Disclosed is an expansion joint seal for sealing a gap between two structural members. The expansion joint seal forms a bridge across a gap or opening between two structural members to permit a smooth transition of pedestrian traffic across the gap or opening between the two structural members.
Expansion joint sealing systems are essentially covers that bridge a gap or opening across expansion joints to provide pedestrian or vehicular passage over the joint, and provide a smooth transition from one structural member to another, while not preventing the joint movement. The coverplate of the expansion joint sealing system should remain centered in a “neutral” position across the expansion joint gap after exposure to thermal cycling and seismic movements. It is known to use complex mechanical centering devices or elastic elements to in an attempt to maintain the coverplate of the expansion joint system centered across the gap of the expansion joint.
Disclosed is an expansion joint seal comprising a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and an expandable and compressible foam seal member positioned engaged with said central spine.
According to certain illustrative embodiments, the expansion joint seal comprises a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and at least one piece of expandable and compressible foam seal positioned on each side of said central spine.
Additionally disclosed is an expansion joint comprising spaced-apart structural members defining a gap therebetween and an expansion joint seal covering said gap between said spaced-apart structural members, said expansion joint seal comprising a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and an expandable and compressible foam seal member positioned engaged with said central spine.
According to certain illustrative embodiments, the expansion joint comprises spaced-apart structural members defining a gap therebetween and an expansion joint seal covering said gap between said spaced-apart structural members, said expansion joint seal comprising a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and at least one piece of expandable and compressible foam seal positioned on each side of said central spine.
Further disclosed is an expansion joint comprising spaced-apart structural members defining a gap therebetween, wherein each of said spaced-apart structural members comprises at least one horizontal tread portion and at least one vertical riser portion, and an expansion joint seal covering said gap between said spaced-apart structural members, said expansion joint seal comprising a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and an expandable and compressible foam seal member positioned engaged with said central spine.
According to certain embodiments, the expansion joint comprises spaced-apart structural members defining a gap therebetween, wherein each of said spaced-apart structural members comprises at least one horizontal tread portion and at least one vertical riser portion, and an expansion joint seal covering said gap between said spaced-apart structural members, said expansion joint seal comprising a coverplate, a snap-fit connecting member depending downwardly from said coverplate, a central spine connected to said snap-fit connecting member and extending downwardly from said connecting member, and at least one piece of expandable and compressible foam seal positioned on each side of said central spine.
Further disclosed is a method for covering an expansion joint, said method comprising positioning an assembly comprising a central spine and at least one piece of expandable and compressible foam seal engaged with said central spine into a gap between spaced-apart structural members, positioning a coverplate across said gap, and connecting said coverplate to said central spine with a snap-fit connector.
According to certain illustrative embodiments, the method of making an expansion joint comprises forming spaced-apart structural members having a gap defined therebetween, positioning an assembly comprising a central spine and at least one piece of expandable and compressible foam seal engaged with said central spine into a gap between spaced-apart structural members, positioning a coverplate across said gap, and connecting said coverplate to said central spine with a snap-fit connector.
The expansion joint seal will be more fully understood when the following description is read in view of the accompanying drawings in which:
FIG.2 is a cross-sectional view of a second illustrative embodiment of the expansion joint sealing system.
Disclosed is an expansion joint seal for bridging or otherwise spanning across a gap formed between spaced-apart structural members, such as two spaced-apart concrete structural members. The expansion joint seal comprises a coverplate that has a width sufficient to bridge the gap between the two spaced-apart structural members and that is connected to a self-centering mechanism by a snap-fit connecting member. The snap-fit connector extends downwardly in from the bottom surface of the coverplate of the expansion joint seal. According to certain illustrative embodiments, the snap-fit connector extends downwardly from the bottom surface of the coverplate in a substantially perpendicularly manner in relation to the horizontally extending coverplate. The use of a snap-fit connection between the coverplate and the central spine eliminates the need for additional fasteners to attach to the coverplate to the central spine and therefore reduces the complexity of the installation process and associated labor, and eliminates holes located on the surface of the coverplate where water or other debris can enter into the expansion joint space.
