Expansion joint profile system

Information

  • Patent Grant
  • 12098541
  • Patent Number
    12,098,541
  • Date Filed
    Thursday, June 24, 2021
    3 years ago
  • Date Issued
    Tuesday, September 24, 2024
    3 months ago
Abstract
An expansion joint profile system for producing an expansion joint in the manufacture of a rigid floor covering includes a profile (1) comprising a first profile element (3) having a first support leg (5) provided for bearing on a substrate (18) and a first abutment leg (6) projecting upwardly therefrom. A second profile element (4) has a second abutment leg (6). A connection element (9) is formed in a ridge-like manner and extends in the longitudinal direction between the two profile elements (3, 4) and connects them to one another in the lower region. An insertion opening (10) is formed between the abutment legs and is open at the top and extends in the longitudinal direction (L). A sealing element (11) is formed in a T-shaped cross-section with a downwardly projecting insertion leg (12) for insertion into the insertion opening (10).
Description
PRIORITY CLAIM

Priority is claimed of and to German Patent Application Serial No. 20 2020 103 699.8, filed Jun. 26, 2020, which is hereby incorporated herein by reference in its entirety.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to expansion joint profile systems for producing an expansion joint in the manufacture of a rigid floor covering.


SUMMARY OF THE INVENTION

In accordance with one aspect of the technology, an expansion joint profile system for producing an expansion joint in the manufacture of a rigid floor covering is provided, including a profile (1) having a first profile element (3) made of a first material and having an L-shaped cross-section, extending in a longitudinal direction (L) and having a first support leg (5) provided for bearing on a substrate (18). A first abutment leg (6) can be connected to one of the longitudinal edges of the support leg (5) and can project upwardly therefrom. A second profile element (4) can be made of said first material and can have a second abutment leg (6) which is formed to correspond to the first abutment leg (6) and extends in particular parallel to the first abutment leg (6). A connection element (9) can be made of a second material having a higher elasticity than the first material. The connection element (9) can be formed in a ridge-like manner, and can extend in the longitudinal direction between the two profile elements (3, 4), connecting them to one another in the lower region and, together with the two abutment legs (6), forms an insertion opening (10) which is open at the top and extends in the longitudinal direction (L). A sealing element (11) can be made of a third material having a higher elasticity than said first material. The sealing element (11) can extend in the longitudinal direction (L), and can be formed in a T-shaped cross-section with a downwardly projecting insertion leg (12) designed for insertion into the insertion opening (10). The sealing element can include two laterally projecting compression legs (13), wherein the compression legs (13), when the insertion leg (12) is disposed in the insertion opening (10), project outwardly from the abutment legs (6), respectively, wherein the third material may correspond to the second material.


In accordance with another aspect of the technology, an expansion joint profile system for producing an expansion joint in the manufacture of a rigid floor covering can be provided, including a profile (1) having a first profile element (3) having an L-shaped cross-section, extending in a longitudinal direction (L) and having a first support leg (5) provided for bearing on a substrate (18) and a first abutment leg (6) connected to one of the longitudinal edges of the support leg (5) and projecting upwardly therefrom. A second profile element (4) can have a second abutment leg (6) which is formed to correspond to the first abutment leg (6) and extends in particular parallel to the first abutment leg (6). An elastic connection element (9) can be formed in a ridge-like manner, extending in the longitudinal direction between the two profile elements (3, 4), connecting them to one another in the lower region, and an insertion opening (10) formed between the abutment legs which is open at the top and extends in the longitudinal direction (L). A sealing element (11) can be made of an elastic material extending in the longitudinal direction (L), formed in a T-shaped cross-section with a downwardly projecting insertion leg (12) designed for insertion into the insertion opening (10).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a profile with a cover element arranged thereon, wherein the profile and the cover element form components of an expansion joint profile system according to an embodiment of the present invention;



FIG. 2 is an enlarged, front view of the arrangement shown in FIG. 1;



FIG. 3 is a perspective view of the profile of FIG. 1 after removal of the cover element;



FIG. 4 is an enlarged front view of the profile shown in FIG. 3;



FIG. 5 is a perspective view of a sealing element of the expansion joint profile system;



FIG. 6 is an enlarged front view of the sealing element shown in FIG. 5;



FIG. 7 is a perspective view of the profile shown in FIGS. 3 and 4 to which the sealing element shown in FIGS. 5 and 6 is attached;



FIG. 8 is an enlarged front view of the assembly shown in FIG. 7;



FIG. 9 is a sectional view showing a flooring assembly during the manufacture of a rigid flooring using the expansion joint profile system after a first installation step has been performed;



FIG. 10 is a sectional view of the flooring assembly of FIG. 9 after performing a second installation step; and



FIG. 11 a sectional view of the flooring assembly of FIG. 9 after performing a third installation step.





