an internal structural component which comprises a single circular disk


62


positioned substantially centrally in the casing


22


. The circular disk


62


is preferably flat and sized to fit tightly in the casing.




Referring to

FIG. 6

, in another alternate embodiment, a coupler


63


has an internal structural component which comprises a structural material


65


filling the internal chamber. The preferred structural material is concrete. The concrete can fill substantially the entire internal chamber


40


or it can fill in around the circular disk


62


.




Referring to

FIG. 1

, the reinforcing sleeve


26


is preferably cylindrical and is sized to slide over the outer surface of the casing


22


. Thus, the sleeve inner and outer diameters are larger than the casing outer diameter. The sleeve


26


has a sleeve length of approximately 5 inches and is thus shorter than the casing length. The sleeve is substantially centrally positioned around the casing, and the annular wall of the sleeve is preferably of constant diameter. The butt ends


64


of the sleeve are preferably rounded, and the sleeve material is preferably softer than the casing material. The preferred sleeve material is PVC. Referring additionally to

FIG. 6

, the sleeve is preferably fixed in a central position by an anti-corrosion adhesive coating


66


on the outer surface


42


of the casing.





FIG. 6

also shows an alternate reinforcing sleeve


68


which is preferably made from structural steel. Because of its strength, the steel sleeve thickness is less than the PVC sleeve thickness. When the steel sleeve is used, rounded end rings


70


are positioned around the casing


22


and abut the opposite ends of the steel sleeve


68


. The upper, outer corners


72


of the end rings


70


are rounded, and the rings


70


are made with a ring material preferably softer than the steel sleeve and casing materials. The ring material is preferably rubber or PVC. The adhesive coating


66


also fixes the end rings


70


in position next to the opposite ends of the steel sleeve


68


.




Referring to

FIGS. 1 and 2

, the end caps


28


,


30


, which are arcuate in cross-section, each define an end cap opening


74


and are formed with or without concrete gripping bumps


76


on an outer surface


78


thereof. The end cap material is a synthetic resin material, preferably PVC which is softer than the casing material, and the end caps substantially close and seal the ends


36


,


38


of the casing


22


to keep moisture out of the casing.




The end cap openings


74


are sized to frictionally couple to and cover the ends of the casing


36


,


38


. To that end, the openings


74


are slightly smaller than the casing outer diameter. However, the openings have a widening mouth


80


(FIG.


2


), which is defined by an arcuately tapered circumferential edge and has a diameter slightly greater than the casing outer diameter to aide in assembly. The openings


74


have arcuate sections


82


, which are, for example, parabolic or hemispherical in shape. The openings also have substantially straight walled sections


84


which extend approximately 1 inch over the ends of the casing.




The end cap has an integrally formed closed end body with an open mouth section and a closed endmost section which is arcuate in cross-section. The mouth section and endmost section are defined by an inner surface presenting an inner mouth segment and a closed, concave segment, and an outer surface presenting an outer mouth segment and a convex segment. The inner mouth segment is an elongated, substantially circular in cross-section surface, and the mouth is adapted to receive the end of an expansion joint force transmission member therein. The convex segment surface presents a series of outwardly extending, arcuate in cross-section projections whic comprise the bumps


76


. The outer mouth segment preferably tapers from the convex segment to the outer edge of the inner mouth segment. The concave segment extends from the inner mouth segment and defines a hollow region within the end cap.




If used, the gripping bumps


76


are evenly spaced over the outer surface


78


, which preferably is generally frustospherical, of the caps and are preferably arranged in a symmetrical pattern. The bumps are preferably integrally formed with the caps. Alternatively, the outer surfaces


78


of the caps are smooth.




Referring to

FIG. 6

, the end cap material can also be steel. The steel end caps


77


,


79


are configured similarly to the PVC end caps


28


,


30


, but because of their higher strength, the steel end caps


77


,


79


are thinner. The outer surface


81


of the steel end caps


77


,


79


can have gripping bumps


83


or be smooth.




Referring again to

FIG. 1

, the expansion or crack joint assembly


32


connects a first concrete slab


86


having a first end


88


and a second concrete slab


90


having a second end


92


. The first concrete slab is adjacent the second concrete slab, so that the first end


88


and the second end


92


are positioned to face each other with a narrow expansion gap


94


therebetween. The gap


94


, which has been enlarged for illustration, can be filled with an expandable material or component (not shown) if desired.




