EXPANSION OF NATURAL KILLER CELLS AND ILC3 CELLS WITH NOVEL AROMATIC COMPOUNDS

Abstract
Provided herein are methods of producing natural killer (NK) cells and/or ILC3 cells using a three-stage expansion and differentiation method with media comprising stem cell mobilizing factors. Also provided herein are methods of suppressing tumor cell proliferation using the NK cells and/or ILC3 cells and the NK cell and/or ILC3 cell populations produced by the three-stage methods described herein, as well as methods of treating individuals having cancer or a viral infection, comprising administering the NK cells and/or ILC3 cells and the NK cell and/or ILC3 cell populations produced by the three-stage methods described herein to an individual having the cancer or viral infection.
Description
1. FIELD

Provided herein are methods of producing populations of natural killer (NK) cells and/or ILC3 cells from a population of hematopoietic stem or progenitor cells in media comprising stem cell mobilizing factors, e.g., three-stage methods of producing NK cells and/or ILC3 cells in media comprising stem cell mobilizing factors starting with hematopoietic stem or progenitor cells from cells of the placenta, for example, from placental perfusate (e.g., human placental perfusate) or other tissues, for example, umbilical cord blood or peripheral blood. Further provided herein are methods of using the placental perfusate, the NK cells and/or ILC3 cells and/or NK progenitor cells described herein, to, e.g., suppress the proliferation of tumor cells, or to inhibit pathogen infection, e.g., viral infection. In certain embodiments, the NK cells and/or ILC3 cells and/or NK progenitor cells produced by the three-stage methods described herein are used in combination with, and/or treated with, one or more immunomodulatory compounds.


2. BACKGROUND

Natural killer (NK) cells are cytotoxic lymphocytes that constitute a major component of the innate immune system.


NK cells are activated in response to interferons or macrophage-derived cytokines. The cytotoxic activity of NK cells is largely regulated by two types of surface receptors, which may be considered “activating receptors” or “inhibitory receptors,” although some receptors, e.g., CD94 and 2B4 (CD244), can work either way depending on ligand interactions.


Among other activities, NK cells play a role in the host rejection of tumors and have been shown capable of killing virus-infected cells. Natural killer cells can become activated by cells lacking, or displaying reduced levels of, major histocompatibility complex (MHC) proteins. Cancer cells with altered or reduced level of self-class I MHC expression result in induction of NK cell sensitivity. Activated and expanded NK cells, and in some cases LAK cells, from peripheral blood have been used in both ex vivo therapy and in vivo treatment of patients having advanced cancer, with some success against bone marrow related diseases, such as leukemia; breast cancer; and certain types of lymphoma.


In spite of the advantageous properties of NK cells in killing tumor cells and virus-infected cells, there remains a need in the art to develop efficient methods to produce and expand natural killer cells that retain tumoricidal functions.


NK cells are innate lymphoid cells (ILCs). Innate lymphoid cells are related through their dependency on transcription factor ID2 for development. One type of ILC, known as the ILC3 cell, is described in the literature as expressing RORγt and producing IL-22, as well as playing a role in the immune response of adults, without manifesting cytotoxic effectors such as perforin, granzymes, and death receptors (Montaldo et al., 2014, Immunity 41:988-1000; Killig et al., 2014, Front. Immunol. 5:142; Withers et al., 2012, J. Immunol. 189(5):2094-2098).


3. SUMMARY

Provided herein are methods of expanding and differentiating cells, for example, hematopoietic cells, such as hematopoietic stem cells, e.g., CD34+ hematopoietic stem cells, to produce natural killer (NK) cells and/or ILC3 cells. In particular, the present invention focuses on novel aromatic compounds (stem cell mobilizing agents/factors) which promote the proliferation/expansion of hematopoietic stem and progenitor cells in order to produce increased populations of differentiated NK and/or ILC3 cells from said hematopoietic progenitor cells. These compounds, and their synthesis and validation, are described in greater detail in cofiled application No. ______, which is incorporated by reference herein.


In one aspect, provided herein are methods of producing NK cell populations and/or ILC3 cell populations that comprise three stages as described herein (and referred to herein as the “three-stage method”). Natural killer cells and/or ILC3 cells produced by the three-stage methods provided herein are referred to herein as “NK cells produced by the three-stage method,” “ILC3 cells produced by the three-stage method,” or “NK cells and/or ILC3 cells produced by the three-stage method.” In certain embodiments, said method comprises one or more further or intermediate steps. In certain embodiments, said method does not comprise any fourth or intermediate step in which the cells are contacted (e.g. cultured).


In one aspect, provided herein is a method of producing NK cells comprising culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and (optionally) low-molecular weight heparin (LMWH), to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and wherein at least 70%, for example 80%, of the natural killer cells are viable. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1a). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In certain embodiments, such natural killer cells comprise natural killer cells that are CD16−. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+ or CD16+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94− or CD16−. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+ and CD16+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94− and CD16−. In certain embodiments, at least one, two, or all three of said first medium, second medium, and third medium are not the medium GBGM®. In certain embodiments, the third medium lacks added desulphated glycosaminoglycans. In certain embodiments, the third medium lacks desulphated glycosaminoglycans.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of stem cell factor (SCF) and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of SCF, a stem cell mobilizing agent, and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a+ cells from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In certain embodiments, said natural killer cells express perforin and eomesodermin (EOMES). In certain embodiments, said natural killer cells do not express either RAR-related orphan receptor gamma (RORγt) or interleukin-1 receptor 1 (IL1R1).


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a− cells from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In certain embodiments, said ILC3 cells express RORγt and IL1R1. In certain embodiments, said ILC3 cells do not express either perforin or EOMES. In certain embodiments, said third medium lacks added desulphated glycosaminoglycans. In certain embodiments, said third medium lacks desulphated glycosaminoglycans.


In certain embodiments, said hematopoietic stem or progenitor cells are mammalian cells.


In specific embodiments, said hematopoietic stem or progenitor cells are human cells. In specific embodiments, said hematopoietic stem or progenitor cells are primate cells. In specific embodiments, said hematopoietic stem or progenitor cells are canine cells. In specific embodiments, said hematopoietic stem or progenitor cells are rodent cells. In specific embodiments, said hematopoietic stem or progenitor cells are cells from a mammal other than a human, primate, canine or rodent.


In certain aspects, the hematopoietic stem cells or progenitor cells cultured in the first medium are CD34+ stem cells or progenitor cells. In certain aspects, the hematopoietic stem cells or progenitor cells are placental hematopoietic stem cells or progenitor cells. In certain aspects, the placental hematopoietic stem cells or progenitor cells are obtained from, or obtainable from placental perfusate (e.g. obtained from or obtainable from isolated nucleated cells from placental perfusate). In certain aspects, said hematopoietic stem or progenitor cells are obtained from, or obtainable from, umbilical cord blood. In certain aspects, said hematopoietic stem or progenitor cells are fetal liver cells. In certain aspects, said hematopoietic stem or progenitor cells are mobilized peripheral blood cells. In certain aspects, said hematopoietic stem or progenitor cells are bone marrow cells.


In certain aspects, said first medium used in the three-stage method comprises a stem cell mobilizing agent and thrombopoietin (Tpo). In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, one or more of Low Molecular Weight Heparin (LMWH), Flt-3 Ligand (Flt-3L), stem cell factor (SCF), IL-6, IL-7, granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage-stimulating factor (GM-CSF). In certain aspects, said first medium does not comprise added LMWH. In certain aspects, said first medium does not comprise added desulphated glycosaminoglycans. In certain aspects, said first medium does not comprise LMWH. In certain aspects, said first medium does not comprise desulphated glycosaminoglycans. In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, each of, Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, each of Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, said Tpo is present in the first medium at a concentration of from 1 ng/mL to 100 ng/mL, from 1 ng/mL to 50 ng/mL, from 20 ng/mL to 30 ng/mL, or about 25 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of from 1 U/mL to 10 U/mL; the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of about 4.5 U/mL; the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain embodiments, said first medium is not GBGM®.


In certain aspects, said second medium used in the three-stage method comprises a stem cell mobilizing agent and interleukin-15 (IL-15), and lacks Tpo. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, one or more of LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the second medium does not comprise added LMWH. In certain aspects, the second medium does not comprise added desulphated glycosaminoglycans. In certain aspects, the second medium does not comprise LMWH. In certain aspects, the second medium does not comprise desulphated glycosaminoglycans. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, each of IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, each of Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, said IL-15 is present in said second medium at a concentration of from 1 ng/mL to 50 ng/mL, from 10 ng/mL to 30 ng/mL, or about 20 ng/mL. In certain aspects, when LMWH is present in said second medium, the LMWH is present at a concentration of from 1 U/mL to 10 U/mL; the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of about 4.5 U/mL; the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain embodiments, said second medium is not GBGM®.


In certain aspects, the stem cell mobilizing factor is a compound having Formula (I), (I-A), (I-B), (I-C), or (I-D), as described below.


In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks a stem cell mobilizing agent and LMWH. In certain aspects, the third medium used in the three-stage method comprises, in addition to IL-2 and IL-15, one or more of SCF, IL-6, IL-7, G-CSF, or GM-CSF. In certain aspects, the third medium used in the three-stage method comprises, in addition to IL-2 and IL-15, each of SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, said IL-2 is present in said third medium at a concentration of from 10 U/mL to 10,000 U/mL and said IL-15 is present in said third medium at a concentration of from 1 ng/mL to 50 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of from 100 U/mL to 10,000 U/mL and said IL-15 is present in said third medium at a concentration of from 1 ng/mL to 50 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of from 300 U/mL to 3,000 U/mL and said IL-15 is present in said third medium at a concentration of from 10 ng/mL to 30 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of about 1,000 U/mL and said IL-15 is present in said third medium at a concentration of about 20 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of about 22 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 20 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain embodiments, said third medium is not GBGM®.


In certain aspects, the third medium comprises 100 ng/mL IL-7, 1000 ng/mL IL-2, 20 ng/mL IL-15, and stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 20 ng/mL IL-7, 1000 ng/mL IL-2, 20 ng/mL IL-15, and stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 20 ng/mL IL-7, 20 ng/mL IL-15, and stem cell mobilizing agent stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 100 ng/mL IL-7, 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 20 ng/mL IL-7, 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 20 ng/mL IL-7, 22 ng/mL SCF, and 1000 ng/mL IL-2 and lacks stem cell mobilizing agent.


In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


Generally, the particularly recited medium components do not refer to possible constituents in an undefined component of said medium, e.g., serum. For example, said Tpo, IL-2, and IL-15 are not comprised within an undefined component of the first medium, second medium or third medium, e.g., said Tpo, IL-2, and IL-15 are not comprised within serum. Further, said LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and/or GM-CSF are not comprised within an undefined component of the first medium, second medium or third medium, e.g., said LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and/or GM-CSF are not comprised within serum.


In certain aspects, said first medium, second medium or third medium comprises human serum-AB. In certain aspects, any of said first medium, second medium or third medium comprises 1% to 20% human serum-AB, 5% to 15% human serum-AB, or about 2, 5, or 10% human serum-AB.


In certain aspects, any of said first medium, second medium or third medium comprises 2-mercaptoethanol. In certain aspects, any of said first medium, second medium or third medium comprises gentamycin.


In certain embodiments, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 days before said culturing in said second medium. In certain embodiments, cells are cultured in said second medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 days before said culturing in said third medium. In certain embodiments, cells are cultured in said third medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days, or for more than 30 days.


In one embodiment, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 7-13 days to produce a first population of cells; said first population of cells are cultured in said second medium for 2-6 days to produce a second population of cells; and said second population of cells are cultured in said third medium for 10-30 days, i.e., the cells are cultured a total of 19-49 days.


In one embodiment, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 8-12 days to produce a first population of cells; said first population of cells are cultured in said second medium for 3-5 days to produce a second population of cells; and said second population of cells are cultured in said third medium for 15-25 days, i.e., the cells are cultured a total of 26-42 days.


In a specific embodiment, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for about 10 days to produce a first population of cells; said first population of cells are cultured in said second medium for about 4 days to produce a second population of cells; and said second population of cells are cultured in said third medium for about 21 days, i.e., the cells are cultured a total of about 35 days.


In certain aspects, said culturing in said first medium, second medium and third medium are all performed under static culture conditions, e.g., in a culture dish or culture flask. In certain aspects, said culturing in at least one of said first medium, second medium or third medium are performed in a spinner flask. In certain aspects, said culturing in said first medium and said second medium is performed under static culture conditions, and said culturing in said third medium is performed in a spinner flask.


In certain aspects, said culturing is performed in a spinner flask. In other aspects, said culturing is performed in a G-Rex device. In yet other aspects, said culturing is performed in a WAVE bioreactor.


In certain aspects, said hematopoietic stem or progenitor cells are initially inoculated into said first medium from 1×104 to 1×105 cells/mL. In a specific aspect, said hematopoietic stem or progenitor cells are initially inoculated into said first medium at about 3×104 cells/mL.


In certain aspects, said first population of cells are initially inoculated into said second medium from 5×104 to 5×105 cells/mL. In a specific aspect, said first population of cells is initially inoculated into said second medium at about 1×105 cells/mL.


In certain aspects said second population of cells is initially inoculated into said third medium from 1×105 to 5×106 cells/mL. In certain aspects, said second population of cells is initially inoculated into said third medium from 1×105 to 1×106 cells/mL. In a specific aspect, said second population of cells is initially inoculated into said third medium at about 5×105 cells/mL. In a more specific aspect, said second population of cells is initially inoculated into said third medium at about 5×105 cells/mL in a spinner flask. In a specific aspect, said second population of cells is initially inoculated into said third medium at about 3×105 cells/mL. In a more specific aspect, said second population of cells is initially inoculated into said third medium at about 3×105 cells/mL in a static culture.


In certain aspects, the three-stage method disclosed herein produces at least 5000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 10,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 50,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 75,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, the viability of said natural killer cells is determined by 7-aminoactinomycin D (7AAD) staining. In certain aspects, the viability of said natural killer cells is determined by annexin-V staining. In specific aspects, the viability of said natural killer cells is determined by both 7-AAD staining and annexin-V staining. In certain aspects, the viability of said natural killer cells is determined by trypan blue staining.


In certain aspects, the three-stage method disclosed herein produces at least 5000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 10,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 50,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 75,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium.


In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 20% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 40% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 60% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 70% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 75% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 80% CD56+CD3− natural killer cells.


In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 20% CD56+CD3−CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 40% CD56+CD3− CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 60% CD56+CD3− CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 80% CD56+CD3− CD11a+ natural killer cells.


In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 20% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 40% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 60% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 80% CD56+CD3− CD11a− ILC3 cells.


In certain aspects, the three-stage method disclosed herein, produces natural killer cells that exhibit at least 20% cytotoxicity against K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 35% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 45% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 60% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 75% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro at a ratio of 10:1.


In certain aspects, the three-stage method disclosed herein, produces ILC3 cells that exhibit at least 20% cytotoxicity against K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 35% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 45% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 60% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 75% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro at a ratio of 10:1.


In certain aspects, after said third culturing step, said third population of cells, e.g., said population of natural killer cells, is cryopreserved. In certain aspects, after said fourth culturing step, said fourth population of cells, e.g., said population of natural killer cells, is cryopreserved.


In certain aspects, provided herein are populations of cells comprising natural killer cells, i.e., natural killers cells produced by a three-stage method described herein. Accordingly, provided herein is an isolated natural killer cell population produced by a three-stage method described herein. In a specific embodiment, said natural killer cell population comprises at least 20% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 40% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 60% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 80% CD56+CD3− natural killer cells. In specific embodiments, the natural killer cell population is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


In certain aspects, provided herein are populations of cells comprising ILC3 cells, i.e., natural killer cells produced by a three-stage method described herein. In specific embodiments, the population of cells comprising ILC3 cells is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


In one embodiment, provided herein is an isolated NK progenitor cell population, wherein said NK progenitor cells are produced according to the three-stage method described herein. In specific embodiments, the NK progenitor cell population is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


In another embodiment, provided herein is an isolated mature NK cell population, wherein said mature NK cells are produced according to the three-stage method described herein. In specific embodiments, the mature NK cell population is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


In another embodiment, provided herein is an isolated ILC3 population, wherein said ILC3 cells are produced according to the three-stage method described herein. In specific embodiments, the isolated ILC3 population is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


In another embodiment, provided herein is a cell population, wherein said cell population is the third population of cells produced by a method described herein. In another embodiment, provided herein is a cell population, wherein said cell population is the fourth population of cells produced by a method described herein.


In another embodiment, provided herein is an isolated NK cell population, wherein said NK cells are activated, wherein said activated NK cells are produced according to the three-stage method described herein. In specific embodiments, the isolated NK population is formulated into a pharmaceutical composition suitable for use in vivo, for example, suitable for human use in vivo.


Accordingly, in another aspect, provided herein is the use of NK cell populations produced using the three-stage methods described herein to suppress tumor cell proliferation, treat viral infection, or treat cancer, e.g., blood cancers and solid tumors. In certain embodiments, the NK cell populations are contacted with, or used in combination with, an immunomodulatory compound, e.g., an immunomodulatory compound described herein, or thalidomide. In certain embodiments, the NK cell populations are treated with, or used in combination with, an immunomodulatory compound, e.g., an immunomodulatory compound described herein, or thalidomide.


In a specific embodiment, said cancer is a solid tumor. In another embodiment, said cancer is a blood cancer. In specific embodiments, the cancer is glioblastoma, primary ductal carcinoma, leukemia, acute T cell leukemia, chronic myeloid lymphoma (CML), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CIVIL), lung carcinoma, colon adenocarcinoma, histiocytic lymphoma, colorectal carcinoma, colorectal adenocarcinoma, prostate cancer, multiple myeloma, or retinoblastoma. In more specific embodiments, the cancer is AML. In more specific embodiments, the cancer is multiple myeloma.