The same reference numbers relate hereafter to identical or similar components or component ranges.


DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.


Definitions

As used herein, the singular forms “a” and “the” can include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a profile” can include one or more of such pieces, if the context dictates.


As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. As an arbitrary example, an object that is “substantially” enclosed is an article that is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend upon the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. As another arbitrary example, a composition that is “substantially free of” an ingredient or element may still actually contain such item so long as there is no measurable effect as a result thereof.


As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.


Relative directional terms can sometimes be used herein to describe and claim various components of the present invention. Such terms include, without limitation, “upward,” “downward,” “horizontal,” “vertical,” etc. These terms are generally not intended to be limiting, but are used to most clearly describe and claim the various features of the invention. Where such terms must carry some limitation, they are intended to be limited to usage commonly known and understood by those of ordinary skill in the art in the context of this disclosure. Generally, directional terms used in this application, such as “top” or “bottom” refer to the installed state. The formulations “substantially vertical” and “substantially horizontal” are to be construed such that the main extension direction is vertical and horizontal, respectively.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.


This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


Invention

Expansion joint profiles are known in the prior art in a wide variety of configurations. They are positioned above an existing expansion joint in the underground (or subfloor or substrate) during the manufacture of a rigid floor covering made of tiles or natural stones and fastened to the underground (substrate), whereupon the floor covering tiles are laid on both sides of the expansion joint profile.


Commercially available expansion joint profiles often have two L-shaped profiles made of metal or plastic, each defining a support leg and an abutment leg projecting upwards from this support leg, usually arranged perpendicular to it. The two L-shaped profiles are arranged parallel to each other at a predetermined distance in such a way that the support legs are aligned with each other, while the abutment legs face each other. A free space serving as a movement zone is provided between the support legs, which is partially bridged by an elastic and soft material connecting the two support legs, which may be a silicone material, for example. The support legs are each provided with a plurality of through-holes spaced apart from one another in the longitudinal direction, which serve to fix the support legs to the substrate.


When installing such an expansion joint profile, the support legs are fixed to the underground (substrate), typically using a thin-bed mortar that embeds the support legs and penetrates the through-holes. The floor covering panels are then laid in such a way that they cover the support legs and face the abutment legs of the expansion joint profile. An expansion joint profile of the type described above is sold, for example, by Schlüter Systems KG under the product name “Schlüter®-Dilex-BWB”.


One disadvantage of an expansion joint profile with such a structure is that the expansion joint generated with it in the installed state appears visually quite wide compared to the other joints present between the individual tile or natural stone slabs. This is due to the fact that the width of the cementitious joints between the expansion joint profile and the adjacent tile or natural stone slabs is added to the actual width of the expansion joint profile.


Based on this prior art, one task of the present invention is to create an expansion joint profile system with an improved structure.


To solve this problem, the present invention provides an expansion joint profile system for producing an expansion joint in the manufacture of a rigid floor covering, including, in one embodiment:


a profile comprising a first profile element made of a first material and having an L-shaped cross-section, extending in a longitudinal direction and having a first support leg provided for bearing on an underground (or substrate) and a first abutment leg connected to one of the longitudinal edges of the support leg and projecting upwardly therefrom, a second profile element made of said first material and having a second abutment leg which is formed to correspond to the first abutment leg and extends in particular parallel to the first abutment leg, and a connection element which is made of a second material having a higher elasticity than the first material, wherein the connection element is formed in a ridge-like manner, extends in the longitudinal direction between the two profile elements, connects them to one another in the lower region and, together with the two abutment legs, forms an insertion opening which is open at the top and extends in the longitudinal direction, and


a sealing element made of a third material having a higher elasticity than said first material, wherein the sealing element extends in the longitudinal direction, is formed in a T-shaped cross-section with a downwardly projecting insertion leg designed for insertion into the insertion opening and with two laterally projecting compression legs, wherein the compression legs, when the insertion leg is disposed in the insertion opening, project outwardly from the abutment legs, respectively, wherein the third material may correspond to the second material.