In a crack joint, the gap


94


does not exist, but a saw cut is made in the top of the slab. The couplers for crack joints are put in place before continuous casting of PCC pavement in which cracks are induced by saw cuts in the previously continuous concrete slabs at locations of previously placed rows of couplers. The cuts induce cracks which propagate from the bottom of the cut to the bottom of the slab.




The bottom sheet


34


, when used, is positioned beneath the concrete slabs


86


,


90


and has a width sufficient to cover the gap


94


between the slabs. The sheet is placed on the subgrade before the concrete is cast. The purpose of the sheet


34


is to reduce pumping. The sheet is preferably 18 inches wide, and is substantially impenetrable to water. The coupler


20


is configured for embedment in the concrete slabs


86


,


90


and extends across the expansion gap


94


or the cracked joint which will develop under the saw cut.




The expansion or crack joint coupler


20


is preferably assembled and then transported to construction sites. To assemble the coupler shown in

FIG. 1

, the casing is cut to length, and the adhesive coating


66


(

FIG. 6

) is applied. Before the adhesive coating cures the sleeve


26


is positioned over the central region of the casing. Once the adhesive is cured, the sleeve


26


is fixed in place. Before or after the sleeve is positioned, the spring disks


24


,


25


are pressed into the internal chamber. The rigid portions


46


are sized to slide through the internal chamber, preferably with some friction, and the compressible portions


48


are sized to compress the spring tabs inwardly when forced into the internal chamber. Thus, the compressible portions


48


hold the spring disks in place. The mouths


80


of the end caps


28


,


30


are aligned with the ends


36


,


38


of the casing


22


and press fit over the casing and adhesive coating.




The assembly of the alternate coupler


61


shown in

FIG. 5

is similar to that of the coupler


20


shown in

FIG. 1

with the exception that only the single circular disk


62


is pressed into the casing. The assembly of the coupler


63


shown in

FIG. 6

is also similar except that the end rings


70


are also positioned before the adhesive cures, and the concrete is poured into the internal chamber


40


and cured before the end caps


77


,


79


are put in place.




In the completed expansion or crack joint assembly


32


, the casing and sleeve transmit forces between the concrete slabs. Thus, the casing and sleeve act as elongated force transmission members bridging the expansion or crack joint and having two opposed ends. The spring disks


24


,


25


maintain the casing's cylindrical shape under bending loads, so that the coupler is stiffer allowing the casing to transmit such loads with increased efficiency. Thus, there is less relative bending between adjacent concrete slabs. Because the spring disks are spaced apart, the positioning of the casing center relative to the gap


94


is not critical. The stress concentrations that normally occur in the center of the coupler are minimized by the increased diameter of the casing


22


and the PVC sleeve


26


. That is, the coupler has a larger bearing area, and thus, the bearing stress is less. The softer sleeve material also minimizes stress by compressing slightly and dampening vibrations thereby avoiding stress fractures in the concrete.




The rounded ends


64


of the sleeve


26


prevent a stress concentration at the ends as would occur at a sharp edge. The sleeve


26


also protects the adhesive coating


66


(FIG.


6


), which preferably inhibits corrosion.




The end caps


28


,


30


protect the adhesive coating


66


on the ends of the casing


22


. The end caps also minimize stress concentrations at the ends


36


,


38


of the casing because they are arcuate and are made from a relatively soft end cap material. The flexibility of the PVC end caps also reduces compressive thermal stress. The PVC sleeve and end caps also allow small angular deformation of the concrete to further alleviating thermal stress, and both the sleeve and end caps operate to reinforce the respective portions of the casing. The concrete gripping bumps


76


operate to fix the end caps in the concrete slabs.




The bottom sheet


34


seals against the bottoms of the slabs to inhibit water from entering the expansion or crack joint through the expansion joint gap


94


, or the cracks formed under saw cuts. Specifically, the sheet


34


keeps the gap from acting as a pump as the gap repeatedly narrows and widens due to the expansion and contraction of the concrete slabs and as differential motion and deflation of adjacent slabs occurs under loading.