In another specific embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations are produced, are obtained from placental perfusate, umbilical cord blood or peripheral blood. In one embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which NK cell populations are produced, are obtained from placenta, e.g., from placental perfusate. In one embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations are produced, are not obtained from umbilical cord blood. In one embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations are produced, are not obtained from peripheral blood. In another specific embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations are produced, are combined cells from placental perfusate and cord blood, e.g., cord blood from the same placenta as the perfusate. In another specific embodiment, said umbilical cord blood is isolated from a placenta other than the placenta from which said placental perfusate is obtained. In certain embodiments, the combined cells can be obtained by pooling or combining the cord blood and placental perfusate. In certain embodiments, the cord blood and placental perfusate are combined at a ratio of 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like by volume to obtain the combined cells. In a specific embodiment, the cord blood and placental perfusate are combined at a ratio of from 10:1 to 1:10, from 5:1 to 1:5, or from 3:1 to 1:3. In another specific embodiment, the cord blood and placental perfusate are combined at a ratio of 10:1, 5:1, 3:1, 1:1, 1:3, 1:5 or 1:10. In a more specific embodiment, the cord blood and placental perfusate are combined at a ratio of 8.5:1.5 (85%:15%).


In certain embodiments, the cord blood and placental perfusate are combined at a ratio of 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like, as determined by total nucleated cells (TNC) content to obtain the combined cells. In a specific embodiment, the cord blood and placental perfusate are combined at a ratio of from 10:1 to 10:1, from 5:1 to 1:5, or from 3:1 to 1:3. In another specific embodiment, the cord blood and placental perfusate are combined at a ratio of 10:1, 5:1, 3:1, 1:1, 1:3, 1:5 or 1:10.


In one embodiment, therefore, provided herein is a method of treating an individual having cancer or a viral infection, comprising administering to said individual an effective amount of cells from an isolated NK cell population produced using the three-stage methods described herein. In certain embodiments, the cancer is a solid tumor. In certain embodiments, the cancer is a hematological cancer. In a specific embodiment, the hematological cancer is leukemia. In another specific embodiment, the hematological cancer is lymphoma. In another specific embodiment, the hematological cancer is acute myeloid leukemia. In another specific embodiment, the hematological cancer is chronic lymphocytic leukemia. In another specific embodiment, the hematological cancer is chronic myelogenous leukemia. In certain aspects, said natural killer cells have been cryopreserved prior to said contacting or said administering. In other aspects, said natural killer cells have not been cryopreserved prior to said contacting or said administering.


In a specific embodiment, the NK cell populations produced using the three-stage methods described herein have been treated with an immunomodulatory compound, e.g. an immunomodulatory compound described herein, or thalidomide, prior to said administration. In a specific embodiment, the NK cell populations produced using the three-stage methods described herein have been treated with IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18 prior to said administration. In another specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been pretreated with one or more of IL2, IL12, IL18, or IL15 prior to said administration. In another specific embodiment, the method comprises administering to the individual (1) an effective amount of an isolated NK cell population produced using a three-stage method described herein; and (2) an effective amount of an immunomodulatory compound or thalidomide. An “effective amount” in this context means an amount of cells in an NK cell population, and optionally immunomodulatory compound or thalidomide, that results in a detectable improvement in one or more symptoms of said cancer or said infection, compared to an individual having said cancer or said infection who has not been administered said NK cell population and, optionally, an immunomodulatory compound or thalidomide. In a specific embodiment, said immunomodulatory compound is lenalidomide or pomalidomide. In another embodiment, the method additionally comprises administering an anticancer compound to the individual, e.g., one or more of the anticancer compounds described below.


In another embodiment, provided herein is a method of suppressing the proliferation of tumor cells comprising bringing a therapeutically effective amount of an NK cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in an NK cell population. Hereinafter, unless noted otherwise, the term “proximity” refers to sufficient proximity to elicit the desired result; e.g., in certain embodiments, the term proximity refers to contact. In certain embodiments, said contacting takes place in vitro. In certain embodiments, said contacting takes place ex vivo. In other embodiments, said contacting takes place in vivo. A plurality of NK cells can be used in the method of suppressing the proliferation of the tumor cells comprising bringing a therapeutically effective amount of the NK cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in the NK cell population. In certain embodiments, said tumor cells are breast cancer cells, head and neck cancer cells, or sarcoma cells. In certain embodiments, said tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CML) cells, chronic myelogenous leukemia (CIVIL) cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, colorectal carcinoma cells, colorectal adenocarcinoma cells, or retinoblastoma cells.


In one embodiment, provided herein are a plurality of natural killer cells for use in a method of suppressing the proliferation of tumor cells comprising contacting the tumor cells with the plurality of natural killer cells, wherein the natural killer cells are produced by the methods described herein. In certain embodiments, said contacting takes place in a human individual. In certain embodiments, said method comprises administering said natural killer cells to said individual. In certain embodiments, said tumor cells are multiple myeloma cells. In certain embodiments, said tumor cells are acute myeloid leukemia (AML) cells. In certain embodiments, said individual has relapsed/refractory AML. In certain embodiments, said individual has AML that has failed at least one non-innate lymphoid cell (ILC) therapeutic against AML. In certain embodiments, said individual is 65 years old or greater, and is in first remission. In certain embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said NK cells. In certain embodiments, said tumor cells are breast cancer cells, head and neck cancer cells, or sarcoma cells. In certain embodiments, said tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CML) cells, chronic myelogenous leukemia (CIVIL) cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, colorectal carcinoma cells, colorectal adenocarcinoma cells, or retinoblastoma cells. In certain embodiments, said tumor cells are solid tumor cells, liver tumor cells, lung tumor cells, pancreatic tumor cells, renal tumor cells or glioblastoma multiforme (GBM) cells. In certain embodiments, said natural killer cells are administered with an anti-CD33 antibody, an anti-CD20 antibody, an anti-CD138 antibody or an anti-CD32 antibody. In certain embodiments, said NK cells have or have not been cryopreserved prior to said contacting or said administering.


Administration of an isolated population of NK cells or a pharmaceutical composition thereof may be systemic or local. In specific embodiments, administration is parenteral. In specific embodiments, administration of an isolated population of NK cells or a pharmaceutical composition thereof to a subject is by injection, infusion, intravenous (IV) administration, intrafemoral administration, or intratumor administration. In specific embodiments, administration of an isolated population of NK cells or a pharmaceutical composition thereof to a subject is performed with a device, a matrix, or a scaffold. In specific embodiments, administration an isolated population of NK cells or a pharmaceutical composition thereof to a subject is by injection. In specific embodiments, administration an isolated population of NK cells or a pharmaceutical composition thereof to a subject is via a catheter. In specific embodiments, the injection of NK cells is local injection. In more specific embodiments, the local injection is directly into a solid tumor (e.g., a sarcoma). In specific embodiments, administration of an isolated population of NK cells or a pharmaceutical composition thereof to a subject is by injection by syringe. In specific embodiments, administration of an isolated population of NK cells or a pharmaceutical composition thereof to a subject is via guided delivery. In specific embodiments, administration of an isolated population of NK cells or a pharmaceutical composition thereof to a subject by injection is aided by laparoscopy, endoscopy, ultrasound, computed tomography, magnetic resonance, or radiology.


In a specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been treated with an immunomodulatory compound, e.g. an immunomodulatory compound described herein, below, or thalidomide, and/or IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18, prior to said contacting or bringing into proximity. In another specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been treated with one or more of IL2, IL12, IL18, or IL15 prior to said contacting or bringing into proximity. In another specific embodiment, an effective amount of an immunomodulatory compound, e.g. an immunomodulatory compound described herein, below, or thalidomide is additionally brought into proximity with the tumor cells e.g., the tumor cells are contacted with the immunomodulatory compound or thalidomide. An “effective amount” in this context means an amount of cells in an NK cell population, and optionally an immunomodulatory compound or thalidomide, that results in a detectable suppression of said tumor cells compared to an equivalent number of tumor cells not contacted or brought into proximity with cells in an NK cell population, and optionally an immunomodulatory compound or thalidomide. In another specific embodiment, the method further comprises bringing an effective amount of an anticancer compound, e.g., an anticancer compound described below, into proximity with the tumor cells, e.g., contacting the tumor cells with the anticancer compound.


In a specific embodiment of this method, the tumor cells are blood cancer cells. In another specific embodiment, the tumor cells are solid tumor cells. In another embodiment, the tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CIVIL) cells, acute myelogenous leukemia cells (AML), chronic myelogenous leukemia (CIVIL) cells, glioblastoma cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, multiple myeloma cells, retinoblastoma cell, colorectal carcinoma cells, prostate cancer cells, or colorectal adenocarcinoma cells. In more specific embodiments, the tumor cells are AML cells. In more specific embodiments, the tumor cells are multiple myeloma cells. In another specific embodiment, said contacting or bringing into proximity takes place in vitro. In another specific embodiment, said contacting or bringing into proximity takes place ex vivo. In another specific embodiment, said contacting or bringing into proximity takes place in vivo. In a more specific embodiment, said in vivo contacting or bringing into proximity takes place in a human. In a specific embodiment, said tumor cells are solid tumor cells. In a specific embodiment, said tumor cells are liver tumor cells. In a specific embodiment, said tumor cells are lung tumor cells. In a specific embodiment, said tumor cells are pancreatic tumor cells. In a specific embodiment, said tumor cells are renal tumor cells. In a specific embodiment, said tumor cells are glioblastoma multiforme (GBM) cells. In a specific embodiment, said natural killer cells are administered with an antibody. In a specific embodiment, said natural killer cells are administered with an anti-CD33 antibody. In a specific embodiment, said natural killer cells are administered with an anti-CD20 antibody. In a specific embodiment, said natural killer cells are administered with an anti-CD138 antibody. In a specific embodiment, said natural killer cells are administered with an anti-CD32 antibody.


In another aspect, provided herein is a method of treating an individual having multiple myeloma, comprising administering to the individual (1) lenalidomide; (2) melphalan; and (3) NK cells, wherein said NK cells are effective to treat multiple myeloma in said individual. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said NK cells have been produced by any of the methods described herein for producing NK cells, e.g., for producing NK cell populations using a three-stage method. In another embodiment, said NK cells have been expanded prior to said administering. In another embodiment, said lenalidomide, melphalan, and/or NK cells are administered separately from each other. In certain specific embodiments of the method of treating an individual with multiple myeloma, said NK cell populations are produced by a three-stage method, as described herein.


In another aspect, provided herein is a method of treating an individual having acute myelogenous leukemia (AML), comprising administering to the individual NK cells (optionally activated by pretreatment with IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18), wherein said NK cells are effective to treat AML in said individual. In a specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been pretreated with one or more of IL2, IL12, IL18, or IL15 prior to said administering. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said NK cells have been produced by any of the methods described herein for producing NK cells, e.g., for producing NK cell populations using a three-stage method as set forth herein. In certain specific embodiments of the method of treating an individual with AML, said NK cell populations are produced by a three-stage method, as described herein. In a particular embodiment, the AML to be treated by the foregoing methods comprises refractory AML, poor-prognosis AML, or childhood AML. In certain embodiments, said individual has AML that has failed at least one non-natural killer or non-innate lymphoid cell therapeutic against AML. In specific embodiments, said individual is 65 years old or greater, and is in first remission. In specific embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said natural killer cells. In another aspect, provided herein is a method of treating an individual having chronic lymphocytic leukemia (CLL), comprising administering to the individual a therapeutically effective dose of (1) lenalidomide; (2) melphalan; (3) fludarabine; and (4) NK cells, e.g., a NK cell population produced using a three-stage method described herein, wherein said NK cells are effective to treat said CLL in said individual. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said NK cells have been produced by any of the methods described herein for producing NK cells, e.g., for producing NK cell populations using a three-stage method described herein. In a specific embodiment of any of the above methods, said lenalidomide, melphalan, fludarabine, and expanded NK cells are administered to said individual separately. In certain specific embodiments of the method of treating an individual with CLL, said NK cell populations are produced by a three-stage method, as described herein.


In another embodiment, provided herein is a method of suppressing the proliferation of tumor cells comprising bringing a therapeutically effective amount of an ILC3 cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in an ILC3 cell population. Hereinafter, unless noted otherwise, the term “proximity” refers to sufficient proximity to elicit the desired result; e.g., in certain embodiments, the term proximity refers to contact. In certain embodiments, said contacting takes place in vitro. In certain embodiments, said contacting takes place ex vivo. In other embodiments, said contacting takes place in vivo. A plurality of ILC3 cells can be used in the method of suppressing the proliferation of the tumor cells comprising bringing a therapeutically effective amount of the ILC3 cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in the ILC3 cell population. In certain embodiments, said tumor cells are breast cancer cells, head and neck cancer cells, or sarcoma cells. In certain embodiments, said tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CML) cells, chronic myelogenous leukemia (CIVIL) cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, colorectal carcinoma cells, colorectal adenocarcinoma cells, or retinoblastoma cells.


In one embodiment, provided herein are a plurality of ILC3 cells for use in a method of suppressing the proliferation of tumor cells comprising contacting the tumor cells with the plurality of ILC3 cells, wherein the ILC3 cells are produced by the methods described herein. In certain embodiments, said contacting takes place in a human individual. In certain embodiments, said method comprises administering said ILC3 cells to said individual. In certain embodiments, said tumor cells are multiple myeloma cells. In certain embodiments, said tumor cells are acute myeloid leukemia (AML) cells. In certain embodiments, said individual has relapsed/refractory AML. In certain embodiments, said individual has AML that has failed at least one non-innate lymphoid cell (ILC) therapeutic against AML. In certain embodiments, said individual is 65 years old or greater, and is in first remission. In certain embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said ILC3 cells. In certain embodiments, said tumor cells are breast cancer cells, head and neck cancer cells, or sarcoma cells. In certain embodiments, said tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CIVIL) cells, chronic myelogenous leukemia (CIVIL) cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, colorectal carcinoma cells, colorectal adenocarcinoma cells, or retinoblastoma cells. In certain embodiments, said tumor cells are solid tumor cells, liver tumor cells, lung tumor cells, pancreatic tumor cells, renal tumor cells or glioblastoma multiforme (GBM) cells. In certain embodiments, said ILC3 cells are administered with an anti-CD33 antibody, an anti-CD20 antibody, an anti-CD138 antibody or an anti-CD32 antibody. In certain embodiments, said ILC3 cells have or have not been cryopreserved prior to said contacting or said administering.


Administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof may be systemic or local. In specific embodiments, administration is parenteral. In specific embodiments, administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is by injection, infusion, intravenous (IV) administration, intrafemoral administration, or intratumor administration. In specific embodiments, administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is performed with a device, a matrix, or a scaffold. In specific embodiments, administration an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is by injection. In specific embodiments, administration an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is via a catheter. In specific embodiments, the injection of ILC3 cells is local injection. In more specific embodiments, the local injection is directly into a solid tumor (e.g., a sarcoma). In specific embodiments, administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is by injection by syringe. In specific embodiments, administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject is via guided delivery. In specific embodiments, administration of an isolated population of ILC3 cells or a pharmaceutical composition thereof to a subject by injection is aided by laparoscopy, endoscopy, ultrasound, computed tomography, magnetic resonance, or radiology.


In a specific embodiment, the isolated ILC3 cell population produced using the three-stage methods described herein has been treated with an immunomodulatory compound, e.g. an immunomodulatory compound described herein, below, or thalidomide, and/or IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18, prior to said contacting or bringing into proximity. In a specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been treated with one or more of IL2, IL12, IL18, or IL15 prior to said contacting or bringing into proximity. In another specific embodiment, an effective amount of an immunomodulatory compound, e.g. an immunomodulatory compound described herein, below, or thalidomide is additionally brought into proximity with the tumor cells e.g., the tumor cells are contacted with the immunomodulatory compound or thalidomide. An “effective amount” in this context means an amount of cells in an ILC3 cell population, and optionally an immunomodulatory compound or thalidomide, that results in a detectable suppression of said tumor cells compared to an equivalent number of tumor cells not contacted or brought into proximity with cells in an ILC3 cell population, and optionally an immunomodulatory compound or thalidomide. In another specific embodiment, the method further comprises bringing an effective amount of an anticancer compound, e.g., an anticancer compound described below, into proximity with the tumor cells, e.g., contacting the tumor cells with the anticancer compound.


In a specific embodiment of this method, the tumor cells are blood cancer cells. In another specific embodiment, the tumor cells are solid tumor cells. In another embodiment, the tumor cells are primary ductal carcinoma cells, leukemia cells, acute T cell leukemia cells, chronic myeloid lymphoma (CIVIL) cells, acute myelogenous leukemia cells (AML), chronic myelogenous leukemia (CIVIL) cells, glioblastoma cells, lung carcinoma cells, colon adenocarcinoma cells, histiocytic lymphoma cells, multiple myeloma cells, retinoblastoma cell, colorectal carcinoma cells, prostate cancer cells, or colorectal adenocarcinoma cells. In another specific embodiment, said contacting or bringing into proximity takes place in vitro. In another specific embodiment, said contacting or bringing into proximity takes place ex vivo. In another specific embodiment, said contacting or bringing into proximity takes place in vivo. In a more specific embodiment, said in vivo contacting or bringing into proximity takes place in a human. In a specific embodiment, said tumor cells are solid tumor cells. In a specific embodiment, said tumor cells are liver tumor cells. In a specific embodiment, said tumor cells are lung tumor cells. In a specific embodiment, said tumor cells are pancreatic tumor cells. In a specific embodiment, said tumor cells are renal tumor cells. In a specific embodiment, said tumor cells are glioblastoma multiforme (GBM) cells. In a specific embodiment, said ILC3 cells are administered with an antibody. In a specific embodiment, said ILC3 cells are administered with an anti-CD33 antibody. In a specific embodiment, said ILC3 cells are administered with an anti-CD20 antibody. In a specific embodiment, said ILC3 cells are administered with an anti-CD138 antibody. In a specific embodiment, said ILC3 cells are administered with an anti-CD32 antibody.