In the manufacture of a rigid floor covering of tile or natural stone slabs on an underground (or subfloor or substrate) provided with an expansion joint, the profile of the expansion joint profile system according to the invention is positioned in a first step in such a way that the elastic connecting element extends above along the expansion joint, whereupon the at least one support leg is fixed to the substrate, using, in one embodiment, a thin-bed mortar or tile adhesive. In a further step, additional thin-bed mortar can be applied to the upper sides of the at least one support leg of the expansion joint profile. The tile or natural stone slabs are then laid in the thin-bed mortar in such a way that the end faces of the tile or natural stone slabs come into direct contact with the support legs. The height of the profile is selected according to the height of the tile or natural stone slabs. After the thin-bed mortar has dried, the joints or gaps between the tiles or natural stone slabs are grouted with a suitable grout. In a final step, the insertion leg of the sealing element is pressed into the insertion opening from above until the compression legs rest with pressure against the end faces of the adjacent tile or natural stone slabs. In this way, any gaps between the tile or natural stone slabs and the abutment legs are also covered, which is why it is not necessary to provide a mortar joint between the tile or natural stone slabs and the abutment legs of the expansion joint profile according to the invention. This results in the expansion joint appearing visually not very wide.


In one embodiment, the first material is a plastic, in particular a hard-set plastic.


The second material and/or the third material can advantageously be a softly adjusted silicone or plastic material, which in particular is designed to be resistant to fungi and bacteria.


According to one embodiment of the present invention, the second profile element is L-shaped in cross-section and has a second support leg which is provided for bearing on an underground and is connected to the lower longitudinal edge of the second support leg. A second support leg gives the expansion joint profile better stability in the installed state.


In one embodiment, the first support leg and, if present, the second support leg is/are provided with a plurality of through openings distributed along the longitudinal direction. Such through-holes serve to anchor the support legs in an adhesive or thin-bed mortar when they are installed.


Advantageously, the first support leg and, if present, the second support leg can each have a height (h) in the range from 0.5 to 2 mm, in particular in the range from 0.8 to 1.2 mm. This ensures that the expansion joint profile can be embedded well in the thin-bed mortar between the underground and the floor covering when a rigid floor covering is laid using the thin-bed method.


The first support leg and, if present, the second support leg can each have a width in the range from 8 to 30 mm. With such a width, a secure fastening of the expansion joint profile to the substrate can be ensured.


According to one embodiment of the present invention, the abutment legs each extend perpendicularly to the support leg or legs.


Advantageously, the abutment legs can be provided, at least in the upper region, with inwardly directed, longitudinally extending locking ribs, in order to give the sealing element a good hold when it is positioned with its insertion leg in the insertion opening.


The abutment legs can, in one embodiment, have a constant cross section in the longitudinal direction, which simplifies the manufacture of the expansion joint profile.


The abutment legs (6) can advantageously have a height (H) in the range from 4 to 30 mm.


The abutment legs can have a width in the range from 0.5 to 2 mm, in particular in the range from 0.8 to 1.2 mm.


According to one embodiment of the present invention, the first profile element and the second profile element are each an extruded profile, the extruded profiles being in particular of the same cross-sectional shape.


The insertion leg can be provided with outwardly projecting locking projections which can be designed in particular to cooperate with the above-mentioned locking ribs.


The compression legs can advantageously be provided with lateral recesses extending in the longitudinal direction, which improves the deformability of the compression legs.


According to one embodiment of the present invention, a cover element can be provided which extends in the longitudinal direction, the width of which corresponds to the distance between the outer surfaces of the abutment legs and which can be detachably placed on the abutment legs or is connected to at least one of the abutment legs in the delivery state of the expansion joint profile, the connection being designed in the manner of a predetermined breaking point in order to separate the cover element from the abutment leg or legs. In the latter case, the cover element may also be connected to both abutment legs, with both connections being designed in a predetermined breaking point-like manner. In this case, the two profile elements and the cover element can also be manufactured in one piece. The provision of a cover element prevents the grout from entering the insertion opening of the expansion joint profile when filling the joints between the tile or natural stone slabs.


In one embodiment, the cover element is made of a fourth material, which is in particular a plastic.


Further features and advantages of the present invention will become apparent from the following description of systems according to embodiments of the present invention with reference to the accompanying drawing. Hereinafter, same reference numbers refer to same or similar components or component areas.



FIGS. 1 to 8 show the individual components of an expansion joint profile system according to one embodiment of the present invention, which is used to create an expansion joint in the manufacture of a rigid floor covering.