The self-centering mechanism of the expansion joint seal comprises a central spine member, and resilient foam seal member or members having compressible and expandable properties. The central spine is connected to the coverplate by the snap-fit connector and extends downwardly from the connecting member. The central spine includes an open cavity portion for accepting the snap-fit connector and an elongated rib portion extending downwardly from the cavity portion. According to certain illustrative embodiments, the central spine extends downwardly from the end of the snap-fit connector substantially along the longitudinal axis of the snap-fit connector. The expandable and compressible foam seal is positioned on each side of the central spine. According to certain embodiments, at least one separate piece of the foam seal may be positioned on each side of the central spine. According to other illustrative embodiments, the foam seal may be provided as a single piece having a groove formed within a portion of the foam seal piece. The elongated rib portion of the central spine may be inserted into the groove of the foam, resulting in foam seal being positioned on each side of the central spine. The foam seal occupies the space in the expansion joint gap between the spaced-apart structural members and the central spine. According to certain embodiments, the foam member may comprise a foam section having one or more voids. According to certain embodiments, the foam member(s) having one or more voids may approximate the profile of a glandular expansion joint seal that are widely known in the art.
According to certain illustrative embodiments, without limitation, and only by way of example, the coverplate may comprise a metal, a metal alloy, a rigid plastic, an elastomer, or a composite material. According to certain embodiments, the coverplate comprises a rigid plastic material. According to certain embodiments, the snap-fit connector comprises a rigid plastic material. According to yet further embodiments, both the coverplate and the snap-fit connector comprise a rigid plastic material. For embodiments where both the coverplate and the snap-fit connection comprise a rigid plastic material, the coverplate may be connected to the snap-fit connector by a plastic welding process involving a plastic weld material that joins the coverplate to the snap-fit connector. According to other embodiments, the coverplate and the snap-fit connecter may comprise a single extruded integral piece of rigid plastic material.
According to other embodiments, the coverplate of the expansion joint seal may comprise a metal or metal alloy. Without limitation, and only by way of illustration, the metal or metal alloy may comprise rolled steel, stainless steel, galvanized steel and aluminum plates.
According to certain illustrative embodiments, the coverplate of the expansion joint seal comprises an elastomeric material. Without limitation, and only by way of illustration, the elastomeric material may be selected from butadiene rubber, styrene-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, polyisoprene rubber, polychloroprene rubber, silicon rubber, nitrile rubber and blends thereof. According to certain embodiments, the elastomeric material comprises ethylene-propylene-diene rubber. The cover may be constructed of elastomeric material containing fillers and a precisely chosen amount of a plasticizer to yield a rubber material having a durometer reading of about 80. The term “elastomeric” refers for a material that possesses rubber-like properties, for example, an elastomeric material will substantially recover its original dimensions after compression and/or elongation. Any elastomeric material may be used to prepare the resilient cover, so long as the cover can be prepared to a thickness and sufficient elasticity to elastically deform to establish supporting contact between the marginal support areas of the cover assembly and the underlying horizontal structural members to provide a smooth transition over the gap or opening for pedestrian or vehicular traffic. Ethylene-propylene-diene rubber (EPDM) is utilized to prepare the cover. A suitable EPDM rubber composition that is useful to prepare the cover is commercially available from Advanced Elastomer Systems, L.P. (Akron, Ohio, USA) under the trade name Santoprene™.
According to certain embodiments, the elastomeric coverplate comprises an elongated resilient elastomeric cover having a load bearing surface opposite a support surface including marginal support areas along opposite lateral edges thereof. The cover has a thickness and sufficient elasticity to elastically deform for establishing supporting contact between marginal support areas and underlying horizontal structural members adjacent to a gap between horizontal structural members. At least one rigid plate member is encapsulated within the elongated elastomeric cover for bridging a gap between the horizontal structural members.
According to certain embodiments, the coverplate comprises an elongated resilient cover having a predetermined width sufficient to overlie portions of horizontal structural members outwardly of marginal edges to a gap between the horizontal structural members, and a rigid plate member secured by and encapsulated within the elongated resilient cover. The rigid plate member defines an elongated bridging member having a width sufficient to span the width of a gap between horizontal structural members.
The elongated resilient cover may comprise peripheral edges including tapered face surfaces for providing incline planes to bear traffic traversing the coverplate. The upper load bearing surface of the elongated resilient cover includes spaced apart upstanding ribs arranged to extend transversely to the direction of traffic traversing the cover.
According to certain embodiments, multiple rigid plates may be encapsulated within the elastomer cover of the coverplate of the expansion joint seal. In addition to a central rigid plate member having a width sufficient to bridge the gap across the expansion joint, the seal may further comprise at least two rigid plate members secured by and encapsulated within the elongated resilient cover and which extend along opposite lateral sides of the central rigid plate member in a side-by-side manner.