In another aspect, provided herein is a method of treating an individual having multiple myeloma, comprising administering to the individual (1) lenalidomide; (2) melphalan; and (3) ILC3 cells, wherein said ILC3 cells are effective to treat multiple myeloma in said individual. In a specific embodiment, said ILC3 cells are cord blood ILC3 cells, or ILC3 cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said ILC3 cells have been produced by any of the methods described herein for producing ILC3 cells, e.g., for producing ILC3 cell populations using a three-stage method. In another embodiment, said ILC3 cells have been expanded prior to said administering. In another embodiment, said lenalidomide, melphalan, and/or ILC3 cells are administered separately from each other. In certain specific embodiments of the method of treating an individual with multiple myeloma, said ILC3 cell populations are produced by a three-stage method, as described herein.


In another aspect, provided herein is a method of treating an individual having acute myelogenous leukemia (AML), comprising administering to the individual ILC3 cells (optionally activated by pretreatment with IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18), wherein said ILC3 cells are effective to treat AML in said individual. In a specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been pretreated with one or more of IL2, IL12, IL18, or IL15 prior to said administering. In a specific embodiment, said ILC3 cells are cord blood ILC3 cells, or ILC3 cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said ILC3 cells have been produced by any of the methods described herein for producing ILC3 cells, e.g., for producing ILC3 cell populations using a three-stage method as set forth herein. In certain specific embodiments of the method of treating an individual with AML, said ILC3 cell populations are produced by a three-stage method, as described herein. In a particular embodiment, the AML to be treated by the foregoing methods comprises refractory AML, poor-prognosis AML, or childhood AML. In certain embodiments, said individual has AML that has failed at least one non-ILC3 or non-innate lymphoid cell therapeutic against AML. In specific embodiments, said individual is 65 years old or greater, and is in first remission. In specific embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said ILC3 cells. In another aspect, provided herein is a method of treating an individual having chronic lymphocytic leukemia (CLL), comprising administering to the individual a therapeutically effective dose of (1) lenalidomide; (2) melphalan; (3) fludarabine; and (4) ILC3 cells, e.g., a ILC3 cell population produced using a three-stage method described herein, wherein said ILC3 cells are effective to treat said CLL in said individual. In a specific embodiment, said ILC3 cells are cord blood ILC3 cells, or ILC3 cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said ILC3 cells have been produced by any of the methods described herein for producing ILC3 cells, e.g., for producing ILC3 cell populations using a three-stage method described herein. In a specific embodiment of any of the above methods, said lenalidomide, melphalan, fludarabine, and expanded ILC3 cells are administered to said individual separately. In certain specific embodiments of the method of treating an individual with CLL, said ILC3 cell populations are produced by a three-stage method, as described herein.


In certain embodiments, the NK cell populations produced using a three-stage method described herein are cryopreserved, e.g., cryopreserved using a method described herein. In a certain embodiments, the NK cell populations produced using a three-stage method described herein are cryopreserved in a cryopreservation medium, e.g., a cryopreservation medium described herein. In a specific embodiment, cryopreservation of the NK progenitor cell populations and/or NK cell populations produced using a three-stage method described herein comprises (1) preparing a cell suspension solution comprising an NK progenitor cell population and/or an NK cell population produced using a three-stage method described herein; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain a cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C.


In certain embodiments of the methods of treatment or tumor suppression above, NK cell populations produced by a three-stage method described herein are combined with other natural killer cells, e.g., natural killer cells isolated from placental perfusate, umbilical cord blood or peripheral blood, or produced from hematopoietic cells by a different method. In specific embodiments, the natural killer cell populations are combined with natural killer cells from another source, or made by a different method, in a ratio of about 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like.


In certain embodiments, the ILC3 cell populations produced using a three-stage method described herein are cryopreserved, e.g., cryopreserved using a method described herein. In a certain embodiments, the ILC3 cell populations produced using a three-stage method described herein are cryopreserved in a cryopreservation medium, e.g., a cryopreservation medium described herein. In a specific embodiment, cryopreservation of the ILC3 progenitor cell populations and/or ILC3 cell populations produced using a three-stage method described herein comprises (1) preparing a cell suspension solution comprising an ILC3 progenitor cell population and/or an ILC3 cell population produced using a three-stage method described herein; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain a cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C.


In certain embodiments of the methods of treatment or tumor suppression above, ILC3 cell populations produced by a three-stage method described herein are combined with other ILC3 cells, e.g., ILC3 cells isolated from placental perfusate, umbilical cord blood or peripheral blood, or produced from hematopoietic cells by a different method. In specific embodiments, the ILC3 cell populations are combined with ILC3 cells from another source, or made by a different method, in a ratio of about 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like.


In another aspect, provided herein is a method of repairing the gastrointestinal tract after chemotherapy comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. A plurality of ILC3 cells can be used in the method of repairing the gastrointestinal tract after chemotherapy comprising administering to an individual a plurality of the ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein.


In another aspect, provided herein is a method of protecting an individual against radiation comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. A plurality of ILC3 cells can be used in the method of protecting an individual against radiation comprising administering to an individual a plurality of the ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. In certain aspects of the method, said ILC3 cells are used as an adjunct to bone marrow transplantation.


In another aspect, provided herein is a method of reconstituting the thymus of an individual comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. A plurality of ILC3 cells can be used in the method of reconstituting the thymus of an individual comprising administering to an individual a plurality of the ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein.


In another aspect, provided herein is a composition comprising isolated NK cells produced by a three-stage method described herein. In a specific embodiment, said NK cells are produced from hematopoietic cells, e.g., hematopoietic stem or progenitor cells isolated from placental perfusate, umbilical cord blood, and/or peripheral blood. In another specific embodiment, said NK cells comprise at least 70% of cells in the composition. In another specific embodiment, said NK cells comprise at least 80%, 85%, 90%, 95%, 98% or 99% of cells in the composition. In certain embodiments, at least 80%, 82%, 84%, 86%, 88% or 90% of NK cells in said composition are CD3 and CD56+. In certain embodiments, at least 65%, 70%, 75%, 80%, 82%, 84%, 86%, 88% or 90% of NK cells in said composition are CD16−. In certain embodiments, at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% or 60% of NK cells in said composition are CD94+.


In certain aspects, provided herein is a population of natural killer cells that is CD56+CD3− CD117+CD11a+, wherein said natural killer cells express perforin and/or EOMES, and do not express one or more of RORγt, aryl hydrocarbon receptor, and IL1R1. In certain aspects, said natural killer cells express perforin and EOMES, and do not express any of RORγt, aryl hydrocarbon receptor, or IL1R1. In certain aspects, said natural killer cells additionally express T-bet, GZMB, NKp46, NKp30, and NKG2D. In certain aspects, said natural killer cells express CD94. In certain aspects, said natural killer cells do not express CD94.


In certain aspects, provided herein is a population of ILC3 cells that is CD56+CD3− CD117+CD11a−, wherein said ILC3 cells express one or more of RORγt, aryl hydrocarbon receptor, and IL1R1, and do not express one or more of CD94, perforin, and EOMES. In certain aspects, said ILC3 cells express RORγt, aryl hydrocarbon receptor, and IL1R1, and do not express any of CD94, perforin, or EOMES. In certain aspects, said ILC3 cells additionally express CD226 and/or 2B4. In certain aspects, said ILC3 cells additionally express one or more of IL-22, TNFα, and DNAM-1. In certain aspects, said ILC3 cells express CD226, 2B4, IL-22, TNFα, and DNAM-1.


In certain aspects, provided herein is a method of producing a cell population comprising natural killer cells and ILC3 cells, comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) separating CD11a+ cells and CD11a− cells from the third population of cells; and (e) combining the CD11a+ cells with the CD11a− cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50 to produce a fourth population of cells. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 50:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 20:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 10:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 5:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:5. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:10. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:20. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:50.


In certain aspects, a plurality of the NK cells in said population expresses one or more of the microRNAS dme-miR-7, hsa-let-7a, hsa-let-7c, hsa-let-7e, hsa-let-7g, hsa-miR-103, hsa-miR-106a, hsa-miR-10b, hsa-miR-1183, hsa-miR-124, hsa-miR-1247, hsa-miR-1248, hsa-miR-1255A, hsa-miR-126, hsa-miR-140-3p, hsa-miR-144, hsa-miR-151-3p, hsa-miR-155, hsa-miR-15a, hsa-miR-16, hsa-miR-17, hsa-miR-181a, hsa-miR-182, hsa-miR-192, hsa-miR-199a-3p, hsa-miR-200a, hsa-miR-20a, hsa-miR-214, hsa-miR-221, hsa-miR-29a, hsa-miR-29b, hsa-miR-30b, hsa-miR-30c, hsa-miR-31, hsa-miR-335, hsa-miR-374b, hsa-miR-454, hsa-miR-484, hsa-miR-513C, hsa-miR-516-3p, hsa-miR-520h, hsa-miR-548K, hsa-miR-548P, hsa-miR-600, hsa-miR-641, hsa-miR-643, hsa-miR-874, hsa-miR-875-5p, and hsa-miR-92a-2 at a detectably higher level as peripheral blood natural killer cells. In certain aspects, a plurality of the NK cells in said population expresses one or more of the microRNAS miR188-5p, miR-339-5p, miR-19a, miR-34c, miR-18a, miR-500, miR-22, miR-222, miR-7a, miR-532-3p, miR-223, miR-26b, miR-26a, miR-191, miR-181d, miR-322, and miR342-3p at a detectably lower level than peripheral blood natural killer cells. In certain aspects, a plurality of the NK cells in said population expresses one or more of the microRNAS miR-181a, miR-30b, and miR30c at an equivalent level to peripheral blood natural killer cells.


In a specific embodiment, said NK cells are from a single individual, that is, said hemtopoietic stem and progenitor cells are from a single individual. In a more specific embodiment, said NK cells comprise natural killer cells from at least two different individuals, that is, said hemtopoietic stem and progenitor cells are from at least two different individuals. In another specific embodiment, said NK cells are from a different individual than the individual for whom treatment with the NK cells is intended, that is, said hemtopoietic stem and progenitor cells are from a different individual than the individual for whom treatment with the NK cells is intended. In another specific embodiment, said NK cells have been contacted or brought into proximity with an immunomodulatory compound or thalidomide in an amount and for a time sufficient for said NK cells to express detectably more granzyme B or perforin than an equivalent number of natural killer cells, i.e. NK cells, not contacted or brought into proximity with said immunomodulatory compound or thalidomide. In another specific embodiment, a composition comprising said NK cells additionally comprises an immunomodulatory compound or thalidomide. In certain embodiments, the immunomodulatory compound is a compound described below, e.g., an amino-substituted isoindoline compound. In certain embodiments, the immunomodulatory compound is lenalidomide. In certain embodiments, the immunomodulatory compound is pomalidomide.


In another specific embodiment, a composition comprising said NK cells additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In a more specific embodiment, the composition comprises NK cells produced by a three-stage method described herein and natural killer cells from another source, or made by another method. In a specific embodiment, said other source is placental blood and/or umbilical cord blood. In another specific embodiment, said other source is peripheral blood. In more specific embodiments, the NK cells are combined with natural killer cells from another source, or made by another method in a ratio of about 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like.


In another specific embodiment, the composition comprises NK cells produced using a three-stage method described herein and either isolated placental perfusate or isolated placental perfusate cells. In a more specific embodiment, said placental perfusate is from the same individual as said NK cells. In another more specific embodiment, said placental perfusate comprises placental perfusate from a different individual than said NK cells. In another specific embodiment, all, or substantially all (e.g., greater than 90%, 95%, 98% or 99%) of cells in said placental perfusate are fetal cells. In another specific embodiment, the placental perfusate or placental perfusate cells, comprise fetal and maternal cells. In a more specific embodiment, the fetal cells in said placental perfusate comprise less than about 90%, 80%, 70%, 60% or 50% of the cells in said perfusate. In another specific embodiment, said perfusate is obtained by passage of a 0.9% NaCl solution through the placental vasculature. In another specific embodiment, said perfusate comprises a culture medium. In another specific embodiment, said perfusate has been treated to remove erythrocytes. In another specific embodiment, said composition comprises an immunomodulatory compound, e.g., an immunomodulatory compound described below, e.g., an amino-substituted isoindoline compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In another specific embodiment, the composition comprises NK cells produced using a three-stage method described herein and placental perfusate cells. In a more specific embodiment, said placental perfusate cells are from the same individual as said NK cells. In another more specific embodiment, said placental perfusate cells are from a different individual than said NK cells. In another specific embodiment, the composition comprises isolated placental perfusate and isolated placental perfusate cells, wherein said isolated perfusate and said isolated placental perfusate cells are from different individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate, said placental perfusate comprises placental perfusate from at least two individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate cells, said isolated placental perfusate cells are from at least two individuals. In another specific embodiment, said composition comprises an immunomodulatory compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In another aspect, provided herein is a composition, e.g., a pharmaceutical composition, comprising an isolated NK cell population, e.g., produced by any embodiment of the three-stage method described herein. In a specific embodiment, said isolated NK cell population is produced from hematopoietic cells, e.g., hematopoietic stem or progenitor cells isolated from placenta, e.g., from placental perfusate, umbilical cord blood, and/or peripheral blood. In another specific embodiment, said isolated NK cell population comprises at least 70% of cells in the composition. In another specific embodiment, said isolated NK cell population comprises at least 80%, 85%, 90%, 95%, 98% or 99% of cells in the composition. In another specific embodiment, said NK cells comprise at least 70% of cells in the composition. In certain embodiments, at least 80%, 82%, 84%, 86%, 88% or 90% of NK cells in said composition are CD3 and CD56+. In certain embodiments, at least 65%, 70%, 75%, 80%, 82%, 84%, 86%, 88% or 90% of NK cells in said composition are CD16−. In certain embodiments, at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% or 60% of NK cells in said composition are CD94+.


In another specific embodiment, said isolated NK cells in said composition are from a single individual, that is, said hemtopoietic stem and progenitor cells are from a single individual. In a more specific embodiment, said isolated NK cells comprise NK cells from at least two different individuals, that is, said hemtopoietic stem and progenitor cells are from at least two different individuals. In another specific embodiment, said isolated NK cells in said composition are from a different individual than the individual for whom treatment with the NK cells is intended, that is, said hemtopoietic stem and progenitor cells are from a different individual than the individual for whom treatment with the NK cells is intended. In another specific embodiment, said NK cells have been contacted or brought into proximity with an immunomodulatory compound or thalidomide in an amount and for a time sufficient for said NK cells to express detectably more granzyme B or perforin than an equivalent number of natural killer cells, i.e. NK cells not contacted or brought into proximity with said immunomodulatory compound or thalidomide. In another specific embodiment, said composition additionally comprises an immunomodulatory compound or thalidomide. In certain embodiments, the immunomodulatory compound is a compound described below.


In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In a more specific embodiment, the composition comprises NK cells from another source, or made by another method. In a specific embodiment, said other source is placental blood and/or umbilical cord blood. In another specific embodiment, said other source is peripheral blood. In more specific embodiments, the NK cell population in said composition is combined with NK cells from another source, or made by another method in a ratio of about 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like.


In another specific embodiment, the composition comprises an NK cell population and either isolated placental perfusate or isolated placental perfusate cells. In a more specific embodiment, said placental perfusate is from the same individual as said NK cell population. In another more specific embodiment, said placental perfusate comprises placental perfusate from a different individual than said NK cell population. In another specific embodiment, all, or substantially all (e.g., greater than 90%, 95%, 98% or 99%), of cells in said placental perfusate are fetal cells. In another specific embodiment, the placental perfusate or placental perfusate cells, comprise fetal and maternal cells. In a more specific embodiment, the fetal cells comprise less than about 90%, 80%, 70%, 60% or 50% of the cells in said placental perfusate. In another specific embodiment, said perfusate is obtained by passage of a 0.9% NaCl solution through the placental vasculature. In another specific embodiment, said perfusate comprises a culture medium. In another specific embodiment, said perfusate has been treated to remove erythrocytes. In another specific embodiment, said composition comprises an immunomodulatory compound, e.g., an immunomodulatory compound described below, e.g., an amino-substituted isoindoline compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In another specific embodiment, the composition comprises an NK cell population and placental perfusate cells. In a more specific embodiment, said placental perfusate cells are from the same individual as said NK cell population. In another more specific embodiment, said placental perfusate cells are from a different individual than said NK cell population. In another specific embodiment, the composition comprises isolated placental perfusate and isolated placental perfusate cells, wherein said isolated perfusate and said isolated placental perfusate cells are from different individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate, said placental perfusate comprises placental perfusate from at least two individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate cells, said isolated placental perfusate cells are from at least two individuals. In another specific embodiment, said composition comprises an immunomodulatory compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


3.1. Terminology


As used herein, the terms “immunomodulatory compound” and “IMiD™” do not encompass thalidomide.


As used herein, “lenalidomide” means 3-(4′aminoisoindoline-1′-one)-1-piperidine-2,6-dione (Chemical Abstracts Service name) or 2,6-Piperidinedione, 3-(4-amino-1,3-dihydro-1-oxo-2H-isoindol-2-yl)-(International Union of Pure and Applied Chemistry (IUPAC) name). As used herein, “pomalidomide” means 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione.


As used herein, “multipotent,” when referring to a cell, means that the cell has the capacity to differentiate into a cell of another cell type. In certain embodiments, “a multipotent cell” is a cell that has the capacity to grow into a subset of the mammalian body's approximately 260 cell types. Unlike a pluripotent cell, a multipotent cell does not have the capacity to form all of the cell types.


As used herein, “feeder cells” refers to cells of one type that are co-cultured with cells of a second type, to provide an environment in which the cells of the second type can be maintained, and perhaps proliferate. Without being bound by any theory, feeder cells can provide, for example, peptides, polypeptides, electrical signals, organic molecules (e.g., steroids), nucleic acid molecules, growth factors (e.g., bFGF), other factors (e.g., cytokines), and metabolic nutrients to target cells. In certain embodiments, feeder cells grow in a mono-layer.


As used herein, the “natural killer cells” or “NK cells” produced using the methods described herein, without further modification, include natural killer cells from any tissue source.


As used herein, the “ILC3 cells” produced using the methods described herein, without further modification, include ILC3 cells from any tissue source.


As used herein, “placental perfusate” means perfusion solution that has been passed through at least part of a placenta, e.g., a human placenta, e.g., through the placental vasculature, and includes a plurality of cells collected by the perfusion solution during passage through the placenta.