FIG. 1 shows a profile 1 with a cover element 2 attached thereto. The profile 1, which is also shown in a stand-alone position in FIGS. 3 and 4, comprises a first profile element 3 and a second profile element 4, which are of identical design in the present case, which is why functionally identical component regions are designated below with the same reference numerals for the sake of simplicity. The profile elements 3 and 4 can be manufactured from a first material as extruded profiles, which is, in one embodiment a hard plastic, although in principle other materials can also be used, such as metal or a metal alloy. The profile elements 3 and 4, which extend in the longitudinal direction L, each have an L-shaped cross-section which is formed by a support leg provided for support on an underground and by an abutment leg 6 projecting perpendicularly upwards from the support leg 5 in the present case. In the example shown, the support legs 5 and the abutment legs 6 each have a rectangular shape. The support legs in one embodiment have a height “h” in the range from 0.5 to 2 mm, in particular in the range from 0.8 to 1.2 mm, and a width “b” in the range from 8 to 30 mm. They are each provided with a plurality of through openings 7 distributed along the longitudinal direction L. The abutment legs 6 have a height “H” in the range from 4 to 30 mm and a width “B” in the range from 0.5 to 2 mm, in particular in the range from 0.8 to 1.2 mm. In the upper region, the abutment legs 6 are provided with inwardly pointing locking ribs 8 extending in the longitudinal direction L.


In addition to the profile elements 3 and 4, the profile 1 can also include a connecting element 9, which is of ridge-like design, extends in the longitudinal direction L between the two profile elements 3 and 4 and connects them to one another in the lower region in such a way that an upwardly open insertion opening 10 is formed above the connecting element 9, which opening is bounded at the bottom by the connecting element 9 and laterally by the inner sides of the abutment legs 6 of the two profile elements 3 and 4, see in particular FIGS. 3 and 4. The connecting element 9 is made of a second material which has a higher elasticity than the first material from which the two profile elements 3 and 4 are made. The second material can be a softly adjusted silicone or plastic material, which in particular is designed to be resistant to fungi and bacteria.


The cover element 2 is arranged above the two profile elements 3 and 4 and is presently connected to the two abutment legs 6, the connections between the cover element 2 and the abutment legs 6 being designed in the manner of predetermined breaking points so that they can be easily separated manually or with a tool. In the embodiment shown, the profile elements 3 and 4 and the cover element 2 are designed as a single extruded profile. To form the predetermined breaking point, the material thickness in the transition area between the abutment legs 6 of the profile elements 3 and 4 and the cover element 2 is very thin. In principle, however, the cover element 2 could also be provided as a separate component. The width “b1” of the cover element 2 can correspond to the distance between the outer surfaces of the abutment legs 6, so that the cover element 2 does not project laterally from the abutment legs 6. The cover element 2 is can be made of a plastic material. The plastic material can correspond to that of the two profile elements 3 and 4. Alternatively, however, it may also be a different plastic material, such as a soft-set silicone or plastic material.



FIGS. 3 and 4 show the arrangement shown in FIGS. 1 and 2 after removal of the cover element 2. In this state, the insertion opening 10 is exposed and accessible from the outside.



FIGS. 5 and 6 show a sealing element 11 of the expansion profile system. The sealing element 11, which extends in the longitudinal direction L, is T-shaped in cross-section and has a downwardly projecting insertion leg 12, which is designed for insertion into the insertion opening 10, and two laterally projecting compression legs 13. The insertion leg 12 is provided with outwardly projecting locking projections 14, which are designed to cooperate with the locking ribs 8 of the abutment legs 6 of the profile elements 3 and 4 when the insertion leg 12 of the sealing element 11 is inserted into the insertion opening 10 of the profile 1. The dimensions of the compression legs 13 are chosen in such a way that, when the insertion leg 12 is arranged in the insertion opening 10, the compression legs 13 each project outwardly to the side from the abutment legs 6 of the profile elements 3 and 4, as shown in FIGS. 7 and 8. Laterally, the compression legs 13 are provided with recesses 15 extending in the longitudinal direction L. FIGS. 7 and 8 show the profile 1 with sealing element 11 received therein.


The length of the profile 1, the cover element 2 and the sealing element 11 can be selected uniformly and be, for example, 2000 mm or more. However, the sealing element 11 can also be provided as rolled material with a length of 2000 mm or more, so that this is cut to size on site.


