1. Field of the Invention
The present invention relates to solar power production, and more particularly, to solar receiver panels for use in solar boilers.
2. Description of Related Art
Solar power generation has been considered a viable source to help provide for energy needs in a time of increasing consciousness of the environmental aspects of power production. Solar energy production relies mainly on the ability to collect and convert energy freely available from the sun and can be produced with very little impact on the environment. Solar power can be utilized without creating radioactive waste as in nuclear power production, and without producing pollutant emissions including greenhouse gases as in fossil fuel power production. Solar power production is independent of fluctuating fuel costs and does not consume non-renewable resources.
Solar power generators generally employ fields of controlled mirrors, called heliostats, to gather and concentrate sunlight on a receiver to provide a heat source for power production. A solar receiver typically takes the form of a panel of tubes conveying a working fluid therethrough. Previous solar generators have used working fluids such as molten salt because it has the ability to store energy, allowing power generation when there is no solar radiation. The heated working fluids are typically conveyed to a heat exchanger where they release heat into a second working fluid such as air, water, or steam. Power is generated by driving heated air or steam through a turbine that drives an electrical generator.
More recently, it has been determined that solar power production can be increased and simplified by using water/steam as the only working fluid in a receiver that is a boiler. This can eliminate the need for an inefficient heat exchanger between two different working fluids. This development has lead to new challenges in handling the intense solar heat without damage to the system. One such challenge involves the fact that traditional boilers are made up of multiple individual boiler panels sized to facilitate manufacture and maintenance. The intense heat fluxes in solar applications can be around 2-3 times higher than in typical fossil fuel boilers. Additionally, unlike fossil fuel boilers, solar boilers operate on a daily cycle, shutting down in the night. The high heat fluxes and frequency of operation cycles create challenges with respect to managing thermal expansion and contraction of the boiler panels. One such challenge is that panels expand vertically along their length as well as laterally across their width. If gaps are used between panels to allow for their thermal expansion, care must be exercised to protect structures and spaces behind the panels from solar radiation passing through the gaps, which is known as leakage. Also, gaps in the receiver area of a boiler constitute area where available sunlight from the heliostats is not captured.
While previously known systems of solar power production have generally been considered satisfactory for their intended purposes, there has remained a need in the art for solar receivers that can improve the accommodation of thermal expansion and protect the boiler from leakage of solar radiation. There also has remained a need in the art for such solar receivers that are easy to make and use. The present invention provides a solution to these problems.
The subject invention is directed to a new and useful boiler for a solar receiver. The boiler includes a first receiver panel having a plurality of substantially parallel boiler tubes fluidly connecting an inlet header of the panel to an outlet header of the panel. A second receiver panel has a plurality of substantially parallel boiler tubes fluidly connecting an inlet header of the panel to an outlet header of the panel. The boiler tubes of the second receiver panel are substantially parallel to the boiler tubes of the first receiver panel. The first and second receiver panels are separated by a gap. A panel expansion joint is connected to the first and second receiver panels across the gap, wherein the panel expansion joint is configured and adapted to allow for lengthwise thermal expansion and contraction of the receiver panels along the boiler tubes, and to allow for lateral thermal expansion and contraction of the receiver panels toward and away from one another, while blocking solar radiation through the gap.
In certain embodiments, the first and second receiver panels are substantially coplanar. It is also contemplated that the first an second receiver panels can be substantially perpendicular. The panel expansion joint can include a flexible panel expansion shield configured to block solar radiation through the gap and to flex to allow for lateral thermal expansion and contraction of the receiver panels toward and away from one another. The panel expansion shield can define elongated slots and can be attached to the first and second receiver panels by fasteners passing through the elongated slots to accommodate panel thermal expansion and compression along the slots.