According to certain illustrative embodiments, the snap-fit connecter may be connected to the rigid plastic, metal, or elastomeric coverplate by a dovetail joint.
The central spine may comprise a metal, metal alloy, plastic, or composite material. According to certain embodiments, the central spine comprises a metal. According to certain embodiments, the central spine comprises aluminum.
The central spine of the expansion joint seal comprises means for accepting a portion of the snap-fit connector and an elongated rib extending downwardly from the means for accepting. The means for accepting comprises an upper passageway that is in communication with a lower cavity portion. The upper passageway is defined by spaced-apart vertical side walls and upper and lower ends. The lower cavity comprises spaced-apart vertical side walls having upper and lower ends, a horizontal bottom wall connected to the lower ends of the spaced-apart cavity side walls, and horizontal top wall portions connected to the upper ends of said spaced-apart cavity side walls. The upper passageway first a first width defined by its spaced-apart side walls. The lower cavity has a width defined by its spaced-apart side walls. The upper passageway has a width that is less than the width of the lower cavity.
The cavity top wall portions are connected to the lower ends of the passageway side walls to form an abutment surface for the snap-fit connector. The snap-fit connector comprises a horizontally extending top wall, spaced-apart side walls, a lower connecting segment connecting the side walls together. A tab member extends downwardly from the lower connecting segment and includes upper and lower ends. The tab also includes a flange portion extending upwardly and outwardly from the lower end of the tab in a substantially diagonal manner in relation to the tab. The snap-fit connector is inserted into the upper passageway of the means for accepting of the central spine. The side walls of snap-fit connector are in abutting contact with the upper passageway side walls, and the tab of said snap-fit connector extends downwardly into the lower cavity of the means for accepting of the central spine.
The expansion joint seal incorporates a snap-fit connector that is used to join the cover of the expansion joint seal to the central spine. The snap-fit connector broadly includes both locating and locking components. The locking component(s) of the snap-fit connector possesses a certain level of flexibility that permits the locking component(s) to bend from its original position during engagement with the central spine of the expansion joint seal, and to return to its original position once the snap-fit connector is engaged in its intended position with the central spine. The flexibility of the locking component of the snap-fit connector is intended to enable the snap-fit connector to be easily engaged in its intended position with the central spine and to enable the connector to create an interference with the central spine in response to movement within an expansion joint to prevent the cover of the expansion joint seal from becoming disengaged from the expansion joint seal.
According to certain illustrative embodiments, the snap-fit connector comprises a horizontally extending top wall, spaced-apart side walls that extend downwardly from the bottom surface of the horizontally extending top wall, and a lower connecting segment connecting the side walls together. The side walls and the lower connecting segment together are may be a continuous element. The snap-fit connector includes a locking member that depends downwardly from the lower connecting segment of the connector. The locking member includes a leg member that extends downwardly from the lower connecting segment and which includes upper and lower ends. The locking member also includes a flange portion that extends upwardly and outwardly from the lower end of the leg.
According to other illustrative embodiments, the snap-fit connector comprises a horizontally extending top wall, spaced-apart side walls that extend downwardly from the bottom surface of the horizontally extending top wall, and a lower connecting segment connecting the side walls together. The side walls and the lower connecting segment together may be a continuous element. The spaced-apart side walls of the connector have opposite upper and lower ends. The spaced-apart side walls of the connector extend downwardly from the bottom surface of the horizontally extending top wall in a substantially perpendicular manner in relation to the horizontally extending top wall. According to certain embodiments, the spaced-apart side walls of the connector also extend downwardly from the bottom surface of the horizontally extending top wall in a substantially parallel manner in relation to one another. The lower ends of each of the side walls extend inwardly at an angle toward each other and are connected by the lower connecting segment. Flange members extend upwardly and outwardly from opposite sides of the lower connecting segment. The flange portions extend upwardly and outwardly from lower connecting segment in opposite directions. According to certain embodiments, the flange portions extend upwardly and outwardly from the lower connecting segment in a manner that is substantially parallel to the angle of the lower ends of the side walls of the snap-fit connector.