The coupler


61


of

FIG. 5

operates similarly. However, the coupler


61


is less expensive because only the simpler to manufacture, single circular disk


62


is used. Both the couplers


20


,


61


of

FIGS. 1 and 5

respectively provide approximately 150% of the strength of standard size, solid steel dowels, and because the couplers


20


,


61


of

FIGS. 1 and 5

are substantially hollow, they weigh approximately 75% less than standard size, solid steel dowels. Thus, they are much less expensive to ship to construction sites. Further, these couplers are significantly stiffer than standard solid dowels.




The coupler


63


of

FIG. 6

also operates similarly, but provides further increased strength and stiffness. The concrete filled coupler


63


with the increased reinforcement from the steel end caps


77


,


79


and the steel sleeve


68


provides approximately 200% greater strength than the standard size, solid steel dowel and is approximately 300% stiffer. The end rings


70


operate to alleviate stress concentrations at the ends of the sleeve


68


.




The coupler


20


having the spring disks and a coupler filled with concrete according to the present invention were subjected to bending and shearing tests. The same tests were performed on a solid steel dowel, a solid glass fiber epoxy dowel, and a glass fiber tube filled with concrete. The results of the tests are set forth below in table format for comparison. Table 1 shows the average results of the bending test, and Table 2 shows the average results of the shearing test.












TABLE 1











Deflection in 0.001 inch

















Steel Pipe




Steel Pipe




Solid




Solid




Glass






Load




Coupler with




Coupler with




Steel




Glass




Fiber with






(Kips)




Two Disks




Concrete




Dowel




Fiber




Concrete



















1




10.75




13.75




266.5




53




104.5






2




21.25




26




50.75




104.67




194.5






3




31.5




36




72.5




147.33




276






4




39.5




47




95.5




186




367.5






5




46.5




55.75




119.5




219




424.5






6




54.25




64.75




159.25




249.67




484






7




65.75




73.5




213.75




276.67




541






8




88.75




82.5




273.5




300.67




596






9




129.25




94.75




338.75




325.67




667






10




170.5




111




399.25




347.67




723






11




208




132




467.75




371




810






12




248.75




154.25






907.5






13




283.75




174.75






14




320.75




195.75






15




363.75




217.25






16





240.25






17





265.5






18





300.75






19





330.25






20





366






















TABLE 2











Deflection in 0.001 inch
















Steel









Load




Pipe Coupler




Solid




Solid




Glass Fiber






(Kips)




with Disks




Steel Dowel




Glass Fiber




with Concrete


















5




31.25




43




47




53.5






10




53.5




71.5




76.5




88






15




85.25




92




94




111.5






20




119




113.5




127




129






25




146.5




132.5




159




145.5






30




174.5




149.5





166














Thus the couplers of the present invention provide increased strength and stiffness while minimizing stress concentrations. Thus, the deterioration of expansion or crack joint assemblies is substantially decreased.



