The present invention relates to microscopy and, in particular, to optical imaging of biological specimens.
Microscopy has provided valuable biological information by optically magnifying images of small structures in fixed cells and tissues. However, the resolution of such imaging techniques are restricted to approximately half the wavelength of the illuminating source. In the visible region of the spectrum this is on the order of a quarter to a third of a micron (250-330 nm). Unfortunately, there is a vast range of biological structures/systems where non-invasive observations below this length scale are inaccessible to conventional optical microscopy.
There has been considerable activity aimed at developing optical techniques that reveal structure on the 100 nm length scale and below. For example, the development of super-resolution microscopy allowed for the visualization of a sample with resolution better than 250 nanometers and down to 20 nm. However, these techniques require specialized and demanding imaging conditions, specially designed fluorescent proteins, or expensive new machines and additional technical training to use the machines, and has difficulty with thick structures such as tissue sections or tumors.
Thus, there is a need for higher resolution microscopy that can work with current diffraction limited microscopes and can optically magnify larger samples, such as tissue sections or tumors, with nanoscale precision.
The present invention is a method for optical imaging of biological specimens with resolution better than the classical microscopy diffraction limit, based on physically expanding the specimen itself. In this method, cultured cells, fixed tissue, or in principle other types of samples of interest, including biological materials, are infused with a composition, or chemical cocktail, that results in it becoming embedded in the sample material, and then the composition can be expanded isotropically, preferably with nanoscale precision, in three dimensions.
In an embodiment of this concept, the composition comprises a polyelectrolyte hydrogel (or the components thereof), which can swell macroscopically, for example, in low-salt water. The composition can comprise a tag or other feature of interest (for example, fluorescent dye molecules that have been delivered to the biological sample via antibody staining) which can be anchored (e.g., chemically) into the hydrogel before expansion. Following anchoring, the specimen is subjected to an enzymatic digestion (or other digestion) to disrupt the underlying network of biological molecules, leaving the tags of interest (e.g., the fluorescent dye molecules) intact and anchored to the gel. In this way, the mechanical properties of the gel-biomolecule hybrid material are rendered more spatially uniform, allowing isotropic expansion with minimal artifacts.
The swollen material with embedded biological specimen can be imaged on any optical microscope, allowing effective imaging of features below the classical diffraction limit. Since the resultant specimen can be transparent, custom microscopes capable of large volume, wide field of view, fast 3-D scanning may also be used in conjunction with the expanded sample.
This technology will enable new kinds of scientific exploration, such as mapping the brain, as well as new diagnostic, personalized medicine, histopathological, and other medical capabilities.
Other aspects, advantages and novel features of the invention will become more apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
The present invention relates to an enlarged sample of interest for microscopy and methods for enlarging a sample of interest and the optical imaging of a sample of interest with resolution better than the classical microscopy diffraction limit, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. The invention also includes the use of compositions described herein for enlarging a sample of interest.
In one aspect, the invention provides an expandable sample of interest for microscopy. The expandable sample of interest comprises a sample of interest embedded in a swellable material. In certain embodiments, the sample of interest is labeled.
In a second aspect, the invention provides a method for enlarging a sample of interest for microscopy. The method comprises first embedding a sample of interest in a swellable material and then swelling the material. In certain embodiments, the sample of interest is labeled.
In a third aspect, the invention provides a method for preparing an enlargeable sample of interest for microscopy. In one embodiment, the method comprises embedding a sample of interest in a swellable material. In certain embodiments, the sample of interest is labeled.
In another aspect, the invention provides a microscopy method for producing a high-resolution image of a sample, the method comprising enlarging a sample of interest and viewing the enlarged sample under a microscope. In one embodiment, enlarging the sample of interest comprises embedding a sample of interest in a swellable material and then swelling the material. In certain embodiments, the sample of interest is labeled.
In a further aspect, the invention provides a method for the optical imaging of a sample of interest with resolution better than the classical microscopy diffraction limit, based on physically expanding the sample itself. In one embodiment, the method comprises embedding a sample of interest in a swellable material and then swelling the material. In certain embodiments, the sample of interest is labeled.
