The invention relates to an expansion joint reinforcing structure for concrete slabs, comprising a first profile element to be attached to an edge of a first concrete slab, and a second profile element to be attached to an edge of a second, adjacent, concrete slab, said profile elements being joined together by at least one removable connecting strip such that there is a gap between the profile elements.
A widely used flooring structure in construction engineering is a concrete slab on grade, poured either direct on top of leveled soil or on top of a thermal insulator layer placed on the ground. Shrinkage of the concrete as well as thermal contraction and expansion tend to cause cracking in large slabs, whereby large slabs have to be divided into smaller sub-slabs by means of expansion or isolation joints. Deformations caused by shrinkage and thermal expansion and contraction will thus occur at the expansion joints and the slabs will otherwise remain crackless.
The simplest way of making expansion joints is to first pour a whole concrete slab and then, as setting has begun, divide it into smaller sections separated by grooves saw-cut on the surface of the slab by means of a diamond-blade saw. Subsequent contraction cracks will then appear at the grooves. The edges of saw-cut expansion joints are prone to crumbling and chipping, so they are totally unsuitable for heavily loaded floors. From the prior art we also know of expansion joint structures embedded in concrete with metal reinforcements at the edges of the expansion joints. One such structure is disclosed in the patent document FI 952994. The reinforcing joint structure is embedded in fresh concrete, and the joint between the flat steel bars is saw-cut open once the concrete has hardened. The joint is then filled with elastic material. The installation of such an expansion joint structure is tedious, because the joint structure has to be pushed into already-leveled fresh concrete. Moreover, saw-cutting the expansion joint means extra work.
Reference documents GB 1139538, U.S. Pat. No. 3,068,763, U.S. Pat. No. 3,276,335, and U.S. Pat. No. 3,455,215 disclose expansion joint structures embedded in the surface of a concrete slab. These structures are weak and not intended to be anchored in the concreting base. Therefore, they cannot serve as construction joint forms or screed guides during the floating of the concrete slab. In most such solutions, the gap between the two halves of the joint structure is closed using a flexible sealing agent attached to the joint structure and remaining partly within the cast. Such a flexible and soft sealing agent wears and breaks easily so that the joint begins to leak. Moreover, the sealing agent within the cast cannot be replaced.
Patent document FI 982675 discloses an expansion joint structure with a sheetmetal profile and metallic angle profile loosely attached to the sheetmetal profile by rivets or flexible bolts, for example. The sheetmetal profile simultaneously serves as a form for the slab to be cast. The sheetmetal profile and angle profile both have protruding bondage means through which they become attached to the concrete. The joint structure is placed such that it rests on corrugated steel rods driven into the concreting base at correct locations and heights, or on concrete legs cast on the concreting base, after which the slab is poured. As the concrete shrinks, the angle profile comes off the sheetmetal profile, thereby opening an expansion joint between the profiles.
A drawback of this solution is the poor functionality of the expansion joint. An expansion joint caused solely by the shrinkage of concrete is so narrow that it cannot be sealed with a sealing agent. This means that the expansion joint will not be watertight. In order to achieve a sufficient joint width the gap between the sheetmetal profile and angle profile has to be enlarged with the result that the gap will be filled with concrete when the concrete is poured. Therefore, prior to sealant installation, the gap has to be thoroughly cleaned with e.g. a grinder, adding to the building costs. In spite of the cleaning, concrete dust and crumbles often remain in the gap, affecting the adhesion of the sealant to the walls of the gap. It is therefore difficult to male the expansion joint watertight. Moreover, it is somewhat difficult to anchor the expansion joint structure to the concreting base and set it at the correct height.
An object of the invention is to provide a new expansion joint structure which reduces the drawbacks and disadvantages associated with expansion joints according to the prior art.