The invention also includes a boiler for a solar receiver that includes T-bar assemblies. The boiler includes a first receiver panel having a plurality of substantially parallel boiler tubes fluidly connecting an inlet header of the panel to an outlet header of the panel. A second receiver panel has a plurality of substantially parallel boiler tubes fluidly connecting an inlet header of the panel to an outlet header of the panel. The boiler tubes of the second receiver panel are substantially parallel to the boiler tubes of the first receiver panel. The first and second receiver panels are separated by a gap. First and second T-bar assemblies are each attached to a backside of a respective one of said receiver panels. The T-bar assemblies are slidably connected by a connecting plate fixedly attached to one of the T-bar assemblies, and a fastener inserted through an elongated slot in said connecting plate and fixedly secured to the other one of the T-bar assemblies. An endmost tube of each of said panels is attached to an adjacent tube of the respective panel by a membrane at an angle such that adjacent endmost tubes are displaced from a plane defined by the tubes in each of the respective first and second receiver panels in opposite directions, such that solar radiation is prevented from passing through the gap and such that lateral thermal expansion and contraction of the receiver panels toward and away from one another is permitted by the slidable connector of the T-bar assemblies.
In accordance with certain embodiments, the panels form a corner with respect to one another, and each of the endmost tubes at the corner is rigidly connected by a membrane at about a 45° angle with respect to each of the receiver panels. Each of the T-bar assemblies can include upper and lower tube clips welded to every other boiler tube of each said panel. A first plate can be inserted into the upper and lower tube clips, the first plate running the width of each panel. A support plate can be inserted behind the first plate into the upper and lower tube clips, resting on the lower tube clip and running the width of each panel and having a space between the support plate and the upper tube clips to allow for thermal expansion. A T-bar can be welded to the support plate for each panel such that it is arranged substantially perpendicularly to the support plate. The connecting plate can slidably connect adjoining T-bars at the panel gap.
These and other features of the systems and methods of the subject invention will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject invention appertains will readily understand how to make and use the devices and methods of the subject invention without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
a) and 11(b) show how the fifth exemplary embodiment utilizes a T-bar assembly, where
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject invention. For purposes of explanation and illustration, and not limitation, a partial view of a boiler in accordance with the invention is shown in
A typical boiler is split into panels, which are sized to facilitate manufacturing, shipping, and assembly. Due to the unique heat flux in solar applications, specifically the large variations in heat flux experienced over small areas, each panel must be allowed to thermally expand and grow independently from the adjacent panels. Typically, there is a gap to allow for such thermal expansion, however, leaving a gap between panels allows concentrated solar radiation to penetrate into the boiler, i.e. leakage, exposing equipment inside. To prevent this, the system in accordance with the present invention is configured to reduce or eliminate radiation leakage, while still allowing for thermal expansion, both vertically and horizontally. The system consists of a panel expansion shield constructed of steel or any suitable material, which is fastened through slotted holes therethrough to the adjacent tubes across a gap between panels. The slotted hole allows for varying vertical expansion between panels. The shield itself is designed to flex inward as the panels grow toward each other. A panel expansion shield can also be configured to prevent radiation leakage at corner panels, where two panels meet perpendicular to each other. By using a panel expansion shield corner panels are allowed to grow in two dimensions, while maintaining a barrier to concentrated solar radiation.
With reference now to
A second boiler panel 110, of a superheater section, for example, similarly includes a plurality of tubes fluidly connecting an inlet header 112 of second boiler panel 110 to an outlet header 114 of second boiler panel 110. The tubes of second boiler panel 110 forming a second solar receiver surface 116 and a second internal surface 118 opposite the second solar receiver surface (i.e. external and internal surfaces, respectively, as indicated in
First and second boiler panels 102 and 110 are adjacent one another with an end 120 of first solar receiver surface 106 overlapping an end 122 of second boiler panel 110 to reduce solar radiation passing between the first and second solar receiver surfaces 106 and 116. The interior surfaces have a layer of insulating material 124 to protect the interior space and components from the high external temperatures.