As used herein, the term “sample of interest” generally refers to, but not limited to, a biological, chemical or biochemical sample, such as a cell, array of cells, tumor, tissue, cell isolate, biochemical assembly, or a distribution of molecules suitable for microscopic analysis.
In a preferred embodiment, the sample of interest can be labeled or tagged. Typically, the label or tag will bind chemically (e.g., covalently, hydrogen bonding or ionic bonding) to the sample, or a component thereof. The tag can be selective for a specific target (e.g., a biomarker or class of molecule), as can be accomplished with an antibody or other target specific binder. The tag preferably comprises a visible component, as is typical of a dye or fluorescent molecule. Contacting the sample of interest with a label or tag results in a “labeled sample of interest.” A fluorescently labeled sample of interest, for example, is a sample of interest labeled through techniques such as, but not limited to, immunofluorescence, immunohistochemical or immunocytochemical staining to assist in microscopic analysis. Thus, the label or tag is preferably chemically attached to the sample of interest, or a targeted component thereof. In a preferred embodiment, the label or tag, e.g. the antibody and/or fluorescent dye, further comprises a physical, biological, or chemical anchor or moiety that attaches or crosslinks the sample to the composition, hydrogel or other swellable material. The labeled sample may furthermore include more than one label. For example, each label can have a particular or distinguishable fluorescent property, e.g., distinguishable excitation and emission wavelengths. Further, each label can have a different target specific binder that is selective for a specific and distinguishable target in, or component of the sample.
As used herein, the term “swellable material” generally refers to a material that expands when contacted with a liquid, such as water or other solvent. Preferably, the swellable material uniformly expands in 3 dimensions. Additionally or alternatively, the material is transparent such that, upon expansion, light can pass through the sample. In one embodiment the swellable material is a swellable polymer or hydrogel. In one embodiment, the swellable material is formed in situ from precursors thereof. For example, one or more polymerizable materials, monomers or oligomers can be used, such as monomers selected from the group consisting of water soluble groups containing a polymerizable ethylenically unsaturated group. Monomers or oligomers can comprise one or more substituted or unsubstituted methacrylates, acrylates, acrylamides, methacrylamides, vinylalcohols, vinylamines, allylamines, allylalcohols, including divinylic crosslinkers thereof (e.g., N,N-alkylene bisacrylamides). Precursors can also comprise polymerization initiators and crosslinkers. In a preferred embodiment, the swellable polymer is polyacrylate and copolymers or crosslinked copolymers thereof. Alternatively or additionally, the swellable material can be formed in situ by chemically crosslinking water soluble oligomers or polymers. Thus, the invention envisions adding precursors (such as water soluble precursors) of the swellable material to the sample and rendering the precursors swellable in situ.
In an embodiment, embedding the sample in a swellable material comprises permeating (such as, perfusing, infusing, soaking, adding or other intermixing) the sample with the swellable material, preferably by adding precursors thereof. Alternatively or additionally, embedding the sample in a swellable material comprises permeating one or more monomers or other precursors throughout the sample and polymerizing and/or crosslinking the monomers or precursors to form the swellable material or polymer. In this manner the sample of interest is embedded in the swellable material.
Thus, a preferred embodiment of the invention a sample of interest, or a labeled sample, is permeated with a composition comprising water soluble precursors of a water swellable material and reacting the precursors to form the water swellable material in situ.
In certain embodiments, the sample of interest, or a labeled sample, can, optionally, be treated with a detergent prior to being contacted with the one or more swellable material precursors. The use of a detergent can improve the wettability of the sample or disrupt the sample to allow the one or more swellable monomer precursors to permeate throughout sample.
In a preferred embodiment, the sample is permeated with one or more monomers or a solution comprising one or more monomers or precursors which are then reacted to form a swellable polymer. For example, if the sample of interest is to be embedded in sodium polyacrylate, a solution comprising the monomers sodium acrylate and acrylamide, and the cross-linker N,N-methylenebisacrylamide are perfused throughout the sample. Once the sample, or labeled sample, is permeated, the solution is activated to form sodium polyacrylate. In a preferred embodiment, the solution comprising the monomers is aqueous. The solution is preferably at high concentration, such as about 50% or more saturation (defined herein as the percentage of solids present in the aqueous solvent in the same ratio as would result in precipitation under the conditions of permeation). The solution is preferably at high concentration, such as about 75% or more saturation, more preferably 90% or more saturation.