As used herein, “placental perfusate cells” means nucleated cells, e.g., total nucleated cells, isolated from, or isolatable from, placental perfusate.


As used herein, “tumor cell suppression,” “suppression of tumor cell proliferation,” and the like, includes slowing the growth of a population of tumor cells, e.g., by killing one or more of the tumor cells in said population of tumor cells, for example, by contacting or bringing, e.g., NK cells or an NK cell population produced using a three-stage method described herein into proximity with the population of tumor cells, e.g., contacting the population of tumor cells with NK cells or an NK cell population produced using a three-stage method described herein. In certain embodiments, said contacting takes place in vitro or ex vivo. In other embodiments, said contacting takes place in vivo.


As used herein, the term “hematopoietic cells” includes hematopoietic stem cells and hematopoietic progenitor cells.


As used herein, the “undefined component” is a term of art in the culture medium field that refers to components whose constituents are not generally provided or quantified. Examples of an “undefined component” include, without limitation, serum, for example, human serum (e.g., human serum AB) and fetal serum (e.g., fetal bovine serum or fetal calf serum).


As used herein, “+”, when used to indicate the presence of a particular cellular marker, means that the cellular marker is detectably present in fluorescence activated cell sorting over an isotype control; or is detectable above background in quantitative or semi-quantitative RT-PCR.


As used herein, “−”, when used to indicate the presence of a particular cellular marker, means that the cellular marker is not detectably present in fluorescence activated cell sorting over an isotype control; or is not detectable above background in quantitative or semi-quantitative RT-PCR.





4. BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows expansion of NK cells for compounds CRL1-CRL11.



FIG. 2 shows expansion of NK cells for compounds CRL12-CRL22.



FIG. 3 shows expansion of NK cells relative to SR1 positive control.



FIG. 4 shows expansion of CD34+ cells from which the NK cells were derived.



FIG. 5 shows cytotoxicity of the expanded NK cultures.



FIG. 6 shows that PNK cells highly express genes encoding the cytotoxic machinery. FIG. 6A CYNK cells were combined with peripheral blood derived NK cells (PB-NK) at 1:1 ratio and gene expression analyzed on single cell level using 10× Genomics Chromium platform and Illumina sequencing. Bioinformatics analysis utilized 10× Genomics Cell Ranger analysis pipeline. Transcript analysis was restricted to Granzyme B (GZMB) expressing cells. FIG. 6B A representative tSNE plot depicting PNK and PB-NK cells as distinct populations. FIG. 6C tSNE plots of selected NK cell-associated genes. The data is representative of two donors.



FIG. 7 shows that PNK and PB-NK cells differentially express genes encoding NK cell receptors. The expression of selected NK cell receptor genes analyzed by real-time quantitative PCR in peripheral blood NK cells (PB-NK) and CD11a+-bead-purified PNK cells. An alternative name indicated above the histogram for selected markers. The data represents mean±SD of three donors for CYNK and PBNK cells (n=3). * p<0.05, ** p<0.005, *** p<0.001.



FIG. 8 shows the gating strategy for PB-NK and CYNK cells. CYNK and PBMC cells were thawed and stained with fluorophore-coupled antibodies targeting NK cell receptors. The figure demonstrates representative dot plots and the gating strategy for the identification of CYNK and PB-NK cells. See FIG. 9 for further characterization of the populations.



FIG. 9 shows differential expression of surface proteins on CYNK and PB-NK cells. CYNK and PB-NK cells were pre-gated as indicated in FIG. 8.



FIG. 10 shows that CYNK cells form a distinct cell population from PB-NK cells based on surface protein expression. tSNE plots demonstrating differential clustering of CYNK and PB-NK cells based on their surface markers. tSNE plots were generated of flow cytometry data using FlowJo software.





5. DETAILED DESCRIPTION

Provided herein are novel methods of producing and expanding NK cells and/or ILC3 cells from hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells. Also provided herein are methods, e.g., three-stage methods, of producing NK cell populations and/or ILC3 cell populations from hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells. The hematopoietic cells (e.g., CD34+ hematopoietic stem cells) used to produce the NK cells and/or ILC3 cells, and NK cell populations and/or ILC3 cell populations, may be obtained from any source, for example, without limitation, placenta, umbilical cord blood, placental blood, peripheral blood, spleen or liver. In certain embodiments, the NK cells and/or ILC3 cells or NK cell populations and/or ILC3 cell populations are produced from expanded hematopoietic cells, e.g., hematopoietic stem cells and/or hematopoietic progenitor cells. In one embodiment, hematopoietic cells are collected from a source of such cells, e.g., placenta, for example from placental perfusate, umbilical cord blood, placental blood, peripheral blood, spleen, liver (e.g., fetal liver) and/or bone marrow.


The hematopoietic cells used to produce the NK cells and/or ILC3 cells, and NK cell populations and/or ILC3 cell populations, may be obtained from any animal species. In certain embodiments, the hematopoietic stem or progenitor cells are mammalian cells. In specific embodiments, said hematopoietic stem or progenitor cells are human cells. In specific embodiments, said hematopoietic stem or progenitor cells are primate cells. In specific embodiments, said hematopoietic stem or progenitor cells are canine cells. In specific embodiments, said hematopoietic stem or progenitor cells are rodent cells.


5.1. Hematopoietic Cells


Hematopoietic cells useful in the methods disclosed herein can be any hematopoietic cells able to differentiate into NK cells and/or ILC3 cells, e.g., precursor cells, hematopoietic progenitor cells, hematopoietic stem cells, or the like. Hematopoietic cells can be obtained from tissue sources such as, e.g., bone marrow, cord blood, placental blood, peripheral blood, liver or the like, or combinations thereof. Hematopoietic cells can be obtained from placenta. In a specific embodiment, the hematopoietic cells are obtained from placental perfusate. In one embodiment, the hematopoietic cells are not obtained from umbilical cord blood. In one embodiment, the hematopoietic cells are not obtained from peripheral blood. Hematopoietic cells from placental perfusate can comprise a mixture of fetal and maternal hematopoietic cells, e.g., a mixture in which maternal cells comprise greater than 5% of the total number of hematopoietic cells. In certain embodiments, hematopoietic cells from placental perfusate comprise at least about 90%, 95%, 98%, 99% or 99.5% fetal cells.


In another specific embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations and/or ILC3 cell populations produced using a three-stage method described herein are produced, are obtained from placental perfusate, umbilical cord blood, fetal liver, mobilized peripheral blood, or bone marrow. In another specific embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells, from which the NK cell populations and/or ILC3 cell populations produced using a three-stage method described herein are produced, are combined cells from placental perfusate and cord blood, e.g., cord blood from the same placenta as the perfusate. In another specific embodiment, said umbilical cord blood is isolated from a placenta other than the placenta from which said placental perfusate is obtained. In certain embodiments, the combined cells can be obtained by pooling or combining the cord blood and placental perfusate. In certain embodiments, the cord blood and placental perfusate are combined at a ratio of 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like by volume to obtain the combined cells. In a specific embodiment, the cord blood and placental perfusate are combined at a ratio of from 10:1 to 1:10, from 5:1 to 1:5, or from 3:1 to 1:3. In another specific embodiment, the cord blood and placental perfusate are combined at a ratio of 10:1, 5:1, 3:1, 1:1, 1:3, 1:5 or 1:10. In a more specific embodiment, the cord blood and placental perfusate are combined at a ratio of 8.5:1.5 (85%:15%).


In certain embodiments, the cord blood and placental perfusate are combined at a ratio of 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like by total nucleated cells (TNC) content to obtain the combined cells. In a specific embodiment, the cord blood and placental perfusate are combined at a ratio of from 10:1 to 10:1, from 5:1 to 1:5, or from 3:1 to 1:3. In another specific embodiment, the cord blood and placental perfusate are combined at a ratio of 10:1, 5:1, 3:1, 1:1, 1:3, 1:5 or 1:10.


In another specific embodiment, the hematopoietic cells, e.g., hematopoietic stem cells or progenitor cells from which said NK cell populations and/or ILC3 cell populations produced using a three-stage method described herein are produced, are from both umbilical cord blood and placental perfusate, but wherein said umbilical cord blood is isolated from a placenta other than the placenta from which said placental perfusate is obtained.


In certain embodiments, the hematopoietic cells are CD34+ cells. In specific embodiments, the hematopoietic cells useful in the methods disclosed herein are CD34+CD38+ or CD34+CD38. In a more specific embodiment, the hematopoietic cells are CD34+CD38Lin. In another specific embodiment, the hematopoietic cells are one or more of CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD66b and/or glycophorin A. In another specific embodiment, the hematopoietic cells are CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD66b and glycophorin A. In another more specific embodiment, the hematopoietic cells are CD34+CD38CD33CD117. In another more specific embodiment, the hematopoietic cells are CD34+CD38CD33CD117CD235CD36.


In another embodiment, the hematopoietic cells are CD45+. In another specific embodiment, the hematopoietic cells are CD34+CD45+. In another embodiment, the hematopoietic cell is Thy-1+. In a specific embodiment, the hematopoietic cell is CD34+ Thy-1+. In another embodiment, the hematopoietic cells are CD133+. In specific embodiments, the hematopoietic cells are CD34+CD133+ or CD133+ Thy-1+. In another specific embodiment, the CD34+ hematopoietic cells are CXCR4+. In another specific embodiment, the CD34+ hematopoietic cells are CXCR4. In another embodiment, the hematopoietic cells are positive for KDR (vascular growth factor receptor 2). In specific embodiments, the hematopoietic cells are CD34+KDR+, CD133+KDR+ or Thy-1+KDR+. In certain other embodiments, the hematopoietic cells are positive for aldehyde dehydrogenase (ALDH+), e.g., the cells are CD34+ALDH+.


In certain other embodiments, the CD34+ cells are CD45. In specific embodiments, the CD34+ cells, e.g., CD34+, CD45 cells express one or more, or all, of the miRNAs hsa-miR-380, hsa-miR-512, hsa-miR-517, hsa-miR-518c, hsa-miR-519b, hsa-miR-520a, hsa-miR-337, hsa-miR-422a, hsa-miR-549, and/or hsa-miR-618.


In certain embodiments, the hematopoietic cells are CD34.


The hematopoietic cells can also lack certain markers that indicate lineage commitment, or a lack of developmental naiveté. For example, in another embodiment, the hematopoietic cells are HLA-DR. In specific embodiments, the hematopoietic cells are CD34+HLA-DR, CD133+HLA-DR, Thy-1+HLA-DRor ALDWHLA-DRIn another embodiment, the hematopoietic cells are negative for one or more, or all, of lineage markers CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD66b and glycophorin A.


Thus, hematopoietic cells can be selected for use in the methods disclosed herein on the basis of the presence of markers that indicate an undifferentiated state, or on the basis of the absence of lineage markers indicating that at least some lineage differentiation has taken place. Methods of isolating cells, including hematopoietic cells, on the basis of the presence or absence of specific markers is discussed in detail below.


Hematopoietic cells used in the methods provided herein can be a substantially homogeneous population, e.g., a population comprising at least about 95%, at least about 98% or at least about 99% hematopoietic cells from a single tissue source, or a population comprising hematopoietic cells exhibiting the same hematopoietic cell-associated cellular markers. For example, in various embodiments, the hematopoietic cells can comprise at least about 95%, 98% or 99% hematopoietic cells from bone marrow, cord blood, placental blood, peripheral blood, or placenta, e.g., placenta perfusate.


Hematopoietic cells used in the methods provided herein can be obtained from a single individual, e.g., from a single placenta, or from a plurality of individuals, e.g., can be pooled. Where the hematopoietic cells are obtained from a plurality of individuals and pooled, the hematopoietic cells may be obtained from the same tissue source. Thus, in various embodiments, the pooled hematopoietic cells are all from placenta, e.g., placental perfusate, all from placental blood, all from umbilical cord blood, all from peripheral blood, and the like.


Hematopoietic cells used in the methods disclosed herein can, in certain embodiments, comprise hematopoietic cells from two or more tissue sources. For example, in certain embodiments, when hematopoietic cells from two or more sources are combined for use in the methods herein, a plurality of the hematopoietic cells used to produce natural killer cells using a three-stage method described herein comprise hematopoietic cells from placenta, e.g., placenta perfusate. In various embodiments, the hematopoietic cells used to produce NK cell populations and/or ILC3 cell populations produced using a three-stage method described herein, comprise hematopoietic cells from placenta and from cord blood; from placenta and peripheral blood; from placenta and placental blood, or placenta and bone marrow. In one embodiment, the hematopoietic cells comprise hematopoietic cells from placental perfusate in combination with hematopoietic cells from cord blood, wherein the cord blood and placenta are from the same individual, i.e., wherein the perfusate and cord blood are matched. In embodiments in which the hematopoietic cells comprise hematopoietic cells from two tissue sources, the hematopoietic cells from the sources can be combined in a ratio of, for example, 1:10, 2:9, 3:8, 4:7, 5:6, 6:5, 7:4, 8:3, 9:2, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 or 9:1.


5.1.1. Placental Hematopoietic Stem Cells


In certain embodiments, the hematopoietic cells used in the methods provided herein are placental hematopoietic cells. In one embodiment, placental hematopoietic cells are CD34+. In a specific embodiment, the placental hematopoietic cells are predominantly (e.g., at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98%) CD34+CD38 cells. In another specific embodiment, the placental hematopoietic cells are predominantly (e.g., at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98%) CD34+CD38+ cells. Placental hematopoietic cells can be obtained from a post-partum mammalian (e.g., human) placenta by any means known to those of skill in the art, e.g., by perfusion.


In another embodiment, the placental hematopoietic cell is CD45. In a specific embodiment, the hematopoietic cell is CD34+CD45. In another specific embodiment, the placental hematopoietic cells are CD34+CD45+.


5.2. Production of Natural Killer and/or ILC3 Cells and Natural Killer Cell and/or ILC3 Cell Populations


Production of NK cells and/or ILC3 cells and NK cell and/or ILC3 cell populations by the present methods comprises expanding a population of hematopoietic cells. During cell expansion, a plurality of hematopoietic cells within the hematopoietic cell population differentiate into NK cells and/or ILC3 cells. In one aspect, provided herein is a method of producing NK cells comprising culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and wherein at least 70%, for example at least 80%, of the natural killer cells are viable. In certain embodiments, such natural killer cells comprise natural killer cells that are CD16−. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+ or CD16+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94− or CD16−. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94+ and CD16+. In certain embodiments, such natural killer cells comprise natural killer cells that are CD94− and CD16−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of stem cell factor (SCF) and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of SCF, a stem cell mobilizing agent, and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing NK cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a+ cells from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In certain embodiments, of any of the above embodiments, said natural killer cells express perforin and EOMES. In certain embodiments, said natural killer cells do not express either RORγt or IL1R1.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In one aspect, provided herein is a method of producing ILC3 cells comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a− cells, or removing CD11a+ cells, from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a−. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In certain embodiments, said ILC3 cells express RORγt and IL1R1. In certain embodiments, said ILC3 cells do not express either perforin or EOMES.


5.2.1. Production of NK Cell and/or ILC3 Cell Populations Using a Three-Stage Method


In one embodiment, provided herein is a three-stage method of producing NK cell and/or ILC3 cell populations. In certain embodiments, the method of expansion and differentiation of the hematopoietic cells, as described herein, to produce NK cell and/or ILC3 cell populations according to a three-stage method described herein comprises maintaining the cell population comprising said hematopoietic cells at between about 2×104 and about 6×106 cells per milliliter. In certain aspects, said hematopoietic stem or progenitor cells are initially inoculated into said first medium from 1×104 to 1×105 cells/mL. In a specific aspect, said hematopoietic stem or progenitor cells are initially inoculated into said first medium at about 3×104 cells/mL.


In certain aspects, said first population of cells are initially inoculated into said second medium from 5×104 to 5×105 cells/mL. In a specific aspect, said first population of cells is initially inoculated into said second medium at about 1×105 cells/mL.


In certain aspects said second population of cells is initially inoculated into said third medium from 1×105 to 5×106 cells/mL. In certain aspects, said second population of cells is initially inoculated into said third medium from 1×105 to 1×106 cells/mL. In a specific aspect, said second population of cells is initially inoculated into said third medium at about 5×105 cells/mL. In a more specific aspect, said second population of cells is initially inoculated into said third medium at about 5×105 cells/mL in a spinner flask. In a specific aspect, said second population of cells is initially inoculated into said third medium at about 3×105 cells/mL. In a more specific aspect, said second population of cells is initially inoculated into said third medium at about 3×105 cells/mL in a static culture.


In a certain embodiment, the three-stage method comprises a first stage (“stage 1”) comprising culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium for a specified time period, e.g., as described herein, to produce a first population of cells. In certain embodiments, the first medium comprises a stem cell mobilizing agent and thrombopoietin (Tpo). In certain embodiments, the first medium comprises in addition to a stem cell mobilizing agent and Tpo, one or more of LMWH, Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In a specific embodiment, the first medium comprises in addition to a stem cell mobilizing agent and Tpo, each of LMWH, Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In a specific embodiment, the first medium lacks added LMWH. In a specific embodiment, the first medium lacks added desulphated glycosaminoglycans. In a specific embodiment, the first medium lacks LMWH. In a specific embodiment, the first medium lacks desulphated glycosaminoglycans. In a specific embodiment, in addition to a stem cell mobilizing agent and Tpo, each of Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In specific embodiments, the first medium lacks leukemia inhibiting factor (LIF), macrophage inhibitory protein-1alpha (MIP-1α) or both.


In certain embodiments, subsequently, in “stage 2” said cells are cultured in a second medium for a specified time period, e.g., as described herein, to produce a second population of cells. In certain embodiments, the second medium comprises a stem cell mobilizing agent and interleukin-15 (IL-15) and lacks Tpo. In certain embodiments, the second medium comprises, in addition to a stem cell mobilizing agent and IL-15, one or more of LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain embodiments, the second medium comprises, in addition to a stem cell mobilizing agent and IL-15, each of LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In a specific embodiment, the second medium lacks added LMWH. In a specific embodiment, the second medium lacks added desulphated glycosaminoglycans. In a specific embodiment, the second medium lacks heparin, e.g., LMWH. In a specific embodiment, the second medium lacks desulphated glycosaminoglycans. In certain embodiments, the second medium comprises, in addition to a stem cell mobilizing agent and IL-15, each of Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In specific embodiments, the second medium lacks leukemia inhibiting factor (LIF), macrophage inhibitory protein-1alpha (MIP-1α) or both.


