The present application relates generally to gas turbine engines, and more particularly to an expansion joint for use between a turbine duct and a diffuser duct of the gas turbine engine.
At least some known gas turbine engines have an expansion joint located between a turbine duct flange (e.g., an exhaust frame) and an exhaust diffuser duct. The exhaust diffuser duct facilitates expanding the exhaust gases from the gas turbine engine to achieve aerodynamic pressure recovery. Typically, the gas turbine engine turbine duct and the turbine duct flange are hot during operation of the gas turbine engine. In addition, typical exhaust diffuser ducts are fabricated casings that are internally insulated and relatively cold. As such, because of the thermal mismatch between components at this connection, an expansion joint is typically used to facilitate the relative displacement between these components due to thermal expansion/contraction during operation of the gas turbine engine.
At least some known expansion joints in gas turbine engines use an expansion joint belt arrangement including a ceramic fiber composite belt. One end of the belt is bolted to a frame attached to the gas turbine engine and the other end is bolted to a frame of the exhaust diffuser duct. In addition, some known expansions joints include flex seal plates with a collection trough for water wash fluid and/or liquid fuel that may enter the diffuser after a false start. The expansion joint belt may experience problems including cracked frames due to thermal transients; burned belts due to frames cracking and bolster bag failure; and leakage during gas turbine water wash cycles which not only allows contaminated water to leak onto the ground, but also damages the ceramic fibers in the belt. The flex seal expansion joint has a complex arrangement of clamping and sealing systems, which require the use of numerous parts. Moreover, the separate trough system requires several clamp bars during assembly.
In one aspect, an expansion joint for use between a turbine duct and a diffuser duct is provided. The expansion joint includes a first flange coupled to the turbine duct, a second flange coupled to the diffuser duct, and a flexible element positioned between and coupled to the first flange of the turbine duct and the second flange of the diffuser duct. The flexible element defines a trough for receiving a liquid therein. The trough includes a drain pipe configured to channel the liquid away from the trough.
In another aspect, a gas turbine engine is provided. The gas turbine engine includes a turbine duct having a first flange coupled to a downstream portion of the turbine duct. The gas turbine engine also includes a diffuser duct having a second flange coupled to an upstream portion of the diffuser duct. In addition, the gas turbine engine includes an expansion joint extending between the turbine duct and the diffuser duct. The expansion joint includes a plurality of flexible seals coupled to the first flange and the second flange. Moreover, the expansion joint defines a trough for receiving a liquid therein. The trough includes a drain pipe configured to channel the liquid away from the trough.
In another aspect, a method of assembling an expansion joint for use between a turbine duct and a diffuser duct is provided. The method includes coupling a first flange to the turbine duct, and coupling a second flange to the diffuser duct. In addition, the method includes coupling a flexible element to the first flange of the turbine duct and the second flange of the diffuser duct. The flexible element defines a trough for receiving a liquid therein. Moreover, the method includes coupling a drain pipe to the trough to channel the liquid away from the trough.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Unless otherwise indicated, approximating language, such as “generally,” “substantially,” and “about,” as used herein indicates that the term so modified may apply to only an approximate degree, as would be recognized by one of ordinary skill in the art, rather than to an absolute or perfect degree. Approximating language may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” is not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations are identified. Such ranges may be combined and/or interchanged, and include all the sub-ranges contained therein unless context or language indicates otherwise.
Additionally, unless otherwise indicated, the terms “first,” “second,” etc. are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the items to which these terms refer. Moreover, reference to, for example, a “second” item does not require or preclude the existence of, for example, a “first” or lower-numbered item or a “third” or higher-numbered item.
The exemplary components and methods described herein overcome at least some of the disadvantages associated with known combustor assemblies for gas turbine engines. The embodiments described herein include an expansion joint for use between a turbine duct and an exhaust diffuser duct of a gas turbine engine. The expansion joint includes a plurality of flexible seals attached to a flange attached to the turbine duct and the exhaust diffuser duct. The flexible seals provide a collection trough for receiving water wash fluid and/or liquid fuel that may enter the exhaust diffuser after a false start. In addition, the flexible seals accommodate relative movement between the gas turbine engine turbine duct and the exhaust diffuser duct during operation of the gas turbine engine due to thermal expansion and/or contraction of the components.
In the exemplary embodiment, flexible element 110 is coupled to one end to turbine duct 102. Turbine duct 102 may be of conventional design. In particular, flexible element 110 is attached to turbine duct 102 at a radial flange 202. In the exemplary embodiment, flexible element 110 is secured to flange 202 by a plurality of fastener assemblies 204 (e.g., nut, bolt, clamping-down bar, and washer assemblies or similar fastening components). In some embodiments, one or more insulation retaining clips 206 are coupled to the opposite side of flange 202, if desired.
In the exemplary embodiment, flexible element 110 is also attached to diffuser duct 104. Diffuser duct 104 may be of conventional design. Alternatively, other types of exhaust diffuser ducts may be used. In the exemplary embodiment, flexible element 110 is attached to a radial flange 208 of diffuser duct 104. In the exemplary embodiment, flexible element 110 is secured to flange 208 by a plurality of fastener assemblies 210 (e.g., nut, bolt, clamping-down bar, and washer assemblies or similar fastening components). A drainage trough portion 212 or similar type of structure of flexible element 110 is defined by the shape of flexible element 110, and is located between turbine duct 102 and diffuser duct 104. In the exemplary embodiment, drainage trough portion 212 defines an annular drainage trough which captures any water and/or fuel running along the inside of turbine duct 102. Drainage trough portion 212 includes a drain pipe 214 at the lowermost, i.e. radially innermost, point of drainage trough portion 212. Drain pipe 214 is configured to channel any collected water and/or liquid fuel to an appropriate location.