Referring now to a first exemplary embodiment as shown in
Panel expansion shield includes a bend 12 which can flex to allow for lateral (width-wise) thermal expansion and contraction of the receiver panels toward and away from one another, as indicated by arrows in
Panel expansion shield 10 is also configured and adapted to allow for vertical thermal expansion and contraction of the receiver panels along the lengthwise direction boiler tubes 210, as indicated by arrows in
In
In order to withstand the high heat flux and shield internal components against leakage of solar radiation, panel expansion shields 10 and 20 are made of steel, ceramics, or any other suitable material. Rods 215 are used to attach tubes 210 together, as indicated in
While the gaps in-between the panels 110a, 110b are sealed with out of plane tubes 210 to allow for expansion, the corners are rigidly connected together, as shown in
The methods and systems of the present invention, as described above and shown in the drawings provide for expansion joints between panels in solar boilers. This configuration provides improved accommodation of thermal expansion in the vertical and lateral directions of the panels while also providing protection of components and spaces internal to the receiver panels from leakage of solar radiation from the heliostats.
While the apparatus and methods of the subject invention have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the invention.
This application claims priority to U.S. Provisional Application No. 61/151,984, filed Feb. 12, 2009, to U.S. Provisional Application No. 61/152,011, filed Feb. 12, 2009, to U.S. Provisional Application No. 61/152,035, filed Feb. 12, 2009, to U.S. Provisional Application No. 61/152,049, filed Feb. 12, 2009, to U.S. Provisional Application No. 61/152,077, filed Feb. 12, 2009, to U.S. Provisional Application No. 61/152,114, filed Feb. 12, 2009, and to U.S. Provisional Application No. 61/152,286, filed Feb. 13, 2009, each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2383234 | Barnes | Aug 1945 | A |
3163265 | Waite | Dec 1964 | A |
3197343 | Palmatier | Jul 1965 | A |
3208877 | Merry | Sep 1965 | A |
3325312 | Sonntag, Jr. | Jun 1967 | A |
3450192 | Hay | Jun 1969 | A |
3459597 | Baron | Aug 1969 | A |
3464402 | Collura | Sep 1969 | A |
3814530 | Neff | Jun 1974 | A |
3822692 | Demarest | Jul 1974 | A |
3823703 | Lanciault | Jul 1974 | A |
3893506 | Laing | Jul 1975 | A |
3924604 | Anderson | Dec 1975 | A |
3927659 | Blake et al. | Dec 1975 | A |
3951108 | Rees | Apr 1976 | A |
3968652 | Chevalier | Jul 1976 | A |
3991742 | Gerber | Nov 1976 | A |
3995804 | Folds et al. | Dec 1976 | A |
4003366 | Lightfoot | Jan 1977 | A |
4037639 | Jones | Jul 1977 | A |
4088266 | Keyes | May 1978 | A |
4094147 | Alleau et al. | Jun 1978 | A |
4112921 | MacCracken | Sep 1978 | A |
4120288 | Barrett | Oct 1978 | A |
4127102 | Berman | Nov 1978 | A |
4127103 | Klank et al. | Nov 1978 | A |
4128096 | Katz | Dec 1978 | A |