In certain embodiments, subsequently, in “stage 3” said cells are cultured in a third medium for a specified time period, e.g., as described herein, to produce a third population of cell, e.g., natural killer cells. In certain embodiments, the third medium comprises IL-2 and IL-15, and lacks a stem cell mobilizing agent and LMWH. In certain embodiments, the third medium comprises in addition to IL-2 and IL-15, one or more of SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain embodiments, the third medium comprises, in addition to IL-2 and IL-15, each of SCF, IL-6, IL-7, G-CSF, and GM-CSF. In specific embodiments, the first medium lacks one, two, or all three of LIF, MIP-1α, and Flt3L. In specific embodiments, the third medium lacks added desulphated glycosaminoglycans. In specific embodiments, the third medium lacks desulphated glycosaminoglycans. In specific embodiments, the third medium lacks heparin, e.g., LMWH.


In a specific embodiment, the three-stage method is used to produce NK cell and/or ILC3 cell populations. In certain embodiments, the three-stage method is conducted in the absence of stromal feeder cell support. In certain embodiments, the three-stage method is conducted in the absence of exogenously added steroids (e.g., cortisone, hydrocortisone, or derivatives thereof).


In certain aspects, said first medium used in the three-stage method comprises a stem cell mobilizing agent and thrombopoietin (Tpo). In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, one or more of Low Molecular Weight Heparin (LMWH), Flt-3 Ligand (Flt-3L), stem cell factor (SCF), IL-6, IL-7, granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage-stimulating factor (GM-CSF). In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, each of LMWH, Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the first medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and Tpo, each of Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In a specific aspect, the first medium lacks added LMWH. In a specific aspect, the first medium lacks added desulphated glycosaminoglycans. In a specific aspect, the first medium lacks LMWH. In a specific aspect, the first medium lacks desulphated glycosaminoglycans. In certain aspects, said Tpo is present in the first medium at a concentration of from 1 ng/mL to 100 ng/mL, from 1 ng/mL to 50 ng/mL, from 20 ng/mL to 30 ng/mL, or about 25 ng/mL. In other aspects, said Tpo is present in the first medium at a concentration of from 100 ng/mL to 500 ng/mL, from 200 ng/mL to 300 ng/mL, or about 250 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of from 1 U/mL to 10 U/mL; the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the first medium, the LMWH is present at a concentration of about 4.5 U/mL; the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain aspects, in the first medium, the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain embodiments, said first medium additionally comprises one or more of the following: antibiotics such as gentamycin; antioxidants such as transferrin, insulin, and/or beta-mercaptoethanol; sodium selenite; ascorbic acid; ethanolamine; and glutathione. In certain embodiments, the medium that provides the base for the first medium is a cell/tissue culture medium known to those of skill in the art, e.g., a commercially available cell/tissue culture medium such as SCGM™, STEMMACS™, GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640; or is a medium that comprises components generally included in known cell/tissue culture media, such as the components included in GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640. In certain embodiments, said first medium is not GBGM®. In specific embodiments of any of the above embodiments, the first medium lacks LIF, MIP-1α, or both.


In certain aspects, said second medium used in the three-stage method comprises a stem cell mobilizing agent and interleukin-15 (IL-15), and lacks Tpo. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, one or more of LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, each of LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, the second medium used in the three-stage method comprises, in addition to a stem cell mobilizing agent and IL-15, each of Flt-3, SCF, IL-6, IL-7, G-CSF, and GM-CSF. In a specific aspect, the second medium lacks added LMWH. In a specific aspect, the second medium lacks added desulphated glycosaminoglycans. In a specific aspect, the second medium lacks LMWH. In a specific aspect, the second medium lacks desulphated glycosaminoglycans. In certain aspects, said IL-15 is present in said second medium at a concentration of from 1 ng/mL to 50 ng/mL, from 10 ng/mL to 30 ng/mL, or about 20 ng/mL. In certain aspects, when LMWH is present in said second medium, the LMWH is present at a concentration of from 1 U/mL to 10 U/mL; the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, in said second medium, the Flt-3L is present at a concentration of from 1 ng/mL to 50 ng/mL; the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of from 4 U/mL to 5 U/mL; the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of from 20 ng/mL to 30 ng/mL; the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, when LMWH is present in the second medium, the LMWH is present in the second medium at a concentration of about 4.5 U/mL; the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain aspects, in the second medium, the Flt-3L is present at a concentration of about 25 ng/mL; the SCF is present at a concentration of about 27 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 25 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain embodiments, said second medium additionally comprises one or more of the following: antibiotics such as gentamycin; antioxidants such as transferrin, insulin, and/or beta-mercaptoethanol; sodium selenite; ascorbic acid; ethanolamine; and glutathione. In certain embodiments, the medium that provides the base for the second medium is a cell/tissue culture medium known to those of skill in the art, e.g., a commercially available cell/tissue culture medium such as SCGM™, STEMMACS™, GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640; or is a medium that comprises components generally included in known cell/tissue culture media, such as the components included in GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640. In certain embodiments, said second medium is not GBGM®. In specific embodiments of any of the above embodiments, the first medium lacks LIF, MIP-1α, or both.


In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks a stem cell mobilizing agent and LMWH. In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks LMWH. In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks SCF and LMWH. In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks SCF, a stem cell mobilizing agent and LMWH. In certain aspects, said third medium used in the three-stage method comprises a stem cell mobilizing agent, IL-2 and IL-15, and lacks LMWH. In certain aspects, said third medium used in the three-stage method comprises SCF, IL-2 and IL-15, and lacks LMWH. In certain aspects, said third medium used in the three-stage method comprises a stem cell mobilizing agent, SCF, IL-2 and IL-15, and lacks LMWH. In certain aspects, said third medium used in the three-stage method comprises IL-2 and IL-15, and lacks a stem cell mobilizing agent and LMWH. In certain aspects, the third medium used in the three-stage method comprises, in addition to IL-2 and IL-15, one or more of SCF, IL-6, IL-7, G-CSF, or GM-CSF. In certain aspects, the third medium used in the three-stage method comprises, in addition to IL-2 and IL-15, each of SCF, IL-6, IL-7, G-CSF, and GM-CSF. In certain aspects, said IL-2 is present in said third medium at a concentration of from 10 U/mL to 10,000 U/mL and said IL-15 is present in said third medium at a concentration of from 1 ng/mL to 50 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of from 100 U/mL to 10,000 U/mL and said IL-15 is present in said third medium at a concentration of from 1 ng/mL to 50 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of from 300 U/mL to 3,000 U/mL and said IL-15 is present in said third medium at a concentration of from 10 ng/mL to 30 ng/mL. In certain aspects, said IL-2 is present in said third medium at a concentration of about 1,000 U/mL and said IL-15 is present in said third medium at a concentration of about 20 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of from 1 ng/mL to 50 ng/mL; the IL-6 is present at a concentration of from 0.01 ng/mL to 0.1 ng/mL; the IL-7 is present at a concentration of from 1 ng/mL to 50 ng/mL; the G-CSF is present at a concentration of from 0.01 ng/mL to 0.50 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.1 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of from 20 ng/mL to 30 ng/mL; the IL-6 is present at a concentration of from 0.04 ng/mL to 0.06 ng/mL; the IL-7 is present at a concentration of from 20 ng/mL to 30 ng/mL; the G-CSF is present at a concentration of from 0.20 ng/mL to 0.30 ng/mL; and the GM-CSF is present at a concentration of from 0.005 ng/mL to 0.5 ng/mL. In certain aspects, in said third medium, the SCF is present at a concentration of about 22 ng/mL; the IL-6 is present at a concentration of about 0.05 ng/mL; the IL-7 is present at a concentration of about 20 ng/mL; the G-CSF is present at a concentration of about 0.25 ng/mL; and the GM-CSF is present at a concentration of about 0.01 ng/mL. In certain aspects, the third medium comprises 100 ng/mL IL-7, 1000 ng/mL IL-2, 20 ng/mL IL-15, and 10 stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 20 ng/mL IL-7, 1000 ng/mL IL-2, 20 ng/mL IL-15, and stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 20 ng/mL IL-7, 20 ng/mL IL-15, and stem cell mobilizing agent and lacks SCF. In certain aspects, the third medium comprises 100 ng/mL IL-7, 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 20 ng/mL IL-7, 22 ng/mL SCF, 1000 ng/mL IL-2, and 20 ng/mL IL-15 and lacks stem cell mobilizing agent. In certain aspects, the third medium comprises 20 ng/mL IL-7, 22 ng/mL SCF, and 1000 ng/mL IL-2 and lacks stem cell mobilizing agent. In specific embodiments of any of the above embodiments, the first medium lacks one, two, or all three of LIF, MIP-1α, Flt-3L.


In certain embodiments, said third medium additionally comprises one or more of the following: antibiotics such as gentamycin; antioxidants such as transferrin, insulin, and/or beta-mercaptoethanol; sodium selenite; ascorbic acid; ethanolamine; and glutathione. In certain embodiments, the medium that provides the base for the third medium is a cell/tissue culture medium known to those of skill in the art, e.g., a commercially available cell/tissue culture medium such as SCGM™, STEMMACS™, GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640; or is a medium that comprises components generally included in known cell/tissue culture media, such as the components included in GBGM®, AIM-V®, X-VIVO™ 10, X-VIVO™ 15, OPTMIZER, STEMSPAN® H3000, CELLGRO COMPLETE™, DMEM:Ham's F12 (“F12”) (e.g., 2:1 ratio, or high glucose or low glucose DMEM), Advanced DMEM (Gibco), EL08-1D2, Myelocult™ H5100, IMDM, and/or RPMI-1640. In certain embodiments, said third medium is not GBGM®.


Generally, the particularly recited medium components do not refer to possible constituents in an undefined component of said medium. For example, said Tpo, IL-2, and IL-15 are not comprised within an undefined component of the first medium, second medium or third medium, e.g., said Tpo, IL-2, and IL-15 are not comprised within serum. Further, said LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and/or GM-CSF are not comprised within an undefined component of the first medium, second medium or third medium, e.g., said LMWH, Flt-3, SCF, IL-6, IL-7, G-CSF, and/or GM-CSF are not comprised within serum.


In certain aspects, said first medium, second medium or third medium comprises human serum-AB. In certain aspects, any of said first medium, second medium or third medium comprises 1% to 20% human serum-AB, 5% to 15% human serum-AB, or about 2, 5, or 10% human serum-AB.


In certain embodiments, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 days. In certain embodiments, in the three-stage methods described herein, cells are cultured in said second medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 days. In certain embodiments, in the three-stage methods described herein, cells are cultured in said third medium for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days, or for more than 30 days.


In a specific embodiment, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 7-13 days to produce a first population of cells, before said culturing in said second medium; said first population of cells are cultured in said second medium for 2-6 days to produce a second population of cells before said culturing in said third medium; and said second population of cells are cultured in said third medium for 10-30 days, i.e., the cells are cultured a total of 19-49 days.


In a specific embodiment, in the three-stage methods described herein, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for 8-12 days to produce a first population of cells, before said culturing in said second medium; said first population of cells are cultured in said second medium for 3-5 days to produce a second population of cells before said culturing in said third medium; and said second population of cells are cultured in said third medium for 15-25 days, i.e., the cells are cultured a total of 26-42 days.


In a specific embodiment, in the three-stage methods described herein, said hematopoietic stem or progenitor cells are cultured in said first medium for about 10 days to produce a first population of cells, before said culturing in said second medium; said first population of cells are cultured in said second medium for about 4 days to produce a second population of cells before said culturing in said third medium; and said second population of cells are cultured in said third medium for about 21 days, i.e., the cells are cultured a total of about 35 days.


In certain aspects, the three-stage method disclosed herein produces at least 5000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 10,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 50,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 75,000-fold more natural killer cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, the viability of said natural killer cells is determined by 7-aminoactinomycin D (7AAD) staining. In certain aspects, the viability of said natural killer cells is determined by annexin-V staining. In specific aspects, the viability of said natural killer cells is determined by both 7-AAD staining and annexin-V staining. In certain aspects, the viability of said natural killer cells is determined by trypan blue staining.


In certain aspects, the three-stage method disclosed herein produces at least 5000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 10,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 50,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium. In certain aspects, said three-stage method produces at least 75,000-fold more ILC3 cells as compared to the number of hematopoietic stem cells initially inoculated into said first medium.


In certain aspects, the three-stage method produces natural killer cells that comprise at least 20% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 40% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 60% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 70% CD56+CD3− natural killer cells. In certain aspects, the three-stage method produces natural killer cells that comprise at least 80% CD56+CD3− natural killer cells.


In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 20% CD56+CD3−CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 40% CD56+CD3− CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 60% CD56+CD3− CD11a+ natural killer cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 80% CD56+CD3− CD11a+ natural killer cells.


In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 20% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 40% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces ILC3 cells that comprise at least 60% CD56+CD3− CD11a− ILC3 cells. In certain aspects, the three-stage method disclosed herein produces natural killer cells that comprise at least 80% CD56+CD3− CD11a− ILC3 cells.


In certain aspects, the three-stage method produces natural killer cells that exhibit at least 20% cytotoxicity against K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 35% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 45% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 60% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces natural killer cells that exhibit at least 75% cytotoxicity against the K562 cells when said natural killer cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1.


In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 20% cytotoxicity against K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 35% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 45% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 60% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1. In certain aspects, the three-stage method produces ILC3 cells that exhibit at least 75% cytotoxicity against the K562 cells when said ILC3 cells and said K562 cells are co-cultured in vitro or ex vivo at a ratio of 10:1.


In certain aspects, after said third culturing step, said third population of cells, e.g., said population of natural killer cells and/or ILC3 cells, is cryopreserved. In certain aspects, after said fourth step, said fourth population of cells, e.g., said population of natural killer cells and/or ILC3 cells, is cryopreserved.


In certain aspects, provided herein are populations of cells comprising natural killer cells, i.e., natural killers cells produced by a three-stage method described herein. Accordingly, provided herein is an isolated natural killer cell population produced by a three-stage method described herein. In a specific embodiment, said natural killer cell population comprises at least 20% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 40% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 60% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 80% CD56+CD3− natural killer cells. In a specific embodiment, said natural killer cell population comprises at least 60% CD16− cells. In a specific embodiment, said natural killer cell population comprises at least 80% CD16− cells. In a specific embodiment, said natural killer cell population comprises at least 20% CD94+ cells. In a specific embodiment, said natural killer cell population comprises at least 40% CD94+ cells.


In certain aspects, provided herein is a population of natural killer cells that is CD56+CD3− CD117+CD11a+, wherein said natural killer cells express perforin and/or EOMES, and do not express one or more of RORγt, aryl hydrocarbon receptor (AHR), and IL1R1. In certain aspects, said natural killer cells express perforin and EOMES, and do not express any of RORγt, aryl hydrocarbon receptor, or IL1R1. In certain aspects, said natural killer cells additionally express T-bet, GZMB, NKp46, NKp30, and NKG2D. In certain aspects, said natural killer cells express CD94. In certain aspects, said natural killer cells do not express CD94.


In certain aspects, provided herein is a population of ILC3 cells that is CD56+CD3− CD117+CD11a−, wherein said ILC3 cells express one or more of RORγt, aryl hydrocarbon receptor, and IL1R1, and do not express one or more of CD94, perforin, and EOMES. In certain aspects, said ILC3 cells express RORγt, aryl hydrocarbon receptor, and IL1R1, and do not express any of CD94, perforin, or EOMES. In certain aspects, said ILC3 cells additionally express CD226 and/or 2B4. In certain aspects, said ILC3 cells additionally express one or more of IL-22, TNFα, and DNAM-1. In certain aspects, said ILC3 cells express CD226, 2B4, IL-22, TNFα, and DNAM-1.


In certain aspects, provided herein is a method of producing a cell population comprising natural killer cells and ILC3 cells, comprising (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) separating CD11a+ cells and CD11a− cells from the third population of cells; and (e) combining the CD11a+ cells with the CD11a− cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50 to produce a fourth population of cells. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 50:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 20:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 10:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 5:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:1. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:5. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:10. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:20. In certain aspects, in the fourth population of cells, the CD11a+ cells and CD11a− cells are combined in a ratio of 1:50.


5.3. Stem Cell Mobilizing Factors


5.3.1. Chemistry Definitions


To facilitate understanding of the disclosure of stem cell mobilizing factors set forth herein, a number of terms are defined below.


Generally, the nomenclature used herein and the laboratory procedures in biology, cellular biology, biochemistry, organic chemistry, medicinal chemistry, and pharmacology described herein are those well known and commonly employed in the art. Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


The term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given value or range.


As used herein, any “R” group(s) such as, without limitation, Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Rm, RG, RJ, RK, RU, RV, RY, and RZ represent substituents that can be attached to the indicated atom. An R group may be substituted or unsubstituted. If two “R” groups are described as being “taken together” the R groups and the atoms they are attached to can form a cycloalkyl, cycloalkenyl, aryl, heteroaryl or heterocycle. For example, without limitation, if Ra and Rb of an NRaRb group are indicated to be “taken together,” it means that they are covalently bonded to one another to form a ring:




embedded image


In addition, if two “R” groups are described as being “taken together” with the atom(s) to which they are attached to form a ring as an alternative, the R groups are not limited to the variables or substituents defined previously.