In a preferred embodiment, the sample (e.g., a labeled sample) is anchored or crosslinked to the swellable material before expansion. This can preferably be accomplished by chemically crosslinking a tag or label with the swellable material, such as during or after the polymerization or in situ formation of the swellable material. In an embodiment, after the labeled sample has been anchored to the swellable material, the sample is, optionally, subjected to a disruption of the endogenous biological molecules (or the physical structure of the sample of interest, where the sample is other than a biological material), leaving the tags or fluorescent dye molecules intact and anchored to the swellable material. In this way, the mechanical properties of the sample-swellable material complex are rendered more spatially uniform, allowing isotropic expansion with minimal artifacts.
As used herein, the “disruption of the endogenous biological molecules” of the sample of interest generally refers to the mechanical, physical, chemical, biochemical or, preferably, enzymatic digestion, disruption or break up of the sample so that it will not resist expansion. In an embodiment, a protease enzyme is used to homogenize the sample-swellable material complex. It is preferable that the disruption does not impact the structure of the swellable material but disrupts the structure of the sample. Thus, the sample disruption should be substantially inert to the swellable material. The degree of digestion can be sufficient to compromise the integrity of the mechanical structure of the sample or it can be complete to the extent that the sample-swellable material complex is rendered substantially free of the sample.
The sample-swellable material complex is then isoptropically expanded. Preferably, a solvent or liquid is added to the complex which is then absorbed by the swellable material and causes swelling. Where the swellable material is water swellable, an aqueous solution can be used.
In one embodiment, the addition of water allows for the embedded sample to expand 4× to 5× (e.g., 4.5×) or more its original size in 3-dimensions. Thus, the sample can be increased 100-fold or more in volume. This is because the polymer is embedded throughout the sample, therefore, as the polymer swells (grows) it expands the tissue as well. Thus, the tissue sample itself becomes bigger. Surprisingly, as the material swells isotropically, the anchored tags maintain their relative spacial relationship.
The swollen material with the embedded sample of interest can be imaged on any optical microscope, allowing effective imaging of features below the classical diffraction limit. Since the resultant specimen is preferably transparent, custom microscopes capable of large volume, wide field of view, 3-D scanning may also be used in conjunction with the expanded sample.
Anchor-Able Dye System:
DNA sequences were ordered with 5′ amine modification (Integrated DNA Technologies) and conjugated to secondary antibodies (Jackson ImmunoResearch) using a commercial kit (Solulink, Antibody-Oligonucleotide All-in-One Conjugation Kit). For the tertiary DNA/dye staining molecule, the complementary oligonucleotides are ordered with a 3′ amine modification and a 5′ Acrydite modification (Integrated DNA Technologies) and conjugated to dyes (Life Technologies and Sigma Aldrich) modified with NHS-ester chemistry per the manufacturer's directions. Conjugated DNA molecules were purified via reverse-phase HPLC, lyophilized and re-suspended in ddH2O.
Cultured cells preparation and staining: All solutions are made up in 1×PBS, and incubations carried out at room temperature unless otherwise noted. HEK293-FT cells were fixed in 3% formaldehyde/0.1% glutaraldehyde (Electron Microscopy Sciences) for 10 minutes, followed by quenching in 100 mM glycine for 10 minutes and reduction with 0.1% NaBH4 for 7 minutes. Cells were permeabilized with 0.2% Triton for 15 minutes at room temperature and blocked with 5% normal donkey serum for one hour. Specimens were incubated with primary antibodies in blocking buffer at a concentration of 10 ug/mL for 1-4 hours, and then washed in PBS three times for 5 minutes each. Specimens were incubated with DNA-labeled secondary antibodies in DNA hybridization buffer (2×SSC buffer, 10% Dextran sulfate, 1 mg/mL yeast tRNA, 5% normal donkey serum) at a concentration of approximately 10 ug/mL for 1-4 hours, then washed in PBS as for primary. Specimens were incubated with dye-labeled DNA tertiaries in hybridization buffer at a concentration of 0.5 ng/uL overnight, then washed three times in 2×SSC.