According to other illustrative embodiments, the snap-fit connector comprises a horizontally extending top wall, spaced-apart side walls that extend downwardly from the bottom surface of the horizontally extending top wall. The spaced-apart side walls of the connector have opposite upper and lower ends. The spaced-apart side walls of the connector extend downwardly from the bottom surface of the horizontally extending top wall in a substantially perpendicular manner in relation to the horizontally extending top wall. According to certain embodiments, the spaced-apart side walls of the connector also extend downwardly from the bottom surface of the horizontally extending top wall in a substantially parallel manner in relation to one another. The lower ends of each of the side walls extend inwardly at an angle toward each other, i.e., toward the midline of the snap-fit connector. The lower ends of the spaced-apart side walls terminate in a horizontally extending bottom wall. The bottom walls extend in a horizontal manner away from the midline of the snap-fit connector. Flange members extend upwardly and outwardly from terminal ends of each of the bottom walls. The flange portions extend upwardly and outwardly from the bottom walls in opposite directions. According to certain embodiments, the flange portions extend upwardly and outwardly from the bottom walls in a manner that is substantially parallel to the angle of the lower ends of the side walls of the snap-fit connector.
The foam seal members of the self-centering mechanism of the expansion joint seal may comprise a closed cell foam or an impregnated open cell foam. According to certain embodiments, the foam seal component comprises a closed cell foam neoprene foam. Without limitation, a suitable closed cell neoprene foam is commercially available from Alloy Extrusion Company (Brimfield, Ohio, USA) under the registered trademark ELASTALLOY®. According to other embodiments, closed or open cell foams such as neoprene, blended neoprene silicone, silicone, blended fluorinated silicone, and impregnated polyurethane and silicone foams may be used.
Also disclosed is an expansion joint comprising spaced-apart structural members defining a gap between the two members and any of the above-described embodiments of the expansion joint seal covering the gap between the two spaced-apart structural members. Generally, the expansion joint seal comprises a coverplate, a snap-fit connector depending downwardly from the coverplate, a central spine connected to the coverplate by the snap-fit connector and extending downwardly from the connecting member, and expandable and compressible foam seal positioned on each side of the central spine.
According to certain illustrative embodiments, the expansion joint comprises spaced-apart structural members defining a gap between the two members and each member having at least one horizontal tread portion and at least one vertical riser portion, and an expansion joint seal of any one of the above-described embodiments covering the gap between the spaced-apart structural members. Generally, the expansion joint seal comprises a coverplate, a snap-fit connector depending downwardly from the coverplate, a central spine connected to the coverplate by the snap-fit connector and extending downwardly from the connecting member and expandable and compressible foam seal positioned on each side of the central spine.
Certain illustrative embodiments of the expansion joint system will now be described in greater detail with reference to the drawing FIGURES. It should be noted that the expansion joint seal and expansion joint incorporating the expansion joint seal are not intended to be limited to the illustrative embodiments shown the drawing FIGURES, but shall include all variations and modifications within the scope of the claims.
As shown in
Referring again to
Referring again to
The coverplate 132 includes an elongated resilient cover 142 and at least one rigid plate 144 encapsulated by the cover 142. The coverplate 132 is positioned to overlie the gap 124 and to extend along opposite lateral sides of the gap 124 between the structural members 112, 114. The cover 142 may be in the form of a flexible, elastic strip like member having an upwardly directed load bearing face surface 134 with spaced apart upstanding ribs 146 arranged to extend transversely to the direction of traffic for improved traction. The opposite lateral terminal edges of the cover have tapered face surfaces for providing inclined planes 138, 140 for smoothing the transition from the traffic bearing face surface 134 of one of the structural members 112 and 114 to the coverplate 132 and then from the coverplate 132 to the traffic bearing face surface of adjoining one of the structural members 112 and 114. The cover 142 of the coverplate 132 includes thickened peripheral edges 146, 148 at opposite longitudinal sides of the cover 142.