Whenever a group is described as being “optionally substituted” that group may be unsubstituted or substituted with one or more of the indicated substituents. Likewise, when a group is described as being “unsubstituted or substituted” if substituted, the substituent(s) may be selected from one or more the indicated substituents. If no substituents are indicated, it is meant that the indicated “optionally substituted” or “substituted” group may be substituted with one or more group(s) individually and independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, acylalkyl, hydroxy, alkoxy, alkoxyalkyl, aminoalkyl, amino acid, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl), heterocyclyl(alkyl), hydroxyalkyl, acyl, cyano, halogen, thiocarbonyl, 0-carbamyl, N-carbamyl, 0-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, isocyanato, thiocyanato, isothiocyanato, azido, nitro, silyl, sulfenyl, sulfinyl, sulfonyl, haloalkyl, haloalkoxy, trihalomethanesulfonyl, trihalomethanesulfonamido, an amino, a mono-substituted amino group and a di-substituted amino group.


As used herein, “Ca to Cb” in which “a” and “b” are integers refer to the number of carbon atoms in an alkyl, alkenyl or alkynyl group, or the number of carbon atoms in the ring of a cycloalkyl, cycloalkenyl, aryl, heteroaryl or heteroalicyclyl group. That is, the alkyl, alkenyl, alkynyl, ring(s) of the cycloalkyl, ring(s) of the cycloalkenyl, ring(s) of the aryl, ring(s) of the heteroaryl or ring(s) of the heteroalicyclyl can contain from “a” to “b”, inclusive, carbon atoms. Thus, for example, a “C1 to C4 alkyl” group refers to all alkyl groups having from 1 to 4 carbons, that is, CH3—, CH3CH2—, CH3CH2CH2—, (CH3)2CH—, CH3CH2CH2CH2—, CH3CH2CH(CH3)— and (CH3)3C—. If no “a” and “b” are designated with regard to an alkyl, alkenyl, alkynyl, cycloalkyl cycloalkenyl, aryl, heteroaryl or heteroalicyclyl group, the broadest range described in these definitions is to be assumed.


As used herein, “alkyl” refers to a straight or branched hydrocarbon chain that comprises a fully saturated (no double or triple bonds) hydrocarbon group. The alkyl group may have 1 to 20 carbon atoms (whenever it appears herein, a numerical range such as “1 to 20” refers to each integer in the given range; e.g., “1 to 20 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 20 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated). The alkyl group may also be a medium size alkyl having 1 to 10 carbon atoms. The alkyl group could also be a lower alkyl having 1 to 6 carbon atoms. The alkyl group of the compounds may be designated as “C1-C4 alkyl” or similar designations. By way of example only, “C1-C4 alkyl” indicates that there are one to four carbon atoms in the alkyl chain, i.e., the alkyl chain is selected from methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl and hexyl. The alkyl group may be substituted or unsubstituted.


As used herein, “alkenyl” refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more double bonds. Examples of alkenyl groups include allenyl, vinylmethyl and ethenyl. An alkenyl group may be unsubstituted or substituted.


As used herein, “alkynyl” refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more triple bonds. Examples of alkynyls include ethynyl and propynyl. An alkynyl group may be unsubstituted or substituted.


As used herein, “cycloalkyl” refers to a completely saturated (no double or triple bonds) mono- or multi-cyclic hydrocarbon ring system. When composed of two or more rings, the rings may be joined together in a fused fashion. Cycloalkyl groups can contain 3 to 10 atoms in the ring(s) or 3 to 8 atoms in the ring(s). A cycloalkyl group may be unsubstituted or substituted. Typical cycloalkyl groups include, but are in no way limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.


As used herein, “cycloalkenyl” refers to a mono- or multi-cyclic hydrocarbon ring system that contains one or more double bonds in at least one ring; although, if there is more than one, the double bonds cannot form a fully delocalized pi-electron system throughout all the rings (otherwise the group would be “aryl,” as defined herein). Cycloalkenyl groups can contain 3 to 10 atoms in the ring(s) or 3 to 8 atoms in the ring(s). When composed of two or more rings, the rings may be connected together in a fused fashion. A cycloalkenyl group may be unsubstituted or substituted.


As used herein, “aryl” refers to a carbocyclic (all carbon) monocyclic or multicyclic aromatic ring system (including fused ring systems where two carbocyclic rings share a chemical bond) that has a fully delocalized pi-electron system throughout all the rings. The number of carbon atoms in an aryl group can vary. For example, the aryl group can be a C6-C14 aryl group, a C6-C10 aryl group, or a C6 aryl group. Examples of aryl groups include, but are not limited to, benzene, naphthalene and azulene. An aryl group may be substituted or unsubstituted.


As used herein, “heteroaryl” refers to a monocyclic or multicyclic aromatic ring system (a ring system with fully delocalized pi-electron system) that contain(s) one, two, three or more heteroatoms, that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur. The number of atoms in the ring(s) of a heteroaryl group can vary. For example, the heteroaryl group can contain 4 to 14 atoms in the ring(s), 5 to 10 atoms in the ring(s) or 5 to 6 atoms in the ring(s). Furthermore, the term “heteroaryl” includes fused ring systems where two rings, such as at least one aryl ring and at least one heteroaryl ring, or at least two heteroaryl rings, share at least one chemical bond. Examples of heteroaryl rings include, but are not limited to, those described herein and the following: furan, furazan, thiophene, benzothiophene, phthalazine, pyrrole, oxazole, benzoxazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, thiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, benzothiazole, imidazole, benzimidazole, indole, indazole, pyrazole, benzopyrazole, isoxazole, benzoisoxazole, isothiazole, triazole, benzotriazole, thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, purine, pteridine, quinoline, isoquinoline, quinazoline, quinoxaline, cinnoline and triazine. A heteroaryl group may be substituted or unsubstituted.


As used herein, “heterocyclyl” or “heteroalicyclyl” refers to three-, four-, five-, six-, seven-, eight-, nine-, ten-, up to 18-membered monocyclic, bicyclic, and tricyclic ring system wherein carbon atoms together with from 1 to 5 heteroatoms constitute said ring system. A heterocycle may optionally contain one or more unsaturated bonds situated in such a way, however, that a fully delocalized pi-electron system does not occur throughout all the rings. The heteroatom(s) is an element other than carbon including, but not limited to, oxygen, sulfur, and nitrogen. A heterocycle may further contain one or more carbonyl or thiocarbonyl functionalities, so as to make the definition include oxo-systems and thio-systems such as lactams, lactones, cyclic imides, cyclic thioimides and cyclic carbamates. When composed of two or more rings, the rings may be joined together in a fused fashion. Additionally, any nitrogens in a heterocyclyl may be quaternized. Heterocyclyl or heteroalicyclic groups may be unsubstituted or substituted. Examples of such “heterocyclyl” or “heteroalicyclyl” groups include, but are not limited to, those described herein and the following: 1,3-dioxin, 1,3-dioxane, 1,4-dioxane, 1,2-dioxolane, 1,3-dioxolane, 1,4-dioxolane, 1,3-oxathiane, 1,4-oxathiin, 1,3-oxathiolane, 1,3-dithiole, 1,3-dithiolane, 1,4-oxathiane, tetrahydro-1,4-thiazine, 1,3-thiazinane, 2H-1,2-oxazine, maleimide, succinimide, barbituric acid, thiobarbituric acid, dioxopiperazine, hydantoin, dihydrouracil, trioxane, hexahydro-1,3,5-triazine, imidazoline, imidazolidine, isoxazoline, isoxazolidine, oxazoline, oxazolidine, oxazolidinone, thiazoline, thiazolidine, morpholine, oxirane, piperidine N-Oxide, piperidine, piperazine, pyrrolidine, pyrrolidone, pyrrolidione, 4-piperidone, pyrazoline, pyrazolidine, 2-oxopyrrolidine, tetrahydropyran, 4H-pyran, tetrahydrothiopyran, thiamorpholine, thiamorpholine sulfoxide, thiamorpholine sulfone, and their benzo-fused analogs (e.g., benzimidazolidinone, tetrahydroquinoline, and 3,4-methylenedioxyphenyl).


As used herein, “aralkyl” and “aryl(alkyl)” refer to an aryl group connected, as a substituent, via a lower alkylene group. The lower alkylene and aryl group of an aralkyl may be substituted or unsubstituted. Examples include but are not limited to benzyl, 2-phenylalkyl, 3-phenylalkyl and naphthylalkyl.


As used herein, “heteroaralkyl” and “heteroaryl(alkyl)” refer to a heteroaryl group connected, as a substituent, via a lower alkylene group. The lower alkylene and heteroaryl group of heteroaralkyl may be substituted or unsubstituted. Examples include but are not limited to 2-thienylalkyl, 3-thienylalkyl, furylalkyl, thienylalkyl, pyrrolylalkyl, pyridylalkyl, isoxazolylalkyl, imidazolylalkyl and their benzo-fused analogs.


A “heteroalicyclyl(alkyl)” and “heterocyclyl(alkyl)” refer to a heterocyclic or a heteroalicyclylic group connected, as a substituent, via a lower alkylene group. The lower alkylene and heterocyclyl of a heteroalicyclyl(alkyl) may be substituted or unsubstituted. Examples include but are not limited tetrahydro-2H-pyran-4-yl(methyl), piperidin-4-yl(ethyl), piperidin-4-yl(propyl), tetrahydro-2H-thiopyran-4-yl(methyl), and 1,3-thiazinan-4-yl(methyl).


“Lower alkylene groups” are straight-chained —CH2— tethering groups, forming bonds to connect molecular fragments via their terminal carbon atoms. Examples include but are not limited to methylene (—CH2—), ethylene (—CH2CH2—), propylene (—CH2CH2CH2—), and butylene (—CH2CH2CH2CH2—). A lower alkylene group can be substituted by replacing one or more hydrogen of the lower alkylene group with a substituent(s) listed under the definition of “substituted.”


As used herein, “alkoxy” refers to the formula —OR wherein R is an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) is defined herein. A non-limiting list of alkoxys are methoxy, ethoxy, n-propoxy, 1-methylethoxy (isopropoxy), n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, phenoxy and benzoxy. An alkoxy may be substituted or unsubstituted.


As used herein, “acyl” refers to a hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) connected, as substituents, via a carbonyl group. Examples include formyl, acetyl, propanoyl, benzoyl and acryl. An acyl may be substituted or unsubstituted.


As used herein, “acylalkyl” refers to an acyl connected, as a substituent, via a lower alkylene group. Examples include aryl-C(═O)—(CH2)n— and heteroaryl-C(═O)—(CH2)n—, where n is an integer in the range of 1 to 6.


As used herein, “alkoxyalkyl” refers to an alkoxy group connected, as a substituent, via a lower alkylene group. Examples include C1-4 alkyl-O—(CH2)n—, wherein n is an integer in the range of 1 to 6.


As used herein, “aminoalkyl” refers to an optionally substituted amino group connected, as a substituent, via a lower alkylene group. Examples include H2N(CH2)n—, wherein n is an integer in the range of 1 to 6.


As used herein, “hydroxyalkyl” refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a hydroxy group. Exemplary hydroxyalkyl groups include but are not limited to, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, and 2,2-dihydroxyethyl. A hydroxyalkyl may be substituted or unsubstituted.


As used herein, “haloalkyl” refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkyl, di-haloalkyl and tri-haloalkyl). Such groups include but are not limited to, chloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloro-fluoroalkyl, chloro-difluoroalkyl and 2-fluoroisobutyl. A haloalkyl may be substituted or unsubstituted.


As used herein, “haloalkoxy” refers to an alkoxy group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkoxy, di-haloalkoxy and tri-haloalkoxy). Such groups include but are not limited to, chloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloro-fluoroalkyl, chloro-difluoroalkoxy and 2-fluoroisobutoxy. A haloalkoxy may be substituted or unsubstituted.


A “sulfenyl” group refers to an “—SR” group in which R can be hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A sulfenyl may be substituted or unsubstituted.


A “sulfinyl” group refers to an “—S(═O)—R” group in which R can be the same as defined with respect to sulfenyl. A sulfinyl may be substituted or unsubstituted.


A “sulfonyl” group refers to an “SO2R” group in which R can be the same as defined with respect to sulfenyl. A sulfonyl may be substituted or unsubstituted.


An “O-carboxy” group refers to a “RC(═O)O—” group in which R can be hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl), as defined herein. An O-carboxy may be substituted or unsubstituted.


The terms “ester” and “C-carboxy” refer to a “—C(═O)OR” group in which R can be the same as defined with respect to O-carboxy. An ester and C-carboxy may be substituted or unsubstituted.


A “thiocarbonyl” group refers to a “—C(═S)R” group in which R can be the same as defined with respect to O-carboxy. A thiocarbonyl may be substituted or unsubstituted.


A “trihalomethanesulfonyl” group refers to an “X3CSO2—” group wherein each X is a halogen.


A “trihalomethanesulfonamido” group refers to an “X3CS(O)2N(RA)—” group wherein each X is a halogen, and RA hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).


The term “amino” as used herein refers to a —NH2 group.


As used herein, the term “hydroxy” refers to a —OH group.


A “cyano” group refers to a “—CN” group.


The term “azido” as used herein refers to a —N3 group.


An “isocyanato” group refers to a “—NCO” group.


A “thiocyanato” group refers to a “—CNS” group.


An “isothiocyanato” group refers to an “—NCS” group.


A “carbonyl” group refers to a C═O group.


An “S-sulfonamido” group refers to a “—SO2N(RARB)” group in which RA and RB can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An S-sulfonamido may be substituted or unsubstituted.


An “N-sulfonamido” group refers to a “RSO2N(RA)—” group in which R and RA can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-sulfonamido may be substituted or unsubstituted.


An “O-carbamyl” group refers to a “—OC(═O)N(RARB)” group in which RA and RB can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An O-carbamyl may be substituted or unsubstituted.


An “N-carbamyl” group refers to an “ROC(═O)N(RA)—” group in which R and RA can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-carbamyl may be substituted or unsubstituted.


An “O-thiocarbamyl” group refers to a “—OC(═S)—N(RARB)” group in which RA and RB can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An O-thiocarbamyl may be substituted or unsubstituted.


An “N-thiocarbamyl” group refers to an “ROC(═S)N(RA)—” group in which R and RA can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-thiocarbamyl may be substituted or unsubstituted.


A “C-amido” group refers to a “—C(═O)N(RARB)” group in which RA and RB can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A C-amido may be substituted or unsubstituted.


An “N-amido” group refers to a “RC(═O)N(RA)—” group in which R and RA can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-amido may be substituted or unsubstituted.


A “urea” group refers to “N(R)—C(═O)—NRARB group in which R can be hydrogen or an alkyl, and RA and RB can be independently hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A urea may be substituted or unsubstituted.


The term “halogen atom” or “halogen” as used herein, means any one of the radio-stable atoms of column 7 of the Periodic Table of the Elements, such as, fluorine, chlorine, bromine and iodine.


As used herein, “custom-character” indicates a single or double bond, unless stated otherwise.


Where the numbers of substituents is not specified (e.g. haloalkyl), there may be one or more substituents present. For example “haloalkyl” may include one or more of the same or different halogens. As another example, “C1-C3 alkoxyphenyl” may include one or more of the same or different alkoxy groups containing one, two or three atoms.


As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (See, Biochem. 11:942-944 (1972)).


In certain embodiments, “optically active” and “enantiomerically active” refer to a collection of molecules, which has an enantiomeric excess of no less than about 50%, no less than about 70%, no less than about 80%, no less than about 90%, no less than about 91%, no less than about 92%, no less than about 93%, no less than about 94%, no less than about 95%, no less than about 96%, no less than about 97%, no less than about 98%, no less than about 99%, no less than about 99.5%, or no less than about 99.8%. In certain embodiments, the compound comprises about 95% or more of the desired enantiomer and about 5% or less of the less preferred enantiomer based on the total weight of the two enantiomers in question.


In describing an optically active compound, the prefixes R and S are used to denote the absolute configuration of the optically active compound about its chiral center(s). The (+) and (−) are used to denote the optical rotation of an optically active compound, that is, the direction in which a plane of polarized light is rotated by the optically active compound. The (−) prefix indicates that an optically active compound is levorotatory, that is, the compound rotates the plane of polarized light to the left or counterclockwise. The (+) prefix indicates that an optically active compound is dextrorotatory, that is, the compound rotates the plane of polarized light to the right or clockwise. However, the sign of optical rotation, (+) and (−), is not related to the absolute configuration of a compound, R and S.


The term “isotopic variant” refers to a compound that contains an unnatural proportion of an isotope at one or more of the atoms that constitute such a compound. In certain embodiments, an “isotopic variant” of a compound contains unnatural proportions of one or more isotopes, including, but not limited to, hydrogen (1H), deuterium (2H), tritium (3H), carbon-11 (11C), carbon-12 (12C), carbon-13 (13C), carbon-14 (14C), nitrogen-13 (13N), nitrogen-14 (14N), nitrogen-15 (15N), oxygen-14 (14O), oxygen-15 (15O), oxygen-16 (16O), oxygen-17 (17O), oxygen-18 (18O) fluorine-17 (17F), fluorine-18 (18F), phosphorus-31 (31P), phosphorus-32 (32P), phosphorus-33 (33P), sulfur-32 (32S), sulfur-33 (33S), sulfur-34 (34S), sulfur-35 (35S), sulfur-36 (36S), chlorine-35 (35Cl), chlorine-36 (36Cl), chlorine-37 (37Cl), bromine-79 (79Br), bromine-81 (81Br), iodine-123 (123I) iodine-125 (125I) iodine-127 (127I), iodine-129 (129I), and iodine-131 (131I) In certain embodiments, an “isotopic variant” of a compound is in a stable form, that is, non-radioactive. In certain embodiments, an “isotopic variant” of a compound contains unnatural proportions of one or more isotopes, including, but not limited to, hydrogen (1H), deuterium (2H), carbon-12 (12C), carbon-13 (13C), nitrogen-14 (14N), nitrogen-15 (15N), oxygen-16 (16O), oxygen-17 (17O), oxygen-18 (18O), fluorine-17 (17F), phosphorus-31 (31P), sulfur-32 (32S), sulfur-33 (33S), sulfur-34 (34S), sulfur-36 (36S), chlorine-35 (35Cl), chlorine-37 (37Cl), bromine-79 (79Br), bromine-81 (81Br), and iodine-127 (127I). In certain embodiments, an “isotopic variant” of a compound is in an unstable form, that is, radioactive. In certain embodiments, an “isotopic variant” of a compound contains unnatural proportions of one or more isotopes, including, but not limited to, tritium (3H), carbon-11 (11C), carbon-14C) nitrogen-13 (13N), oxygen-14 (14O), oxygen-15 (15O), fluorine-18 (18F), phosphorus-32 (32P), phosphorus-33 (33P), sulfur-35 (35S), chlorine-36 (36Cl), iodine-123 (123I) iodine-125 (125I) iodine-129 (129I), and iodine-131 (131I) It will be understood that, in a compound as provided herein, any hydrogen can be 2H, for example, or any carbon can be 13C, for example, or any nitrogen can be 15N, for example, or any oxygen can be 18O, for example, where feasible according to the judgment of one of skill. In certain embodiments, an “isotopic variant” of a compound contains unnatural proportions of deuterium (D).