4136674 | Korr | Jan 1979 | A |
4191246 | Cassell | Mar 1980 | A |
4204523 | Rothe | May 1980 | A |
4205658 | Clark | Jun 1980 | A |
4210122 | Artweger | Jul 1980 | A |
4215676 | Gilliam | Aug 1980 | A |
4237861 | Fayard et al. | Dec 1980 | A |
4245618 | Wiener | Jan 1981 | A |
4253801 | O'Hare | Mar 1981 | A |
4257477 | Maloney | Mar 1981 | A |
4261330 | Reinisch | Apr 1981 | A |
4265223 | Miserlis et al. | May 1981 | A |
4269172 | Parker et al. | May 1981 | A |
4273100 | Cogliano | Jun 1981 | A |
4280483 | Schaffer | Jul 1981 | A |
4289114 | Zadiraka | Sep 1981 | A |
4296730 | Zadiraka | Oct 1981 | A |
4296733 | Saunders | Oct 1981 | A |
4312687 | Sigworth, Jr. | Jan 1982 | A |
4313304 | Hunt | Feb 1982 | A |
4320663 | Francia | Mar 1982 | A |
4324229 | Risser | Apr 1982 | A |
4338991 | Sigworth, Jr. | Jul 1982 | A |
4350374 | Brollo | Sep 1982 | A |
4353356 | Vandenbossche | Oct 1982 | A |
4359043 | Dominique et al. | Nov 1982 | A |
4367726 | Maes, Jr. | Jan 1983 | A |
4371035 | Soligno | Feb 1983 | A |
4373512 | Hirt | Feb 1983 | A |
4380996 | Mengeringhausen | Apr 1983 | A |
4384550 | Miller | May 1983 | A |
4394859 | Drost | Jul 1983 | A |
4404960 | Laing | Sep 1983 | A |
4416265 | Wallace | Nov 1983 | A |
4428361 | Straza | Jan 1984 | A |
4432341 | Howe et al. | Feb 1984 | A |
4454863 | Brown et al. | Jun 1984 | A |
4485803 | Wiener | Dec 1984 | A |
4503903 | Kramer | Mar 1985 | A |
4512336 | Wiener | Apr 1985 | A |
4535755 | Roberts | Aug 1985 | A |
4569331 | Tani et al. | Feb 1986 | A |
4615381 | Maloney | Oct 1986 | A |
4653470 | Carli et al. | Mar 1987 | A |
4660630 | Cunningham et al. | Apr 1987 | A |
4665894 | Juhasz | May 1987 | A |
4712338 | Trickel | Dec 1987 | A |
4721069 | Kreider | Jan 1988 | A |
4768345 | Kardas | Sep 1988 | A |
4832119 | Bloor et al. | May 1989 | A |
4867133 | Sadler | Sep 1989 | A |
4946512 | Fukuroi et al. | Aug 1990 | A |
4972806 | Marsault | Nov 1990 | A |
5163821 | Kelly et al. | Nov 1992 | A |
5174128 | Bourne et al. | Dec 1992 | A |
5201282 | Albrecht | Apr 1993 | A |
5217000 | Pierce-Bjorklund | Jun 1993 | A |
5342016 | Marsault et al. | Aug 1994 | A |
5368092 | Rearden et al. | Nov 1994 | A |
5404937 | Assaf et al. | Apr 1995 | A |
5417052 | Bharathan et al. | May 1995 | A |
5444972 | Moore | Aug 1995 | A |
5482233 | Marko et al. | Jan 1996 | A |
5694774 | Drucker | Dec 1997 | A |
5727379 | Cohn | Mar 1998 | A |
5823176 | Harris | Oct 1998 | A |
5850831 | Marko | Dec 1998 | A |
5857322 | Cohn | Jan 1999 | A |
5862800 | Marko | Jan 1999 | A |
5881456 | Bergins et al. | Mar 1999 | A |
5943985 | Hartman | Aug 1999 | A |
6126120 | Quaranta et al. | Oct 2000 | A |
6155339 | Grapengater | Dec 2000 | A |
6173927 | Delsol | Jan 2001 | B1 |
6240156 | Matsumoto et al. | May 2001 | B1 |
6301928 | Tanatsugu et al. | Oct 2001 | B1 |
6434942 | Charlton | Aug 2002 | B1 |
6487859 | Mehos et al. | Dec 2002 | B2 |
6497102 | Liebig | Dec 2002 | B2 |
6532953 | Blackmon et al. | Mar 2003 | B1 |
6668555 | Moriarty | Dec 2003 | B1 |