Claims
  • 1. A combination comprising:a pair of adjacent concrete slabs cooperatively having an elongated expansion joint therebetween; and an expansion joint coupler embedded in both of said slabs and extending across said expansion joint, said coupler including- a casing defining an internal chamber therein, with an internal structural component positioned in said chamber to stiffen and strengthen the casing, said component comprising a fill material substantially filling said chamber, said fill material comprising concrete; and a pair of end caps coupled with and substantially closing ends of the casing.
  • 2. The combination of claim 1, said casing comprising a tubular metallic pipe.
  • 3. The combination of claim 1, said structural component further comprising a disk within said internal chamber.
  • 4. The combination of claim 3, said disk being positioned near a casing center.
  • 5. The combination of claim 3, said disk comprising a spring disk including a substantially rigid smaller diameter portion and a compressible larger diameter portion.
  • 6. The combination of claim 1, said end caps being arcuate in cross-sectional configuration.
  • 7. The combination of claim 1, each of said end caps including a plurality of spaced apart arcuate gripping bumps on the outer surfaces thereof.
  • 8. The combination of claim 1, including an outer reinforcing sleeve positioned about said casing between said end caps.
  • 9. A combination comprising:a pair of adjacent concrete slabs cooperatively having an elongated expansion joint therebetween; and an expansion joint coupler embedded in both of said slabs and extending across said expansion joint, said coupler including- an elongated metallic body formed from steel pipe and having a length sufficient to span said joint and a pair of opposed ends, with each end within one of said adjacent concrete slabs and outer surface areas of the body in contact with said concrete; a pair of end caps, one end cap of said pair coupled to each of said opposed ends, with each of the caps embedded within one of said adjacent concrete slabs and spaced from said joint, each of said end caps having a mouth section presenting an inner surface in frictional locking contact with one of said opposed ends, and an endmost section presenting a convex outer surface which is arcuate in longitudinal cross-section.
  • 10. The combination of claim 9, said pipe at least partially filled with concrete.
  • 11. The combination of claim 9, including a structural component with said pipe.
  • 12. The combination of claim 11, said component comprising a spring disk.
  • 13. The combination of claim 9, said end caps formed of synthetic resin material.
  • 14. The combination of claim 9, said outer surface of each end cap having a series of spaced apart, outwardly extending projections.
  • 15. The combination of claim 9, including an outer reinforcing sleeve positioned about said body between said end caps.
  • 16. The combination of claim 15, said sleeve extending across said joint.
  • 17. The combination of claim 15, said sleeve adhesively secured to said body.
  • 18. The combination of claim 9, said body being generally rectilinear along the length thereof.
  • 19. A combination comprising:a pair of adjacent concrete slabs cooperatively having an elongated expansion joint therebetween; and an expansion joint coupler embedded in both of said slabs and extending across said expansion joint, said coupler including- a casing defining an internal chamber therein, with an internal structural component positioned in said chamber to stiffen and strengthen the casing, said component comprising a fill material substantially filling said chamber and a disk within said chamber; and a pair of end caps coupled with and substantially closing ends of the casing.
  • 20. The combination of claim 19, said disk being positioned near a casing center.
  • 21. The combination of claim 19, said disk comprising a spring disk including a substantially rigid smaller diameter portion and a compressible larger diameter portion.
  • 22. A combination comprising:a pair of adjacent concrete slabs cooperatively having an elongated expansion joint therebetween; and an expansion joint coupler embedded in both of said slabs and extending across said expansion joint, said coupler including- a casing formed from steel pipe and defining an internal chanter therein, with an internal structural component positioned in said chamber to stiffen and strengthen the casing, said component comprising a fill material substantially filling said chamber, outer surfaces of said casing being in contact with said concrete; and a pair of end caps frictionally locked with and substantially closing ends of the casing, said end caps presenting outer surfaces which are arcuate in longitudinal cross-section.
  • 23. A combination comprising:a pair of adjacent concrete slabs cooperatively having an elongated expansion joint therebetween; and an expansion joint coupler embedded in both of said slabs and extending across said expansion joint, said coupler including- a casing defining an internal chamber therein, with an internal structural component positioned in said chamber to stiffen and strengthen the casing, said component comprising a fill material substantially filling said chamber; and a pair of end caps coupled with and substantially closing ends of the casing, each of said end caps including a plurality of spaced apart arcuate gripping bumps on the outer surfaces thereof.
RELATED APPLICATION

This is a continuation application of application Ser. No. 09/158,397 filed Sep. 22, 1998.

US Referenced Citations (14)
Number Name Date Kind
1279431 Poulston Sep 1918 A
2149291 Hofwolt Mar 1939 A
2162467 Brickman et al. Jun 1939 A
2186104 Geyer et al. Jan 1940 A
2212615 Older Aug 1940 A
2305979 Mitchell Dec 1942 A
2482836 Brickman et al. Sep 1949 A
2531040 Heltzel Nov 1950 A
3397626 Kornick et al. Aug 1968 A
3437017 Walz et al. Apr 1969 A
3972640 Miller Aug 1976 A
4522531 Thomsen et al. Jun 1985 A
5852863 Muller et al. Dec 1998 A
6171016 Pauls et al. Jan 2001 B1
Foreign Referenced Citations (1)
Number Date Country
765967 Apr 1997 EP
Continuations (1)
Number Date Country
Parent 09/158397 Sep 1998 US
Child 09/843963 US