Tissue Preparation and Staining:
Thy1-YFP-expressing mice were anesthetized with isoflurane and perfused transcardially with ice cold 4% paraformaldehyde. Brains were dissected out, left in 4% paraformaldehyde at 4° C. for one day, and then sunk in 30% sucrose with 100 mM glycine for one day. Tissue was frozen in −40° C. isopentane cooled with dry ice, embedded in M-1 embedding matrix (Thermo Scientific) and sliced on a cryotome. Slices were permeabilized and blocked in 1×PBS with 0.1% Triton and 2% normal donkey serum (slice blocking buffer) for at least six hours. Slices were incubated with primary antibodies in slice blocking buffer at a concentration of 10 ug/mL for 6-12 hours, and then washed in slice blocking buffer four times for thirty minutes each wash. Slices were incubated with DNA-labeled secondary antibodies in hybridization buffer at a concentration of approximately 10 ug/mL for 6-12 hours, then washed in slice blocking buffer as for primary. Specimens were incubated with dye-labeled DNA tertiaries in hybridization buffer at a concentration of 1 ng/uL for 6-12 hours, then washed in slice blocking buffer as for primary.
Hydrogel Embedding:
Monomer solution (1×PBS, 2M NaCl, 8.625% (w/w) sodium acrylate, 2.5% (w/w) acrylamide, 0.15% (w/w) N,N′-Methylenebisacrylamide is mixed fresh every week. Prior to embedding, monomer solution was cooled to 4° C. to prevent pre-mature gelation. Concentrated stocks (10% w/v) of ammonium persulfate (APS) initiator and tetramethylethylenediamine (TEMED) accelerator were added to the monomer solution up to 0.2% (w/w) each. Stained cells or tissue slices were incubated with the monomer solution plus APS/TEMED at 4° C. for two minutes (cultured cells) or ten minutes (slices), and then transferred to a 37° C. oven for one hour.
Digestion and Expansion:
Proteinase K (New England Biolabs) was diluted to 200 ug/mL in digestion buffer (50 mM Tris pH8, 1 mM EDTA, 0.5% Triton-X100, 1M NaCl, 0.8M guanidine HCl) and applied directly to gels in at least ten times volume excess. Gels can be formed in a Culturewell Chambered Coverglass (Invitrogen), and the chamber walls removed before adding digestion buffer in order to improve access of enzyme to the embedded tissue. The gels are then incubated in digestion buffer for greater than 6 hours to ensure complete digestion of all proteins. Digested gels were next placed in excess volume of doubly de-ionized or distilled water for several hours to expanded to ensure the gel reaches equilibrium. The expanded gel can be imaged on a standard optical microscope, though high light gathering and detector sensitivity are useful due to the volumetric dilution of bound dye molecules.
Imaging:
SIM imaging was performed on a Deltavision OMX SIM microscope. Stained cells were imaged within Culturewell Chambered Coverglass with SlowFade Gold antifade reagent (Invitrogen) for suppression of photobleaching and refractive index matching.
Post-expansion imaging was performed on a Perkin Elmer Spinning disk confocal or a Zeiss Laser Scanning Confocal (LSM 710). Briefly, expanded gels were placed in glass-bottom six well plates (In Vitro Scientific) and held in place with low-melting point agarose. Images were taken at with 1 Airy unit and Nyquist sampling on the LSM 710.
Expansion Microscopy (ExM). Any reference to color within the following description and corresponding figures can be found in Chen et al., Science (January 2015), Expansion Microscopy, v347(6221), pp. 543-548, which is incorporated herein by reference. However, the use of color is for illustrative purposes as the figures, and the textures therein, speak for themselves.