The term “solvate” refers to a complex or aggregate formed by one or more molecules of a solute, e.g., a compound provided herein, and one or more molecules of a solvent, which present in a stoichiometric or non-stoichiometric amount. Suitable solvents include, but are not limited to, water, methanol, ethanol, n-propanol, isopropanol, and acetic acid. In certain embodiments, the solvent is pharmaceutically acceptable. In one embodiment, the complex or aggregate is in a crystalline form. In another embodiment, the complex or aggregate is in a noncrystalline form. Where the solvent is water, the solvate is a hydrate. Examples of hydrates include, but are not limited to, a hemihydrate, monohydrate, dihydrate, trihydrate, tetrahydrate, and pentahydrate.


The phrase “an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, or an isotopic variant thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof” has the same meaning as the phrase “(i) an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, or an isotopic variant of the compound referenced therein; (ii) a pharmaceutically acceptable salt, solvate, hydrate, or prodrug of the compound referenced therein; or (iii) a pharmaceutically acceptable salt, solvate, hydrate, or prodrug of an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, or an isotopic variant of the compound referenced therein.”


5.3.2. Stem Cell Mobilizing Compounds


In certain aspects, the stem cell mobilizing factor is a compound having Formula (I), (I-A), (I-B), (I-C), or (I-D), as described below.


Formula (I)

Some embodiments disclosed herein relate to a compound of Formula (I), or a pharmaceutically acceptable salt thereof, having the structure:




embedded image


wherein: each custom-character can independently represent a single bond or a double bond; RJ can be selected from the group consisting of —NRaRb, —ORb, and ═O; wherein if RJ is ═O, then custom-character joining G and J represents a single bond and G is N and the N is substituted with RG; otherwise custom-character joining G and J represents a double bond and G is N; Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: —OH, —O(C1-C4 alkyl), —O(C1-C4 haloalkyl); —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted can be substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; substituted C1-6 alkyl; —NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted can be substituted with one or more substituents Q, wherein each Q is independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); RG can be selected from the group consisting of hydrogen, C1-4 alkyl, and —(C1-4 alkyl)-C(═O)NH2; RY and RZ can each independently be absent or be selected from the group consisting of: hydrogen, halo, C1-6 alkyl, —OH, —O—(C1-4 alkyl), —NH(C1-4 alkyl), and —N(C1-4 alkyl)2; or RY and RZ taken together with the atoms to which they are attached can joined together to form a ring selected from:




embedded image


wherein said ring can be optionally substituted with one, two, or three groups independently selected from C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —OH, —O—(C1-4 alkyl), —N(C1-4 alkyl)2, unsubstituted C6-C10 aryl, C6-C10 aryl substituted with 1-5 halo atoms, and —O—(C1-4 haloalkyl); and wherein if RY and RZ taken together forms




embedded image


then RJ can be —ORb or ═O; Rd can be hydrogen or C1-C4 alkyl; Rm can be selected from the group consisting of C1-4 alkyl, halo, and cyano; J can be C; and X, Y, and Z can each be independently N or C, wherein the valency of any carbon atom is filled as needed with hydrogen atoms.


In some embodiments, custom-character can represent a single bond. In other embodiments, custom-character can represent a double bond. In some embodiments, custom-character joining Y and Z can represent a single bond. In other embodiments, custom-character joining Y and Z can represent a double bond. In some embodiments, when custom-character joining G and J represents a single bond, G can be N and the N is substituted with RG. In other embodiments, when custom-character joining G and J represents a double bond, G can be N. In some embodiments, when custom-character joining G and J represents a double bond, then custom-character joining J and RJ can be a single bond. In some embodiments, when custom-character joining G and J represents a double bond, then custom-character joining J and RJ can not be a double bond. In some embodiments, when custom-character joining J and RJ represents a double bond, then custom-character joining G and J can be a single bond. In some embodiments, when custom-character joining J and RJ represents a double bond, then joining G and J can not be a double bond.


In some embodiments, RJ can be —NRaRb. In other embodiments, RJ can be —ORb. In still other embodiments, RJ can be ═O. In some embodiments, when RJ is ═O, then custom-character joining G and J represents a single bond and G is N and the N is substituted with RG. In some embodiments, RG is —CH2CH2—C(═O)NH2.


In some embodiments, Ra can be hydrogen. In some embodiments, Ra can be C1-C4 alkyl. For example, Ra can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl.


In some embodiments, Rb can be Rc. In some embodiments, Rb can be —(C1-C4 alkyl)-Rc. For example, Rb can be —CH2—Rc, —CH2CH2—Rc, —CH2CH2CH2—Rc, or —CH2CH2CH2CH2—Rc. In some embodiments, when Rb is —CH2CH2—Rc, Rc can be —O(C1-C4 alkyl). In other embodiments, when Rb is —CH2CH2—Rc, Rc can be —O(C1-C4 haloalkyl). In still other embodiments, when Rb is —CH2CH2—Rc, Rc can be —C(═O)NH2.


In some embodiments, Rc can be —OH. In some embodiments, Rc can be —O(C1-C4 alkyl). In some embodiments, Rc can be —O(C1-C4 haloalkyl). In some embodiments, Rc can be —C(═O)NH2. In some embodiments, Rc can be unsubstituted C6-10 aryl. In some embodiments, Rc can be substituted C6-10 aryl. In some embodiments, Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, Rc can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, when a Rc moiety is indicated as substituted, the moiety can be substituted with one or more, for example, one, two, three, or four substituents E. In some embodiments, E can be —OH. In some embodiments, E can be C1-C4 alkyl. In some embodiments, E can be C1-C4 haloalkyl. In some embodiments, E can be —O(C1-C4 alkyl). In some embodiments, E can be —O(C1-C4 haloalkyl).


In some embodiments, when Rb is —CH2CH2—Rc, Rc can be unsubstituted C6-10 aryl. In other embodiments, when Rb is —CH2CH2—Rc, Rc can be substituted C6-10 aryl. In still other embodiments, when Rb is —CH2CH2—Rc, Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In yet still other embodiments, Rb can be —(C1-C4 alkyl)-Rc and Rc can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. When a Rc moiety is indicated as substituted, the moiety can be substituted with one or more, for example, one, two, three, or four substituents E. In some embodiments, E can be —OH. In other embodiments, E can be C1-C4 alkyl. In still other embodiments, E can be C1-C4 haloalkyl. In still other embodiments, E can be —O(C1-C4 alkyl). In still other embodiments, E can be —O(C1-C4 haloalkyl).


In some embodiments, when Rb is —CH2CH2—Rc, Rc can be phenyl. In other embodiments, when Rb is —CH2CH2—Rc, Rc can be naphthyl. In still other embodiments, when Rb is —CH2CH2—Rc, Rc can be hydroxyphenyl. In still other embodiments, when Rb is —CH2CH2—Rc, Rc can be indolyl.


In some embodiments, RK can be hydrogen. In other embodiments, RK can be unsubstituted C1-6 alkyl. For example, in some embodiments, RK can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, pentyl (branched and straight-chained), or hexyl (branched and straight-chained). In other embodiments, RK can be substituted C1-6 alkyl. In other embodiments, RK can be —NH(C1-4 alkyl). For example, in some embodiments, RK can be —NH(CH3), —NH(CH2CH3), —NH (isopropyl), or —NH (sec-butyl). In other embodiments, RK can be —N(C1-4 alkyl)2.


In some embodiments, RK can be unsubstituted C6-10 aryl. In other embodiments, RK can be substituted C6-10 aryl. In other embodiments, RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In other embodiments, RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. When a RK moiety is indicated as substituted, the moiety can be substituted with one or more, for example, one, two, three, or four substituents Q. In some embodiments, Q can be —OH. In other embodiments, Q can be C1-4 alkyl. In still other embodiments, Q can be C1-4 haloalkyl. In still other embodiments, Q can be halo. In still other embodiments, Q can be cyano. In still other embodiments, Q can be —O—(C1-4 alkyl). In still other embodiments, Q can be —O—(C1-4 haloalkyl).


In some embodiments, RK can be phenyl or naphthyl. In other embodiments, RK can be benzothiophenyl. In other embodiments, RK can be benzothiophenyl. In other embodiments, RK can be benzothiophenyl. In still other embodiments, RK can be pyridinyl. In yet still other embodiments, RK can be pyridinyl substituted with one or more substituents Q. For example, RK can be methylpyridinyl, ethylpyridinyl cyanopyridinyl, chloropyridinyl, fluoropyridinyl, or bromopyridinyl.


In some embodiments, RG can be hydrogen. In some embodiments, RG can be C1-4 alkyl. In some embodiments, RG can be —(C1-4 alkyl)-C(═O)NH2.


In some embodiments, RY and RZ can independently be absent. In other embodiments, RY and RZ can independently be hydrogen. In other embodiments, RY and RZ can independently be halo. In other embodiments, RY and RZ can independently be C1-6 alkyl. In other embodiments, RY and RZ can independently be —OH. In still other embodiments, RY and RZ can independently be —O—(C1-4 alkyl). In other embodiments, RY and RZ can independently be —NH(C1-4 alkyl). For example, RY and RZ can independently be —NH(CH3), —NH(CH2CH3),


—NH (isopropyl), or —NH (sec-butyl). In other embodiments, RY and RZ can independently be —N(C1-4 alkyl)2.


In some embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form a ring. In some embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In still other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In yet still other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In yet other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In yet still other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In still other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form and




embedded image


In some embodiments, when RY and RZ taken together with the atoms to which they are attached can be joined together to form a ring, the ring can be substituted with one, two, or three groups independently selected from C1-C4 alkyl, —N(C1-C4 alkyl)2, cyano, unsubstituted phenyl, and phenyl substituted with 1-5 halo atoms.




embedded image


In some embodiments, when RY and RZ taken together forms then RJ can be —ORb or ═O.


In some embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be joined together to form




embedded image


In some embodiments, when RY and RZ taken together with the atoms to which they are attached can be joined together to form a ring, the ring can be substituted with one, two, or three groups independently selected from C1-C4 alkyl, —N(C1-C4 alkyl)2, cyano, unsubstituted phenyl, and phenyl substituted with 1-5 halo atoms. In some embodiments, RY and RZ taken together with the atoms to which they are attached can be




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be




embedded image


In still other embodiments, RY and RZ taken together with the atoms to which they are attached can be




embedded image


In yet still other embodiments, RY and RZ taken together with the atoms to which they are attached can be




embedded image


In other embodiments, RY and RZ taken together with the atoms to which they are attached can be




embedded image


In some embodiments, Rd can be hydrogen. In other embodiments, Rd can be C1-C4 alkyl. For example Rd can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In still other embodiments, Rd can be halo. In other embodiments, Rd can be cyano.


In some embodiments, Rm can be hydrogen. In other embodiments, Rm can be C1-C4 alkyl. For example Rm can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In still other embodiments, Rm can be halo. For example, Rm can be fluoro, chloro, bromo, or iodo. In other embodiments, Rm can be cyano.


In some embodiments, X, Y, and Z can each be independently N or C, wherein the valency of any carbon atom is filled as needed with hydrogen atoms. In some embodiments, X can be N, Y can be N, and Z can be N. In other embodiments, X can be N, Y can be N, and Z can be CH. In some embodiments, X can be N, Y can be CH, and Z can be N. In still other embodiments, X can be CH, Y can be N, and Z can be N. In yet still other embodiments, X can be CH, Y can be CH, and Z can be N. In other embodiments, X can be CH, Y can be N, and Z can be CH. In yet other embodiments, X can be N, Y can be CH, and Z can be CH. In other embodiments, X can be CH, Y can be CH, and Z can be CH.


In some embodiments, Ra can be hydrogen; Rb can be —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; —NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); RG can be —(C1-4 alkyl)-C(═O)NH2; RY and RZ can each be independently absent or be selected from the group consisting of: hydrogen, C1-6 alkyl, and —NH(C1-4 alkyl); or RY and RZ taken together with the atoms to which they are attached can be joined together to form a ring selected from:




embedded image


wherein said ring can be optionally substituted with one, two, or three groups independently selected from C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —OH, —O—(C1-4 alkyl), —N(C1-4 alkyl)2, unsubstituted C6-C10 aryl, C6-C10 aryl substituted with 1-5 halo atoms, and —O—(C1-4 haloalkyl); Rd can be C1-C4 alkyl; Rm can be cyano; and X, Y, and Z can each be independently N or C, wherein the valency of any carbon atom is filled as needed with hydrogen atoms.


In some embodiments, Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be selected from the group consisting of: unsubstituted phenyl, substituted phenyl, indolyl, and —C(═O)NH2; RK can be selected from the group consisting of: hydrogen, methyl, substituted pyridinyl, unsubstituted benzothiophenyl, and —NH(C1-C4 alkyl); RG can be —CH2CH2—C(═O)NH2; RY can be —NH(C1-C4 alkyl); RZ can be absent or hydrogen; or RY and RZ taken together with the atoms to which they are attached can be joined together to form a ring selected from:




embedded image


wherein said ring can be optionally substituted with one, two, or three groups independently selected from C1-C4 alkyl, —N(C1-C4 alkyl)2, cyano, unsubstituted phenyl, and phenyl substituted with 1-5 halo atoms; Rd can be C1-C4 alkyl; Rm can be cyano; and X can be N or CH.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; or Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; or RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; substituted with one or more Q, wherein Q can be selected from cyano, halo, or C1-C4 alkyl; RY and RZ taken together can be




embedded image


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; or Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be hydrogen, C1-4 alkyl, or unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and RY and RZ taken together can be




embedded image


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; or Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be hydrogen, C1-4 alkyl, or unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and RY and RZ taken together can be




embedded image


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond, Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl; substituted with one or more E, wherein E can be —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY can be —NH(C1-4 alkyl); RZ can be hydrogen; J can be C; X can be N; Y can be C; Z can be C; and joining Y and Z can be a double bond. In some embodiments, the compound of Formula (I) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-6-(isopropylamino)pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc, Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E can be


—OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together is




embedded image


wherein the ring is substituted with C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc, Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E can be —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together is




embedded image


Rd can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc, Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E can be


—OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together is




embedded image


Rd can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one.


In some embodiments, when RJ is —ORb; G can be N; custom-character joining G and J can be a double bond; Rb can be —CH2CH2—Rc; Rc can be


—C(═O)NH2; RK can unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


Rd can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z is C. In some embodiments, the compound of Formula (I) can be 3-((2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK is unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


wherein said ring is substituted with —N(C1-4 alkyl)2; J can be C; X can be N; Y can be C; and Z is C. In some embodiments, the compound of Formula (I) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is cyano; RY can be —NH(C1-4 alkyl); RZ can be absent; J can be C; X can be C; Y can be C; Z can be N; and joining Y and Z can be a double bond. In some embodiments, the compound of Formula (I) can be 54242-(1H-indol-3-yl)ethyl)amino)-6-(sec-butylamino)pyrimidin-4-yl)nicotinonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be unsubstituted C1-6 alkyl; RY and RZ taken together can




embedded image


wherein the ring is substituted with unsubstituted C6-C10 aryl; J can be C; X can be N; Y can be C; Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine


In some embodiments, when RJ can be —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be


—CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be hydrogen; RY and RZ taken together can be




embedded image


wherein the ring is substituted with substituted C6-C10 aryl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine


In some embodiments, when RJ is ═O; G can be N substituted with RG; custom-character joining G and J can be a single bond; RG can be —(C1-4 alkyl)-C(═O)NH2; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


Rd can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q can be halo; RY and RZ taken together can be




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine.


In some embodiments, when RJ is —NRaRb; G is N; custom-character joining G and J can be a double bond; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q can be cyano; RY and RZ taken together is




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be —NH(C1-4 alkyl); RY and RZ taken together can be




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


wherein the ring is substituted with cyano; Rd can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


wherein the ring is substituted with C1-4 alkyl; J can be C; X can be C; Y can be N; and Z can be C; wherein the valency of any carbon atom is filled as needed with hydrogen atoms. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-c]pyrazin-8-amine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RY and RZ taken together can be




embedded image


wherein the ring can be substituted with C1-4 alkyl; J can be C; X can be C; Y can be N; and Z can be C; wherein the valency of any carbon atom is filled as needed with hydrogen atoms. In some embodiments, the compound of Formula (I) can be 4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J represents a double bond; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is cyano; RY and RZ taken together is




embedded image


wherein the ring is substituted with C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J represents a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is halo; RY and RZ taken together can be




embedded image


wherein the ring is substituted with C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is halo; RY and RZ taken together can be




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is C1-C4 alkyl; RY and RZ taken together can be




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is C1-C4 alkyl; RY and RZ taken together can be




embedded image


wherein the ring is substituted with C1-C4 alkyl J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G is N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is cyano; RY and RZ taken together can be




embedded image


J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile.


In some embodiments, provided herein is compound of Formula (I), wherein the compound can be selected from:

  • 4-(2-((2-(benzo[b]thiophen-3-yl)-6-(isopropylamino)pyrimidin-4-yl)amino)ethyl)phenol;
  • 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol;
  • 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)phenol;
  • 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 3-((2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide;
  • 4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol;
  • 5-(2-((2-(1H-indol-3-yl)ethyl)amino)-6-(sec-butylamino)pyrimidin-4-yl)nicotinonitrile;
  • N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine;
  • N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine;
  • 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine;
  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile;
  • N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine;
  • 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile;
  • N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-amine;
  • 4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol;
  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine;
  • N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine;
  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile; and pharmaceutically acceptable salts thereof.