The illustrative embodiment shown in
According to the embodiment of
Still referring to FIG, 2, a central spine 170 connected to the coverplate 132 by the snap-fit connector 160 and extends downwardly from the connecting member 160. The central spine 170 comprises means for accepting 172 a portion of the snap-fit connector 160 and an elongated rib 174 extending downwardly from the means for accepting 172 the snap-fit connector 160. The means for accepting 172 the snap-fit connector 160 comprises an upper passageway 175 that is in communication a lower cavity 176. The upper passageway 175 is defined by spaced-apart vertical side walls 176, 177 and upper and lower ends 178, 179. The distance between the spaced-apart vertical side walls 176, 177 define a first width 180 of the upper passageway 175. The lower cavity portion 181 of the means for accepting 172 the snap-fit connector 160 comprises spaced-apart vertical side walls 182, 183 having upper and lower ends 184-187, a horizontal bottom wall 188 that are connected to the lower ends 185, 187 of the spaced-apart cavity side walls 182, 183, and horizontal top wall portions 189, 190 that are connected to the upper ends 184, 186 of the spaced-apart cavity side walls 182, 183. As described in greater detail below, the cavity top wall portions 189, 190 are connected to the lower ends 179 of the upper passageway side walls 176, 177, and the upper ends 184, 186 of the cavity side walls 182, 183, and form abutment surfaces 191, 192 for the snap-fit connector 160. The distance between the cavity side walls 182, 183 define a width 193 of the lower cavity 181 that is less than the greater than the width 180 of the upper passageway 175. Resilient foam seal sections 194, 195 are positioned on each side of the downwardly extending rib 174 of the central spine 170, and occupy the space between the opposite facing surfaces of the downwardly extending rib 174 and the marginal side wall faces 120, 122 of the spaced-apart structural members 112, 114. The snap-fit connector 160 is inserted into the upper passageway 175 of the means for accepting 172 of said central spine 170. The side walls 163, 164 of snap-fit connector 160 are in abutting contact with the side walls 176, 177 of the upper passageway 175 of the means for accepting 172 of the central spine 170. The tab 166 of the snap-fit connector 160 extends downwardly into the lower cavity 181 of the means for accepting 172 of the central spine 170. When the expansion joint seal is at “rest” with the bottom surface 136 of the coverplate 132 resting on the horizontally extending top surfaces 116, 118 of the spaced-apart structural members 112, 114, there is a clearance between the flange 169 of the tab 166 and the abutment surface 191. In the event of thermal cycling and/or seismic movement, the flange of the tab 169 would come into contact into abutting contact with abutment surface 191, thereby keeping the coverplate 132 positioned over the gap of the expansion joint and preventing it from being pulled out of the expansion joint.
As shown in
Still referring to
Another illustrative embodiment of the snap-fit connector is shown in FIG.6. As shown in
The coverplate 330 includes an elongated resilient cover 336 and at least one rigid plate 338 encapsulated by the cover 336. The coverplate 320 is positioned to overlie the gap 328 and to extend along opposite lateral sides of the gap 328 between the structural members 321, 322. The cover 336 may be in the form of a flexible, elastic strip like member having an upwardly directed load bearing face surface 331 with spaced apart upstanding ribs 340 arranged to extend transversely to the direction of traffic for improved traction. The opposite lateral terminal edges of the cover have tapered face surfaces for providing inclined planes 333, 334 for smoothing the transition from the traffic bearing face surface 331 of one of the structural members 321 and 322 to the coverplate 330 and then from the coverplate 330 to the traffic bearing face surface of adjoining one of the structural members 321, 322. The cover 336 of the coverplate 330 includes thickened peripheral edges 339, 340 at opposite longitudinal sides of the cover 336.
The illustrative embodiment shown in
According to the embodiment of
Still referring to
Still referring to
Still referring to
Still referring to
Side walls 425, 426 of the foam member 420 also include spaced-apart ribs extending outwardly from the surface of each of side walls 425, 426. Side walls 444, 446 of foam member 440 also include spaced-apart ribs extending outwardly from the surface of each of side walls 444, 446. Side walls 454, 456 of foam member 450 also include spaced-apart ribs extending outwardly from the surface of each of side walls 454, 456. The ribs are adapted to engage and hold an adhesive material to assist in the bonding of the foam members 420, 440, 450 to the surfaces of the spaced-apart structural members of the expansion joint.
Lower foam member 460 is adapted to be positioned adjacent the bottom surface 428 of tread foam member 420. Foam member 460 is bonded to the bottom surface of a portion of tread foam 428. Foam member 460 is a stiffer foam as compared to foam 420 and is intended to support foam member 420.
While the expansion joint seal disclosed herein is suitable for placement across a gap created by two spaced-apart structural members in sports stadiums having tread and riser portions, it should be noted that the seal is not limited to placement across a gap or opening in such expansion joint. To the contrary, the seal can be used to bridge an opening or gap between any two structural members to create a smooth traffic transition between the two structural members. Embodiments of the seal may be useful to bridge an opening or gap between vertically offset structural members. For example, the seal may be used to bridge structural members, such as concrete slabs, which are designed to be vertically offset or that may become vertically offset or displaced due to differential concrete settlement.