In the production of a rigid floor covering of tile or natural stone slabs 16 on an underground or substrate 18 provided with an expansion joint 17, in a first installation step the arrangement shown in FIGS. 1 and 2, i.e. the profile 1 with cover element 2 held thereon, is positioned and fastened above the expansion joint 17 in such a way that the connecting element 9 extends above and along the expansion joint 17. For this purpose, a thin-bed mortar 19 is applied with a toothed (or notched) trowel to the surface of the underground or substrate 18, leaving a gap in the expansion joint 17, whereupon the support legs 5 of the profile elements 3 and 4 are pressed into the thin-bed mortar 19. In the process, the support legs 5 are embedded in the thin-bed mortar 19, which penetrates the through openings 7 formed in the support legs 5. In addition, the thin-bed mortar 19 can be applied to the upper sides of the support legs of the profile 1. The tile or natural stone slabs 16 are then laid in the thin-bed mortar 19 on the end faces adjacent to the respective abutment legs 6 of the profile elements 3 and 4 in such a way that the end faces of the tile or natural stone slabs 16 come into contact with the abutment legs 6. After the thin-bed mortar 19 has hardened, the joints between adjacent tile or natural stone slabs 16 are filled with a grout 20. This does not apply to any gaps that may exist between the tile or natural stone slabs 16 and the abutment legs 6. The arrangement now obtained is shown in FIG. 9. The cover element 2 prevents thin-bed mortar 19 or grout 20 from inadvertently penetrating the insertion opening 10 of the profile 1 while the first installation step is being carried out.


In a further installation step, the cover element 2 is removed from the profile 1, either manually or with the aid of a tool. The separation between the cover element 2 and the profile 1 is facilitated by the formation of the connection as a predetermined breaking point. The arrangement now achieved is shown in FIG. 10.


In a final installation step, the sealing element 11 is now pressed from above into the insertion opening 10 of the profile 1. Here, the locking projections 14 of the insertion leg 12 of the sealing element 11 come into locking engagement with the locking ribs 8 formed on the abutment legs 6 of the profile elements 3 and 4. During this process, the compression legs 13 press against the end faces of the tile or natural stone slabs 16 projecting upwards beyond the abutment legs 6.


A significant advantage of the arrangement shown in FIG. 11 is that no joint needs to be provided between the abutment legs 6 of the profile elements 3 and 4 and the tile or natural stone slabs 16, since the compression legs 13 of the sealing element 11, which bear directly against the tile or natural stone slabs 16, cover any gaps or joints that may exist. As a result, the expansion joint produced by the expansion joint profile system according to the invention is indistinguishable in terms of width from the joints existing between adjacent tile or natural stone slabs 16.


It should be clear that the previously described embodiment serves merely as an example and is not to be understood as restrictive. Rather, modifications are possible without departing from the scope of protection defined by the appended claims. For example, the cover element 2 can be dispensed with completely. Likewise, the second profile element 4 can have exclusively an abutment leg 6, i.e. no support leg 5, whereby the profile 1 as a whole is given an F-shape in cross-section.


It will be recognized that embodiments of profile systems in accordance with the invention are not limited to the above-described embodiments, and various modifications may be possible without departing from the scope of the invention as defined in the appended claims.


REFERENCE NUMBERS






    • 1 Profile


    • 2 cover element


    • 3 first profile element


    • 4 second profile element


    • 5 support leg


    • 6 abutment leg


    • 7 passage opening


    • 8 locking rib


    • 9 connecting element


    • 10 insertion opening


    • 11 sealing element


    • 12 insertion leg


    • 13 compression leg


    • 14 locking projection


    • 15 recess


    • 16 tile or natural stone slab


    • 17 expansion joint


    • 18 underground (or substrate)