Sodium acrylate, a monomer used to produce super-absorbent materials, along with the co-monomer acrylamide and the crosslinker N—N′-methylenebisacrylamide were infused into chemically fixed and permeabilized brain tissue (
A fluorescent label, compatible with the proteolytic treatment and subsequent tissue expansion described herein, was incorporated directly into the polymer network. The label was tri-functional, comprising a methacryloyl group capable of participating in free radical polymerization, a chemical fluorophore for visualization, and an oligonucleotide that can hybridize to a complementary sequence attached to an affinity tag (e.g., a secondary antibody) (
Fluorescence imaging was performed using expansion microscopy (ExM) of the present invention, examining microtubules in fixed HEK293 cells labeled with the tri-functional label and imaged with confocal laser scanning micros-copy pre- vs. post-ExM processing. The post-E×M image (
Pre-ExM conventional super-resolution images was compared to post-ExM confocal images. Features traditionally used to characterize the performance of super-resolution microscopes, including microtubules and clathrin coated pits were labeled and imaged with a super-resolution structured illumination microscope (SR-SIM) pre-ExM, and a spinning disk confocal post-ExM. Qualitatively (
Clathrin coated pits were also well resolved (
ExM was applied to fixed brain tissue. Slices of brain from Thy1-YFP-H mice expressing cytosolic YFP under the Thy1 promoter in a subset of neurons were stained with a tri-functional label bearing Alexa 488, using anti-GFP primary antibodies (which also bind YFP). Slices expanded ˜4×, similar to the expansion factor in cultured cells. Pre- vs. post-E×M images taken on an epifluorescence microscope were compared. As with cultured cells, the post-E×M image (
Tri-functional labels with different colors and oligonucleotides were synthesized to enable multicolor ExM. Pre- (
To explore whether expanded samples, scanned on fast diffraction-limited microscopes, could support scalable super-resolution imaging, a volume of the adult Thy1-YFP-H mouse brain spanning 500 μm×180 μm×100 μm (a typical slice thickness for immunohistochemistry) was imaged with three labels (
While a preferred embodiment is disclosed, many other implementations will occur to one of ordinary skill in the art and are all within the scope of the invention. Each of the various embodiments described above may be combined with other described embodiments in order to provide multiple features. Furthermore, while the foregoing describes a number of separate embodiments of the apparatus and method of the present invention, what has been described herein is merely illustrative of the application of the principles of the present invention. Other arrangements, methods, modifications, and substitutions by one of ordinary skill in the art are therefore also considered to be within the scope of the present invention, which is not to be limited except by the claims that follow.
This application claims the benefit of U.S. provisional application Ser. No. 61/943,045, filed on Feb. 21, 2014, the contents of which are incorporated herein by reference in its entirety.
This invention was made with U.S. government support under Grant Number 1DP1NS087724, awarded by the National Institutes for Health. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6107081 | Feeback et al. | Aug 2000 | A |
6287870 | Wardlaw | Sep 2001 | B1 |
20020176880 | Cruise | Nov 2002 | A1 |
20050090016 | Rich | Apr 2005 | A1 |
20090191627 | Fadeev et al. | Jul 2009 | A1 |
20090241681 | Machauf | Oct 2009 | A1 |
20100041128 | Banes et al. | Feb 2010 | A1 |
20100068725 | Armbruster | Mar 2010 | A1 |
20110070604 | Gimzewski et al. | Mar 2011 | A1 |
20110091922 | Krishnan et al. | Apr 2011 | A1 |
20130045503 | Miyawaki et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2005291759 | Oct 2005 | JP |
2009191125 | Aug 2009 | JP |
2014-005231 | Jun 2012 | JP |
2012142664 | Oct 2012 | WO |
WO 2014025392 | Feb 2014 | WO |
Entry |
---|
Van Vliet, et al., The Biomechanics Toolbox: Experimental Approaches for Living Cells and Biomolecules, Acta Materialia 51: pp. 5881-5905, Aug. 23, 2003, [online], retrieved from the Internet, Oct. 23, 2015. |
Number | Date | Country | |
---|---|---|---|
20160116384 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
61943045 | Feb 2014 | US |