The use of the foam seal as an elastic recovery or return force mechanism has the dual advantage that the seal can remain watertight immediately below the level of the coverplate while at the same time the foam seal acts as the return force or stabilizing element for the cover plate to keep the coverplate positioned in the “neutral” or centered position.
The use of the closed cell foam seal or impregnated open cell foam provides a water resistant seal for the expansion joint in the area below the coverplate. The use of the foam seal also provides a self-centering mechanism for the coverplate of the seal to keep it positioned centrally across the expansion joint gap. The foam seal is resilient and has the property of being compressible and expandable. The ability of the foam seal to compress in response to the application of a force, and to expand to its original state prior to compression upon removing the force permits the system to self-center the coverplate over the expansion joint gap. For example, for any given expansion joint gap width, in the absence of movement, the coverplate will be position in a central or neutral position. In response to movement in the expansion joint gap, the width of the gap will become larger or smaller. In the situation where the width of the expansion joint gap becomes smaller in response to movement, then the foam seal will be compressed to the same degree on each side of the central spine. Even though the foam seal is compressed, an equilibrium will be reached on each side of the central spine and the coverplate will remain in a central or neutral position across the expansion joint gap. Likewise, in the situation where the width of the expansion joint gap becomes larger in response to movement, then the foam seal will expand to the same degree on each side of the central spine. Even though the foam seal has expanded, an equilibrium will be reached on each side of the central spine and the coverplate will remain in a central or neutral position across the expansion joint gap. Thus, expansion joint seal system is in equilibrium if the expansion force of the foam seal positioned on one side of the central spine is equal or equivalent to the expansion force of the foam seal positioned on the other side of the central spine.
According to certain embodiments, the watertight properties of the foam seal may be enhanced by applying a further sealant or sealer coating to the top surface(s) of the foam seal near the coverplate. According to certain embodiments, self-leveling water resistant sealants may be used. According to certain embodiments, the self-leveling water resistant sealant may comprise a silicone sealant.
While the expansion joint seal and expansion joint incorporating the expansion joint seal have been described in connection with the preferred embodiments, as shown in the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the seal and joint without deviating therefrom. Therefore, the expansion joint seal and expansion joint should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
This application is a national stage application of International Application No. PCT/US2016/016119, filed 2 Feb. 2016, which claims the benefit of the filing dates from U.S. Provisional Application For Patent Ser. No. 62/110,900, filed 2 Feb. 2015and U.S. Provisional Application For Patent Ser. No. 62/114,268 filed 10 Feb. 2015, both of which applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/016119 | 2/2/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/126673 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3323426 | Hahn | Jun 1967 | A |
3339329 | Berg | Sep 1967 | A |
3396640 | Fujihara | Aug 1968 | A |
3897073 | Swanson et al. | Jul 1975 | A |
4058947 | Earle et al. | Nov 1977 | A |
4067155 | Ruff et al. | Jan 1978 | A |
4346542 | Tateno | Aug 1982 | A |
4784516 | Cox | Nov 1988 | A |
5888017 | Corrie | Mar 1999 | A |
6039503 | Cathey | Mar 2000 | A |
6491468 | Hagen | Dec 2002 | B1 |
6532708 | Baerveldt | Mar 2003 | B1 |
7895802 | Kurz | Mar 2011 | B2 |
8646237 | Takagi | Feb 2014 | B1 |
8813450 | Hensley | Aug 2014 | B1 |
8826481 | Haydu | Sep 2014 | B1 |
8887463 | Derrigan | Nov 2014 | B2 |
8966847 | Kessler | Mar 2015 | B2 |
9169660 | Plenet | Oct 2015 | B2 |
9765486 | Robinson | Sep 2017 | B1 |
20040154255 | Jesko | Aug 2004 | A1 |
20050005553 | Baerveldt | Jan 2005 | A1 |
20100031596 | Muehlebach | Feb 2010 | A1 |
Entry |
---|
PCT/US2016/016119—International Search Report, dated May 16, 2016. |
PCT/US2016/016119—International Written Opinion, dated May 16, 2016. |
Number | Date | Country | |
---|---|---|---|
20180010330 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62114268 | Feb 2015 | US | |
62110900 | Feb 2015 | US |