    • 19 thin bed mortar


    • 20 grout




Claims
  • 1. A floor covering, comprising: a profile (1) comprising a first profile element (3) made of a first material and having an L-shaped cross-section, extending in a longitudinal direction (L) and having a first support leg (5) provided for bearing on a substrate (18) and a first abutment leg (6) connected to one of the longitudinal edges of the support leg (5) and projecting upwardly therefrom, a second profile element (4) made of said first material and having a second abutment leg (6) which is formed to correspond to the first abutment leg (6) and extends parallel to the first abutment leg (6), and a connection element (9) which is made of a second material having a higher elasticity than the first material, the second material being a soft-set silicone or elastic material, which is resistant to fungi and bacteria, wherein the connection element (9) is formed in a ridge-like manner, extends in the longitudinal direction between the two profile elements (3, 4), connects them to one another in the lower region allowing them to move elastically relative to one another and, together with the two abutment legs (6), forms an insertion opening (10) which is open at the top and extends in the longitudinal direction (L),at least two tiles or stone slabs (16), one each of which is installed atop a support leg (5) with a portion of end faces of the tiles or stone slabs (16) in contact with the abutment legs (6) and another portion of end faces of the tiles or stone slabs extending above the abutment legs (6); anda sealing element (11) made of a third material having a higher elasticity than said first material, wherein the sealing element (11) extends in the longitudinal direction (L), is formed in a T-shaped cross-section with a downwardly projecting insertion leg (12) designed for insertion into the insertion opening (10) and with two laterally projecting compression legs (13), wherein the compression legs (13), when the insertion leg (12) is disposed in the insertion opening (10), project outwardly above the abutment legs (6), respectively, the compression legs pressing against the portion of the end faces of the tile or stone slabs (16) extending above the abutment legs (6).
  • 2. The floor covering according to claim 1, wherein the first material is plastic.
  • 3. The floor covering according to claim 1, wherein the second profile element (4) is L-shaped in cross-section and has a second support leg (5) which is provided for bearing on the substrate (18) and is connected to the lower longitudinal edge of the second support leg (6).
  • 4. The floor covering according to claim 3, wherein the first support leg (5) and the second support leg (5) are provided with a plurality of through openings (7) distributed along the longitudinal direction (L), the through openings (7) being covered by the tile or stone slabs (16) installed atop the support legs (5).
  • 5. The floor covering according to claim 3, wherein the first support leg (5) and the second support leg (5) each have a height (h) in the range from 0.5 to 2 mm.
  • 6. The floor covering according to claim 5, wherein the first support leg (5) and the second support leg (5) each have a width (b) in the range from 8 to 30 mm.
  • 7. The floor covering according to claim 1, wherein the abutment legs (6) each extend perpendicularly to the support leg or legs (5).
  • 8. The floor covering according to claim 1, wherein the abutment legs (6) are provided with inwardly directed, longitudinally extending locking ribs (8).
  • 9. The floor covering according to claim 8, wherein the insertion leg (12) is provided with outwardly projecting locking projections (14) which cooperate with the locking ribs (8).
  • 10. The floor covering according to claim 1, wherein the abutment legs (6) have a substantially constant cross section in the longitudinal direction (L).
  • 11. The floor covering according to claim 10, wherein the abutment legs (6) have a height (H) in the range from 4 to 30 mm.
  • 12. The floor covering according to claim 10, wherein the abutment legs (6) have a width (B) in the range from 0.5 to 2 mm.
  • 13. The floor covering according to claim 1, wherein the first profile element (3) and the second profile element (4) are each an extruded profile, the extruded profiles (4) being of the same cross-section.