In operation, the curved profile sectional shape of flexible element 110, as shown in
In the exemplary embodiment, the first, second, and third bend radiuses are configured to reduce the stress and strain on thin flexible seal 300, based on the predetermined thickness of the sheet material used to fabricate thin flexible seal 300. In particular, the bend radiuses are selected to facilitate optimizing the low cycle fatigue (LCF) of expansion joint 100. LCF is a life-limiting degradation mode in gas turbines. It is caused by cyclic, thermal, and mechanical loads associated with gas turbine start-up, operation, and shutdown cycles.
As described above, each of thin flexible seals 300 may be manufactured and installed using readily available manufacturing methods and parts. For example, each thin flexible seal 300 may be bolted on the downstream side of turbine duct 102 and the upstream side of diffuser duct 104. In one embodiment, each of thin flexible seals 300 include oversized mounting apertures 304 and 320, such as holes or slots. Each of fastener assemblies 204 and 210 include oversized washers. In use, oversized mounting apertures 304 and 320 allow thin flexible seals 300 to grow thermally in the circumferential and axial directions yet remain firmly secured to turbine duct 102 and diffuser duct 104 via fastener assemblies 204 and 210, respectively.
As described above, thin flexible seals 300 are arranged in multiple overlapping layers about the circumference of radial flange 208 of diffuser duct 104 and turbine duct 102 at a radial flange 202. The thickness and the arc length of thin flexible seals 300 have been selected to allow the thin flexible seals 300 to create a gas seal during gas turbine operation. This configuration creates a compact metal “diaphragm” capable of relatively large axial and radial movements, and which results in an efficient use of space.
Specifically, in the exemplary embodiment, thin flexible seals 300 are secured to turbine duct 102 at a radial flange 202 with a first layer of thin flexible seals 300 having an approximate thickness in the range between and including about 0.5 millimeters (mm) (0.020 in.) and about 1.5 mm (0.060 in.). The circumferential extent of each of thin flexible seals 300 is determined at least in part by the number of holes in radial flange 202 and radial flange 208, and the number of mounting apertures 304 and 320 in each thin flexible seal 300. For example, in one particular embodiment, each of flanges 202 and 208 include 120 mounting holes. As such, the first layer (and each subsequent layer) of thin flexible seals 300 include forty thin flexible seals 300 adjacent one another to form a complete circumferential array.
A second layer of thin flexible seals 300 having an approximate thickness in the range between and including about 0.5 mm (0.020 in.) and about 1.5 mm (0.060 in.) also includes forty thin flexible seals 300 adjacent one another, but with the thin flexible seals 300 of this second layer shifted circumferentially so that there is an overlap between the first and second layers at the radial seams of thin flexible seals 300 in the respective layers. In addition, a third layer of thin flexible seals 300 having an approximate thickness in the range between and including about 0.5 mm (0.020 in.) and about 1.5 mm (0.060 in.) also includes forty thin flexible seals 300 adjacent one another, and this third layer is circumferentially shifted with respect to the first and second layers so that, again, there is an overlap between the radial seams between the first, second, and third layers. The first and third layers need not be shifted, however, and they may be aligned, for example.
In some embodiments, clamp down bar assemblies (not shown) having a configuration similar to radial flange 202 and radial flange 208, may be used to facilitate securing thin flexible seals 300 in place. In such an embodiment, the three layers of thin flexible seals 300 are sandwiched between the clamp down bar assemblies and radial flanges 202 and 208.
It is noted, that while each thin flexible seal 300 is described having three mounting apertures in each of flange portion 302 and aft wall 318, the number and spacing of mounting apertures 304 and 320 in each thin flexible seal 300 is determined by the configuration of the radial flanges 202 and 208 of the specific gas turbine engine. If, for example, in one embodiment, there are eighty-six mounting holes in the radial flanges 202 and 208 of the turbine duct and exhaust diffuser duct flanges, at least one of the thin flexible seal 300 will have two rather than three mounting apertures, as well as a smaller arc length than the remaining thin flexible seals 300 in the layer. In the example embodiment, for example, the number of holes is divisible by three (120 holes, as described above), and there are forty three-aperture thin flexible seals 300, each having identical arc lengths.
In operation, when expansion joint 100 is cold and gas turbine engine 10 (shown in
Exemplary embodiments of a flexible expansion joint are described herein. The embodiments includes a plurality of stacked and circumferential offset thin flexible seals operable to accommodate the large relative axial, vertical, and lateral displacements due to thermal expansion between the gas turbine engine, and in particular the turbine duct and the exhaust diffuser duct. In addition, the expansion joint provides a reliable way to drain all liquids that may enter the diffuser duct. The embodiments of the expansion joint described herein offers reliable, long term performance. The seal formed by the thin flexible seals accommodates more relative motion between adjacent ducts than prior techniques, and facilitates providing a smooth aerodynamic transition between the ducts. The thin flexible seals are shaped facilitate optimizing the low cycle fatigue (LCF) of expansion joint.
While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. For example, components of each system and/or steps of each method may be used and/or practiced independently and separately from other components and/or steps described herein. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments, and that each component and/or step may also be used and/or practiced with other systems and methods. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The methods and systems described herein are not limited to the specific embodiments described herein. For example, components of each system and/or steps of each method may be used and/or practiced independently and separately from other components and/or steps described herein. In addition, each component and/or step may also be used and/or practiced with other assemblies and methods.
While the disclosure has been described in terms of various specific embodiments, those skilled in the art will recognize that the disclosure can be practiced with modification within the spirit and scope of the claims. Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. Moreover, references to “one embodiment” or “an embodiment” in the above description are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
Number | Date | Country | Kind |
---|---|---|---|
201741023636 | Jul 2017 | IN | national |