An expansion joint structure according to the invention is a reinforcing structure designed to be placed between individual slabs of a concrete slab system, comprising a first profile element to be attached to an edge of a first concrete slab, and a second profile element to be attached to an edge of a second, adjacent, concrete slab. The profile elements are joined together by removable connecting strips such that there is a clear gap between the profile elements. In an expansion joint structure according to the invention the profile elements and connecting strips constitute a single continuous entity of extruded aluminum profile. The connecting strips are attached by their edges to the profile elements through very thin necks that keep the elements together during the casting of the slab. When the concrete has hardened enough, the connecting strips are torn off whereby the thin necks will break and the connection between the profile elements disappears. An expansion joint structure according to the invention is positioned on the concreting base at the correct height prior to the casting of the concrete slabs. As the concrete sets, the joint structure remains within the slab system and becomes part of the cast. During casting, the connecting strips block the gap between the profile elements and keep it clean. When the concrete has hardened enough, the connecting strips are torn off whereby the profile elements will become disconnected. The resulting gap is filled with elastic sealant, completing the expansion joint.
An advantage of the invention is that the expansion joint can be completed quicker. Saw-cutting and cleaning the joints, which tasks are required in expansion joint construction techniques according to the prior art, are no longer required when using the structure according to the invention, resulting in savings in construction costs.
Another advantage of the invention is that it enhances the quality of expansion joints. Using the structure according to the invention, the gap between the profile elements is clean, smooth-edged, and wide enough so that an elastic sealant can be easily installed in the gap and, moreover, the adhesion between the sealant and gap walls is good. This way, the expansion joint will be watertight, adding to the durability and life of the joint.
A further advantage of the invention is that it makes the maintenance of the expansion joint easier. The sealant in the wide gap between the profile elements can be easily repaired or replaced, if necessary, should the sealant come off the walls of the gap or otherwise lose its watertightness.
Yet another advantage of the invention is that it has several functions. An expansion joint structure supported on the concreting base at a correct installation height serves as a screed mark during the casting of the concrete and, furthermore, it can also serve as a construction joint form.
A still further advantage of the invention is that it is simple in construction, cheap to manufacture and well suited to industrial production.
The invention will be now described in detail. Reference is made to the accompanying drawings in which
The second profile element 12 is an L-shaped metal profile attached parallel to the upper portion 16 of the first profile element by means of two removable connecting strips 28 in the longitudinal direction of the profile elements. The attachment is realized such that a first flank of the second profile element stands upright parallel to the upper portion of the first profile element, and a second flank of the second profile element lies horizontally, projecting away from the first profile element. The connecting strips are metallic strips attached by their first edges to the first profile element and by their second edges to the second profile element. Between the first flank of the second profile element 12 and the upper portion 16 of the first profile element 10 there is a gap 26 the width of which can be set as desired at the manufacturing stage of the expansion joint structure. Advantageously the width of the gap is about 10 mm. On the first flank of the second profile element there is a longitudinal ledge 30 and, conversely, on the upper portion 16 of the first profile element there is a corresponding ledge 32 such that the two ledges face each other in the gap 26.
The first and second profile elements are interconnected by a first connecting strip 28 at the upper edge of the gap 26, and by a second connecting strip at the middle of the gap where the ledges 30 and 32 are located. At the upper portion of the gap 26, in the longitudinal direction of the expansion joint structure, there is thus formed a closed cavity confined by the profile elements 10, 12 and connecting strips 28. At the lower portion of the gap there is formed a channel 40 confined by the profile elements and lower connecting strip such that the downward-facing side of the channel is open. Advantageously the channel is square-shaped and has a width of about 12 mm. Additionally, there is, in the longitudinal direction of the profile, an end conduit 25 at the free end of the horizontal flank of the second profile element and at the free end of the lower portion 18 of the first profile element 10, which end conduit has a cross-section resembling a portion of a circular arc. Adjacent extension joint structures are interconnected at their ends by means of spring pins placed at the end conduits, or using short bars (not shown) fitted in the end conduits so that the bars extend across the joining point and prevent the ends of the expansion joint structures from moving in relation to each other. The end conduits also enhance the bonding of the profile elements to the concrete. To further enhance the bonding, the profile element surfaces intended to be in contact with the concrete may be roughened.