  • 14. The floor covering according to claim 1, wherein the compression legs (13) are provided with lateral recesses (15) extending in the longitudinal direction (L).
  • 15. The floor covering according to claim 1, further comprising a cover element (2) that extends in the longitudinal direction (L), a width (b1) of which corresponds to a distance between outer surfaces of the abutment legs (6) and which can be detachably placed on the abutment legs (6) or is connected to at least one of the abutment legs (6) in the delivery state of the expansion joint profile (1), the connection having a predetermined breaking point in order to separate the cover element (2) from the abutment leg or legs (6).
  • 16. The floor covering according to claim 15, wherein the cover element (2) is made of a fourth material, which is plastic.
  • 17. A floor covering, comprising: a profile (1) comprising a first profile element (3) having an L-shaped cross-section made of a first material, extending in a longitudinal direction (L) and having a first support leg (5) provided for bearing on a substrate (18) and a first abutment leg (6) connected to one of the longitudinal edges of the support leg (5) and projecting upwardly therefrom, a second profile element made of the first material (4) having a second abutment leg (6) which is formed to correspond to the first abutment leg (6) and extends parallel to the first abutment leg (6), and an elastic connection element (9) formed in a ridge-like manner made of a second material having different properties from the first material, the second material being a soft set silicone extending in the longitudinal direction between the two profile elements (3, 4), connecting them to one another in the lower region while allowing them move elastically relative to one another, and an insertion opening (10) formed between the abutment legs which is open at the top and extends in the longitudinal direction (L),at least two tiles or stone slabs, one each of which is installed atop a support leg (5) with end faces of the tiles or stone slabs in contact with the abutment legs (6); anda sealing element (11) made of an elastic material extending in the longitudinal direction (L), formed in a T-shaped cross-section with a downwardly projecting insertion leg (12) designed for insertion into the insertion opening (10).
  • 18. The floor covering of claim 17, wherein the sealing element (11) includes two laterally projecting compression legs (13), wherein the compression legs (13), when the insertion leg (12) is disposed in the insertion opening (10), project outwardly above the abutment legs (6), respectively, the compression legs pressing against the end faces of the tile or stone slabs (16).
  • 19. The floor covering of claim 17, wherein the end faces of the tiles or stone slabs (16) extend vertically above the abutment legs (6) when the end faces of the tiles or stone slabs (16) are in contact with the abutment legs (6).
Priority Claims (1)
Number Date Country Kind
202020103699.8 Jun 2020 DE national
US Referenced Citations (155)
Number Name Date Kind
617881 Marsh Jan 1899 A
640409 Parker Jan 1900 A
688181 Koch Dec 1901 A
1122076 Collins Dec 1914 A
1196753 Alms Sep 1916 A
1537758 Fischer May 1925 A
1624121 Thiem Apr 1927 A
1913290 Rockwell Jun 1933 A
1934266 Hession Nov 1933 A
2230688 Gavotte Feb 1941 A
2319345 Putnam May 1943 A
2332146 Holdsworth Oct 1943 A
2391581 Markuson Dec 1945 A
2483888 Danielson Oct 1949 A
2843889 Keller Jul 1958 A
2969616 Gustafson Jan 1961 A
3213584 Bush Oct 1965 A
3295268 Gaither Jan 1967 A
3307313 Tatum Mar 1967 A
3396640 Fujihara Aug 1968 A
3508369 Tennison Apr 1970 A
3582095 Bogaert Jun 1971 A
3589087 De Lazzero Jun 1971 A
3598026 Johnson Aug 1971 A
3646716 Jenner Mar 1972 A
3682053 Kerschner Aug 1972 A
3704564 Koga Dec 1972 A
3797188 Mansfeld Mar 1974 A
3827204 Walters Aug 1974 A
3838931 Valla Oct 1974 A
3854260 O'Hanlon Dec 1974 A
3868802 Schubach Mar 1975 A
3896597 Deason Jul 1975 A
3974614 Strong Aug 1976 A
4050206 Utsuyama Sep 1977 A
4067155 Ruff Jan 1978 A
4157271 Moore Jun 1979 A
4346542 Tateno Aug 1982 A
4359847 Schukolinski Nov 1982 A
4360992 Marino Nov 1982 A
4391074 Holsman Jul 1983 A
4468910 Morrison Sep 1984 A
4564550 Tschudin-Mahrer Jan 1986 A
4610561 Cecchellero et al. Sep 1986 A
4651488 Nicholas Mar 1987 A
4793162 Emmons Dec 1988 A
4829731 Schluter May 1989 A
4858404 Schluter Aug 1989 A
4861043 Anderson Aug 1989 A
4906129 Stegmeier Mar 1990 A
5073430 Aidan Dec 1991 A
5078529 Moulton Jan 1992 A
5121579 Hamar Jun 1992 A