6708687 | Blackmon, Jr. et al. | Mar 2004 | B2 |
6736134 | Marko | May 2004 | B2 |
6913015 | Pajk | Jul 2005 | B2 |
6926440 | Litwin | Aug 2005 | B2 |
6931851 | Litwin | Aug 2005 | B2 |
7011086 | Litwin | Mar 2006 | B2 |
7600350 | Braunstein | Oct 2009 | B2 |
7640746 | Skowronski et al. | Jan 2010 | B2 |
7806377 | Strizki | Oct 2010 | B2 |
20010010222 | Prueitt | Aug 2001 | A1 |
20020029869 | Kodumudi et al. | Mar 2002 | A1 |
20030041856 | Blackmon et al. | Mar 2003 | A1 |
20040035111 | Ven et al. | Feb 2004 | A1 |
20040112374 | Litwin | Jun 2004 | A1 |
20040139961 | Blackmon et al. | Jul 2004 | A1 |
20040244376 | Litwin et al. | Dec 2004 | A1 |
20040251002 | Reichle et al. | Dec 2004 | A1 |
20040255571 | Fetescu et al. | Dec 2004 | A1 |
20040256000 | Konstantin | Dec 2004 | A1 |
20050016524 | Broatch | Jan 2005 | A1 |
20060225863 | Levin | Oct 2006 | A1 |
20060260314 | Kincaid et al. | Nov 2006 | A1 |
20070089775 | Lasich | Apr 2007 | A1 |
20070119718 | Gibson et al. | May 2007 | A1 |
20070227531 | Garcia Cors et al. | Oct 2007 | A1 |
20070295382 | Oak | Dec 2007 | A1 |
20080000231 | Litwin et al. | Jan 2008 | A1 |
20080022685 | Zhu | Jan 2008 | A1 |
20080053523 | Brown et al. | Mar 2008 | A1 |
20080078378 | Zhu | Apr 2008 | A1 |
20080092551 | Skowronski | Apr 2008 | A1 |
20080256953 | Arkas et al. | Oct 2008 | A1 |
20080302357 | DeNault | Dec 2008 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090101134 | Merrett | Apr 2009 | A1 |
20090107146 | Lin | Apr 2009 | A1 |
20090114269 | Fletcher et al. | May 2009 | A1 |
20090114270 | Stancel | May 2009 | A1 |
20090199557 | Bennett | Aug 2009 | A1 |
20090250051 | Lata Perez | Oct 2009 | A1 |
20090260359 | Palkes | Oct 2009 | A1 |
20090276993 | Fedock et al. | Nov 2009 | A1 |
20100229853 | Vandal et al. | Sep 2010 | A1 |
20100236183 | Cusson et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2501839 | Sep 1982 | FR |
53131309 | Nov 1978 | JP |
08326223 | Dec 1996 | JP |
WO-2008154599 | Dec 2008 | WO |
Entry |
---|
U.S. Appl. No. 60/943,096, Kroizer. |
International Search Report and Written Opinion, dated Aug. 30, 2010 for PCT/US2010/023124. |
International Search Report and Written Opinion, dated Aug. 31, 2010 for PCT/US2010/023165. |
International Search Report and Written Opinion, dated Oct. 13, 2010 for PCT/US2010/023622. |
International Search Report and Written Opinion, dated Oct. 13, 2010 for PCT/US2010/023826. |
International Search Report and Written Opinion, dated Dec. 13, 2010 for PCT/US2010/023367. |
International Search Report and Written Opinion, dated Dec. 13, 2010 for PCT/US2010/023500. |
Official Action issued by the Israel Patent Office dated Mar. 25, 2014 for Israel Patent Application No. 214524. |
Number | Date | Country | |
---|---|---|---|
20100199980 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
61151984 | Feb 2009 | US | |
61152011 | Feb 2009 | US | |
61152035 | Feb 2009 | US | |
61152049 | Feb 2009 | US | |
61152077 | Feb 2009 | US | |
61152114 | Feb 2009 | US | |
61152286 | Feb 2009 | US |