In an expansion joint structure according to the invention the profile elements 10, 12 and the connecting strips 28 constitute a single extruded aluminum profile. The connecting strips are attached to the profile elements through very thin necks which keep the elements together during the casting of the slab. The necks-are so thin that they can be broken by hand. Thus the connecting strips can be detached from the profile elements simply by tearing them off by hand when the concrete has hardened enough. Expansion joint structures can be manufactured in different sizes for different uses and environments. Advantageously the overall height of an expansion joint structure is about 10 to 15 cm. The thickness of a profile element wall is advantageously about 2 to 3 mm. The length of an expansion joint structure can be chosen on the basis of manufacturing, transport, and installation criteria, for example. Advantageously the length of an expansion joint structure is 3 to 5 meters. During installation, the profile elements are kept together by the connecting strips 28. At the same time the connecting strips prevent fresh concrete from entering the gap 26, thus keeping the gap clean during the casting phase. As soon as the concrete surface has been leveled and floated, the connecting strips are torn off the profile elements so that deformations caused by the contraction of the slab can occur freely. After that, an elastic sealant 72 (
The upper edge of the expansion joint structure is fixed prior to the casting of the slab proper, in one of the ways discussed above, as precisely as possible to the height corresponding to the upper surface of the slab to be poured so that the expansion joint structure can be utilized e.g. as a screed mark in the leveling of the slab surface when the slab is poured. If the gap between the concreting base 62 and the lower edge of the expansion joint structure 1 is large, it can be covered with a separate boardlike barrier 71 advantageously screwed or riveted onto the lower portion 18 of the first profile element.
A concrete slab is cast, depending on the size of the slab and other factors, either in one pour or in several pours. If the slab is small, the concrete slabs 66a, 66b on both sides of the expansion joint structure can be cast in one pour. Large slabs usually cannot be cast in one pour, but the concreting has to be done over a span of several days. In such a case the concreting can be interrupted at the expansion joint, and pouring can be continued the following day. The expansion joint structure serves then also as a construction joint form. As the concrete hardens, the expansion joint structure becomes part of the concrete slab. The trapezoid shape of the first profile element 10 causes a wedge-like concrete dowel to be formed in the joint between the concrete slabs 66a, 66b which concrete dowel receives shear stresses present at the joint. In order to enhance the bondage of the profile elements to the concrete cast, bondage strips 54 are attached to the profile elements at the installation phase of the joint structure. The bondage strips are V-shaped aluminum strips attached, advantageously by means of welding, by their ends to a surface of a profile element. Naturally, other kinds of bondage elements may be used as well, such as e.g. threaded bars attached by a bolt to a hole drilled through the wall of a profile element.
Above we described a few advantageous embodiments of an expansion joint structure according to the invention. The invention is not limited to the solutions described above, but the inventional idea can be applied in numerous ways within the scope defined by the claims attached hereto.
Number | Date | Country | Kind |
---|---|---|---|
20010213 | Feb 2001 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTFI02/00084 | 2/5/2002 | WO | 00 | 8/5/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0206311 | 8/15/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2230303 | Leguillon | Feb 1941 | A |
3059553 | Woolley | Oct 1962 | A |
3068763 | Harza | Dec 1962 | A |
3276335 | Middlestadt | Oct 1966 | A |
3396640 | Fujihara | Aug 1968 | A |
3455215 | Webb | Jul 1969 | A |
4012159 | Berry | Mar 1977 | A |
4295315 | Lynn-Jones et al. | Oct 1981 | A |
4490067 | Dahowski | Dec 1984 | A |
4522531 | Thomsen et al. | Jun 1985 | A |
4648739 | Thomsen | Mar 1987 | A |
4651488 | Nicholas et al. | Mar 1987 | A |
4674912 | Buckenauer | Jun 1987 | A |
Number | Date | Country | |
---|---|---|---|
20040062605 A1 | Apr 2004 | US |