5144778 Portau Sep 1992 A
5148644 Weir Sep 1992 A
5181357 Pourtau Jan 1993 A
5203640 Pourtau Apr 1993 A
5238721 Nakazawa Aug 1993 A
5243799 Schluter Sep 1993 A
5263294 Koenig Nov 1993 A
5289663 Schluter Mar 1994 A
5333432 Schluter Aug 1994 A
5433986 Moscatello Jul 1995 A
5657598 Wilbs Aug 1997 A
5666775 Shreiner Sep 1997 A
5791111 Beenders Aug 1998 A
5806270 Solano Sep 1998 A
5904439 Devlin May 1999 A
5990377 Chen Nov 1999 A
6047506 Kemper Apr 2000 A
6052960 Yonemura Apr 2000 A
6141920 Kemper Nov 2000 A
6219982 Eyring Apr 2001 B1
6238773 Schluter May 2001 B1
6338229 Botzen Jan 2002 B1
6357192 Schluter Mar 2002 B1
6427405 Moriya Aug 2002 B1
6449911 Hudson Sep 2002 B1
6484462 Shreiner Nov 2002 B2
6491468 Hagen Dec 2002 B1
6523986 Hoffmann Feb 2003 B1
6591575 Bemedettini Jul 2003 B2
6627290 Wittlinger Sep 2003 B2
6737150 Zahler May 2004 B2
6751919 Calixto Jun 2004 B2
6948287 Korn Sep 2005 B2
7197855 Della Pepa Apr 2007 B2
7389613 Sondermann Jun 2008 B2
7827750 Sondermann Nov 2010 B2
7954298 Jilg Jun 2011 B2
8024902 Wedi Sep 2011 B2
8132380 Wilkes, Jr. Mar 2012 B2
8146313 Proot Apr 2012 B2
8161708 Schacht Apr 2012 B2
8551594 Deiss Oct 2013 B2
8716624 Johnson May 2014 B2
8769883 Bazzarini Jul 2014 B2
8820002 Hunt Sep 2014 B2
8959860 Wierzbowski Feb 2015 B2
8959872 Ayres Feb 2015 B2
8978334 Engstrom Mar 2015 B2
9290949 Choy Mar 2016 B2
9321493 Dost et al. Apr 2016 B2
9359761 Scurto Jun 2016 B2
9482010 Wambaug Nov 2016 B2
9494235 Winslow Nov 2016 B2
9597832 Deiss Mar 2017 B2
9636892 Albert May 2017 B2
9783999 Amundson Oct 2017 B2
9850668 Della Pepa Dec 2017 B2
9908965 Sauttreau Mar 2018 B2
9956723 Kodera May 2018 B2
10100514 Klein Oct 2018 B2
10202777 Leavey Feb 2019 B1
10450762 Schluter Oct 2019 B2
10487518 Anzalone, Jr. Nov 2019 B2
10563360 Bang Feb 2020 B2
10683660 Preston Jun 2020 B2
10723110 Ober Jul 2020 B2
10760283 Carrubba Sep 2020 B2
10851541 Robinson Dec 2020 B2
10935138 Fina Segura Mar 2021 B2
11091908 Paetow Aug 2021 B2
11103109 Schluter Aug 2021 B2
11180915 Richardson Nov 2021 B2
11384545 Schluter Jul 2022 B2
11781043 Ackermann Oct 2023 B2
11785727 Lowen Oct 2023 B2
20020189190 Charmat Dec 2002 A1
20030051426 Kornfalt Mar 2003 A1
20030074851 Charmat Apr 2003 A1
20030154662 Bruchu Aug 2003 A1
20040106346 Zafiroglu Jun 2004 A1
20050039409 Sondermann Feb 2005 A1
20050158354 Hannay Jul 2005 A1
20080034691 Nelson Feb 2008 A1
20080078135 McIntosh Apr 2008 A1
20080083179 Riggs Apr 2008 A1
20080086808 Sutton Apr 2008 A1
20080110126 Howchin May 2008 A1
20080229682 Torsani Sep 2008 A1
20080263983 Stanchfield Oct 2008 A1
20090178369 Pilz Jul 2009 A1
20090205278 Lynch Aug 2009 A1
20100287872 Bodnar Nov 2010 A1
20130000187 Raisacher Jan 2013 A1
20140057066 Cai Feb 2014 A1
20150240503 Scurto Aug 2015 A1
20170071415 Rosko Mar 2017 A1
20170362819 Sondermann Dec 2017 A1
20180251265 Egertz et al. Sep 2018 A1
20180334813 Schluter Nov 2018 A1
20190077124 Shinbara Mar 2019 A1
20190225849 Bollström Jul 2019 A1
20220010548 Schluter Jan 2022 A1
Foreign Referenced Citations (31)
Number Date Country
8934730 Jan 1991 AU
2838664 May 1980 DE
8502738 Jan 1985 DE
3405571 Aug 1985 DE
3407075 Sep 1985 DE
3429860 Mar 1986 DE
3929187 Mar 1991 DE
4141138 Jun 1993 DE
4406890 Sep 1995 DE
29809789 Sep 1998 DE
19800554 Jul 1999 DE
10140464 Feb 2003 DE
202006019436 Mar 2007 DE
102007002639 Jul 2008 DE
202009002336 Jul 2010 DE
102009050698 Apr 2011 DE
0627534 Dec 1994 EP
1152100 Nov 2001 EP
1918486 May 2008 EP
3404168 Aug 2019 EP
2576942 Aug 1986 FR
191417164 Dec 1914 GB
2452378 Mar 2009 GB
2560741 Sep 2018 GB
H05321916 Dec 1993 JP
2003269423 Sep 2003 JP
2014177809 Sep 2014 JP
WO 9000684 Jan 1990 WO
WO-9201843 Feb 1992 WO
WO 9854423 Dec 1998 WO
WO-2006114458 Nov 2006 WO
Non-Patent Literature Citations (5)
Entry
Translation “Dehnungsverbindung Fuer Anschlusslinien Grosser Oberflaechen in Bauwerken” Applicant: Poggi, Leo, Mailand (Italien) DE7801755U1 (Year: 2023).
Description DE7801755U1, Applicant(s): Poggi, Leo, Mailand, May 11, 1978 retrieved from https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19780511&CC=DE&NR=7801755U1&KC=U1 (Year: 2023).
Floor Profiles, Schluter Systems; Profile of Innovation, Apr. 2019, 9 Pages, New York, USA.
Movement Joints and Cove-Shaped Profiles, Schluter Systems; Profile of Innovation, Sep. 2019, 19 Pages, New York, USA.
Wall and Countertop Profiles, Schluter Systems; Profile of Innovation, Nov. 2019, 20 Pages, New York, USA.
Related Publications (1)
Number Date Country
20220010548 A1 Jan 2022 US