Formula (I-A)

In some embodiments provided herein, the compound of Formula (I) can have the structure of Formula (I-A)




embedded image


including pharmaceutically acceptable salts thereof, wherein: RJ can be —NRaRb; Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl;


—NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); Y and Z can each be C; X can be N or CH; W can be O or S; and Re can be hydrogen or C1-C4 alkyl.


In some embodiments, Ra can be hydrogen. In other embodiments, Ra can be C1-C4 alkyl.


In some embodiments, Rb can be —(C1-C4 alkyl)-Rc. For example, Rb can be —CH2—Rc, —CH2CH2—Rc, —CH2CH2CH2—Rc, or —CH2CH2CH2CH2—Rc.


In some embodiments, Rc can be —OH. In some embodiments, Rc can be —O(C1-C4 alkyl). In some embodiments, Rc can be —O(C1-C4 haloalkyl). In some embodiments, Rc can be —C(═O)NH2. In some embodiments, Rc can be unsubstituted C6-10 aryl. In some embodiments, Rc can be substituted C6-10 aryl. In some embodiments, Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, Rc can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, when a Rc moiety is indicated as substituted, the moiety can be substituted with one or more, for example, one, two, three, or four substituents E. In some embodiments, E can be


—OH. In some embodiments, E can be C1-C4 alkyl. In some embodiments, E can be C1-C4 haloalkyl. In some embodiments, E can be —O(C1-C4 alkyl). In some embodiments, E can be —O(C1-C4 haloalkyl). In some embodiments Rc can be phenyl. In other embodiments, Rc can be hydroxyphenyl. In still other embodiments, Rc can be indolyl.


In some embodiments, RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein the substituted heteroaryl can substituted with one or more substituents Q, wherein each Q can independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl). In some embodiments, RK can be pyridinyl. In other embodiments, RK can be pyridinyl substituted with one or more substituents Q. For example, RK can be methylpyridinyl, ethylpyridinyl cyanopyridinyl, chloropyridinyl, fluoropyridinyl, or bromopyridinyl.


In some embodiments, Re can be hydrogen. In some embodiments, Re can be C1-C4 alkyl. For example, Re can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl.


In some embodiments, Ra can be hydrogen; Rc can be —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein the substituted heteroaryl is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); and Re can be C1-C4 alkyl.


In some embodiments, Ra can be hydrogen; Rb can be —(CH2—CH2)—Rc; Rc can be selected from the group consisting of: substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one substituent E, wherein E can be —OH; RK can be selected from the group consisting of: unsubstituted benzothiophenyl and substituted pyridinyl; wherein the substituted pyridinyl is substituted with one substituent Q, wherein Q can be selected from the group consisting of: C1-4 alkyl, halo, and cyano; and Re can be isopropyl.


In some embodiments, when W is O, RJ can be —NRaRb; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, and —O(C1-C4 alkyl); RK can be selected from the group consisting of unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —C1-4 alkyl, halo, cyano, and —O—(C1-4 alkyl); Y and Z can each be C; X can be N or CH; and Re can be hydrogen or C1-C4 alkyl.


In some embodiments, when W is S, RJ can be —NRaRb; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, and —O(C1-C4 alkyl); RK can be selected from the group consisting of unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —C1-4 alkyl, halo, cyano, and —O—(C1-4 alkyl); Y and Z can each be C; X can be N or CH; and Re can be hydrogen or C1-C4 alkyl.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is C1-C4 alkyl; W can be S; Re can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is cyano; W can be S; Re can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is halo; W can be S; Re can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc, Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E can be —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; W can be S; Re can be C1-C4 alkyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is halo; W can be O; Re can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is C1-C4 alkyl; W can be O; Re can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine.


In some embodiments, when RJ is —NRaRb; G is NRa can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q is cyano; W can be O; Re can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-A) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile.


In some embodiments, the compound of Formula (I-A), or a pharmaceutically acceptable salt thereof, can selected from the group consisting of:

  • N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine;
  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile; N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine;
  • 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine; and
  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile. Formula (I-B)


In other embodiments provided herein, the compound of Formula (I) can have the structure of Formula (I-B):




embedded image


including pharmaceutically acceptable salts thereof, wherein: Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(C1-4 alkyl)-Rc; Rc can be selected from the group consisting of: —OH, —O(C1-C4 alkyl), —O(C1-C4 haloalkyl); —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; substituted C1-6 alkyl; —NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); RG can be selected from the group consisting of hydrogen, C1-4 alkyl, and —(C1-4 alkyl)-C(═O)NH2; Rf can be selected from the group consisting of hydrogen, C1-4 alkyl, unsubstituted C6-C10 aryl, and C6-C10 aryl substituted with 1-5 halo atoms; U can be N or CRU; V can be S or NRV; RU can be selected from the group consisting of hydrogen, C1-4 alkyl, halo, and cyano; RV can be hydrogen or C1-C4 alkyl; wherein when U is CRU and V is NRV, RU is selected from the group consisting of C1-4 alkyl, halo, and cyano; Y and Z can each be C; and X can be N or CH.


In some embodiments, Ra can be hydrogen. In other embodiments, Ra can be C1-C4 alkyl.


In some embodiments, Rb can be —(C1-C4 alkyl)-Rc. For example, Rb can be —CH2—Rc, —CH2CH2—Rc, —CH2CH2CH2—Rc, or —CH2CH2CH2CH2—Rc. In certain embodiments, Rb can be —(CH2CH2)—Rc. In certain embodiments, Rb can be


—(CH2CH2)—C(═O)NH2. In certain embodiments, Rb can be —(CH2CH2)-(indolyl). In certain embodiments, Rb can be —(CH2CH2)-(hydroxyphenyl).


In some embodiments, Rc can be —OH. In some embodiments, Rc can be —O(C1-C4 alkyl). In some embodiments, Rc can be —O(C1-C4 haloalkyl). In some embodiments, Rc can be —C(═O)NH2. In some embodiments, Rc can be unsubstituted C6-10 aryl. In some embodiments, Rc can be substituted C6-10 aryl. In some embodiments, Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, Rc can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S. In some embodiments, when a Rc moiety is indicated as substituted, the moiety can be substituted with one or more, for example, one, two, three, or four substituents E. In some embodiments, E can be


—OH. In some embodiments, E can be C1-C4 alkyl. In some embodiments, E can be C1-C4 haloalkyl. In some embodiments, E can be —O(C1-C4 alkyl). In some embodiments, E can be —O(C1-C4 haloalkyl).


In some embodiments, RK can be hydrogen. In other embodiments, RK can be C1-C4 alkyl. For example, RK can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In some embodiments, RK can be selected from the group consisting of: unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein the substituted heteroaryl can substituted with one or more substituents Q, wherein each Q can independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl). In certain embodiments, RK can be benzothiophenyl. In other embodiments, RK can be pyridinyl substituted with one or more substituents Q. For example, RK can be methylpyridinyl, ethylpyridinyl cyanopyridinyl, chloropyridinyl, fluoropyridinyl, or bromopyridinyl.


In some embodiments, RG can be selected from the group consisting of hydrogen, C1-4 alkyl, and —(C1-4 alkyl)-C(═O)NH2. In certain embodiments, RG can be —(CH2CH2)—C(═O)NH2.


In some embodiments, Rf can be hydrogen. In other embodiments, Rf can be C1-4 alkyl. For example, Rf can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In some embodiments, Rf can be unsubstituted C6-C10 aryl. In other embodiments, Rf can be C6-C10 aryl substituted with 1-5 halo atoms. In certain embodiments, Rf can be phenyl substituted with 1-5 halo atoms. In certain embodiments, Rf can be fluorophenyl.


In some embodiments, U can be N. In other embodiments, U can be CRU.


In some embodiments, V can be S. In other embodiments, V can be NRV.


In some embodiments, RU can be hydrogen. In some embodiments, RU can be C1-4 alkyl. In other embodiments RU can be halo. For example, RU can be fluoro, chloro, bromo, or iodo. In still other embodiments, RU can be cyano.


In some embodiments, RV can be hydrogen. In other embodiments, RV can be C1-4 alkyl. For example, RV can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In some embodiments, Y and Z can each be C and X can be N. In other embodiments, Y and Z can each be C and X can be CH.


In some embodiments, Ra can be hydrogen; Rb can be —(C1-4 alkyl)-Rc; Rc can be selected from the group consisting of: —C(═O)NH2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted can be substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein the substituted heteroaryl is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); RG is C1-4 alkyl or


—(C1-4 alkyl)-C(═O)NH2; Rf can be selected from the group consisting of hydrogen, unsubstituted phenyl, and phenyl substituted with 1-5 halo atoms; Y and Z each can be C; and X can be CH.


In some embodiments, Ra can be hydrogen; Rb can be —(CH2—CH2)—Rc; Rc can be selected from the group consisting of: —C(═O)NH2, substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one substituent E, wherein E can be —OH; RK can be selected from the group consisting of: unsubstituted benzothiohenyl and substituted pyridinyl; wherein the substituted pyridinyl is substituted with one substituent Q, wherein Q can be selected from the group consisting of: C1-4 alkyl, halo, and cyano; RG can be —(CH2CH2)—C(═O)NH2; Rf can be selected from the group consisting of hydrogen, phenyl, and fluorophenyl; Y and Z each can be C; and X can be CH.


In some embodiments, when V is S, Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(CH2—CH2)—Rc; Rc can be selected from the group consisting of: —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, and —O(C1-C4 alkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; substituted C1-6 alkyl; —NH(C1-4 alkyl); and —N(C1-4 alkyl)2; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, halo, cyano, and —O—(C1-4 alkyl; RG can be selected from the group consisting of hydrogen, C1-4 alkyl, and —(C1-4 alkyl)-C(═O)NH2; Rf can be selected from the group consisting of hydrogen, C1-4 alkyl, unsubstituted C6-C10 aryl, and C6-C10 aryl substituted with 1-5 halo atoms; U can be CRU; RU can be selected from the group consisting of hydrogen, C1-4 alkyl, halo, and cyano; Y and Z can each be C; and X can be N.


In some embodiments, when V is NRV, Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(CH2—CH2)—Rc; Rc can be selected from the group consisting of: —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4, and —O(C1-C4 alkyl); RK can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, halo, cyano, and —O—(C1-4 alkyl); RG can be selected from the group consisting of hydrogen, C1-4 alkyl, and —(C1-4 alkyl)-C(═O)NH2; Rf can be hydrogen; U can be N or CRU; RU can be selected from the group consisting of C1-4 alkyl, halo, and cyano; RV can be hydrogen or C1-C4 alkyl; Y and Z can each be C; and X can be N or CH.


In some embodiments, when RJ is —ORb; G can be N; custom-character joining G and J can be a double bond; Rb can be —CH2CH2—Rc; Rc can be —C(═O)NH2; RK can unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; U can N; V can be NR′; RV can be C1-C4 alkyl; R1 can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-B) can be 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide.


In some embodiments, when RJ is ═O; G can be N substituted with RG; custom-character joining G and J can be a single bond; RG can be —(C1-4 alkyl)-C(═O)NH2; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; U can N; V can be NR′; RV can be C1-C4 alkyl; Rican be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-B) can be 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; U can be CRu; Ru can be cyano; V can be NRv; Rv can be C1-C4 alkyl; Rican be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-B) can be 2-(benzo[b]thiophen-3-yl)-4-(4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be unsubstituted C1-6 alkyl; U can be CRu; Ru can be hydrogen; V can be S; Rf can be phenyl; J can be C; X can be N; Y can be C; Z can be C. In some embodiments, the compound of Formula (I-B) can be N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine.


In some embodiments, when RJ can be —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rb can be


—CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be hydrogen; U can be CRu; can be hydrogen; V can be S; R1 can be fluorophenyl; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-B) can be N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine.


In some embodiments, the compound of Formula (I-B), or a pharmaceutically acceptable salt thereof, can selected from the group consisting of:

  • 3-((2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide;
  • 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide;
  • 2-(benzo[b]thiophen-3-yl)-4-(4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile;
  • N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine; and
  • N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine.


Formula (I-C)

In still other embodiments provided herein, the compound of Formula (I) can have the structure of Formula (I-C)




embedded image


including pharmaceutically acceptable salts thereof, wherein: RJ can be —NRaRb; Ra can be hydrogen or C1-C4 alkyl; Rb can be Rc or —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; —NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); A can be N or CH; B can be N or CH; Rg can be selected from the group consisting of hydrogen, C1-4 alkyl, and —N(C1-4 alkyl)2; Y and Z can each be C; and X can be N or CH.


In some embodiments, RK can be —NH(C1-4 alkyl). For example, in some embodiments, RK can be —NH(CH3), —NH(CH2CH3), —NH (isopropyl), or —NH (sec-butyl). In some embodiments, RK can be unsubstituted benzothiophenyl. In other embodiments, RK can be substituted pyridinyl. For example, RK can be methylpyridinyl, ethylpyridinyl, cyanopyridinyl, chloropyridinyl, fluoropyridinyl, or bromopyridinyl.


In some embodiments, A can be N and B can be N. In other embodiments, A can be N and B can be CH. In still other embodiments, A can be CH and B can be N. In yet still other embodiments, A can be CH and B can be CH.


In some embodiments, Ra can be hydrogen. In other embodiments, Rg can be —N(C1-4 alkyl)2. In certain embodiments, Rg can be


—N(CH3)2.


In some embodiments, Ra can be hydrogen; Rb can be —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: —NH(C1-4 alkyl); unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein the substituted heteroaryl is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); and Ra can be hydrogen or —N(C1-4 alkyl)2.


In some embodiments, Ra can be hydrogen; Rb can be —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: —NH(C1-4 alkyl); unsubstituted benzothiophenyl; and substituted pyridinyl; wherein the substituted pyridinyl is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); and Ra can be hydrogen or —N(C1-4 alkyl)2.


In some embodiments, Ra can be hydrogen; Rb can be —(CH2CH2)—Rc; Rc can be selected from the group consisting of: substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one substituent E, wherein E can be —OH; RK can be selected from the group consisting of: —NH (sec-butyl); unsubstituted benzothiohenyl, and substituted pyridinyl; wherein the substituted pyridinyl is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: C1-4 alkyl, halo, and cyano; and Ra can be hydrogen or —N(CH3)2.


In some embodiments, when A is C and B is C, RJ can be —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; or unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; Ra can be hydrogen; J can be C; X can be N; Y can be C; and Z is C.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen; Rb can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK is unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; A can be N; B can be N; Rg can be —N(C1-4 alkyl)2; J can be C; X can be N; Y can be C; and Z is C. In some embodiments, the compound of Formula (I-C) can be 4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol.


In some embodiments, when RJ is —NRaRb; G can be N; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q can be halo; A can be CH; B can be CH; Rg can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-C) can be N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine.


In some embodiments, when RJ is —NRaRb; G is N; custom-character joining G and J can be a double bond; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more Q, wherein Q can be cyano; A can be CH; B can be CH; Rg can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-C) can be 5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile.


In some embodiments, when RJ is —NRaRb; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen Rb can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; RK can be —NH(C1-4 alkyl); A can be CH; B can be CH; Ra can be hydrogen; J can be C; X can be N; Y can be C; and Z can be C. In some embodiments, the compound of Formula (I-C) can be N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine.


In some embodiments, the compound of Formula (I-C), or a pharmaceutically acceptable salt thereof, can selected from the group consisting of:

  • 4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol;
  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine; 5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile; and
  • N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine.


Formula (I-D)

In yet still other embodiments provided herein, the compound of Formula (I) can have the structure of Formula (I-D):




embedded image


including pharmaceutically acceptable salts thereof, wherein: RJ can be —NRaRb; Ra can be hydrogen or C1-C4 alkyl; Rc can be Rc or —(C1-4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); Rh can be hydrogen or C1-4 alkyl; D can be N or CH; Y can be N; Z can be C; and X can be N or CH.


In some embodiments, Rh can be hydrogen. In other embodiments, Rh can be C1-4 alkyl. For example, Rh can be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl.


In some embodiments, D can be N. In other embodiments, D can be CH.


In some embodiments, when D is N, Y can be N, Z can be C, and X can be N. In other embodiments, when D is N, Y can be N, Z can be C, and X can be CH. In some embodiments, when D is CH, Y can be N, Z can be C, and X can be N. In other embodiments, when D is CH, Y can be N, Z can be C, and X can be CH.


In some embodiments, Ra can be hydrogen; Rb can be —(C1-4 alkyl)-Rc; Rc can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be selected from the group consisting of: unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q can be independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl); and Rh can be hydrogen or C1-4 alkyl.


In some embodiments, Ra can be hydrogen; Rh can be —(C1-C4 alkyl)-Rc; Rc can be selected from the group consisting of: substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one or more substituents E, wherein each E can be independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl); RK can be unsubstituted benzothiophenyl; and Rh can be hydrogen or C1-4 alkyl.


In some embodiments, Ra can be hydrogen; Rh can be —(CH2—CH2)—Rc; Rc can be selected from the group consisting of: substituted phenyl and unsubstituted indolyl; wherein the substituted phenyl is substituted with one substituent E, wherein E can be —OH; RK can be unsubstituted benzothiophenyl; and Rh can be hydrogen or C1-4 alkyl.


In some embodiments, when D is N; RJ is —NRaRh; G can be N; Ra can be hydrogen; Rh can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; or substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; Rh can be C1-4 alkyl; J can be C; X can be C; Y can be N; and Z can be C; wherein the valency of any carbon atom is filled as needed with hydrogen atoms.


In some embodiments, when RJ is —NRaRh; G can be N; Ra can be hydrogen; Rh can be —CH2CH2—Rc; Rc can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S or substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; D can be N; Rh can be C1-4 alkyl; J can be C; X can be C; Y can be N; and Z can be C; wherein the valency of any carbon atom is filled as needed with hydrogen atoms. In some embodiments, the compound of Formula (I-D) can be N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-amine.


In some embodiments, when RJ is —NRaRh; G can be N; custom-character joining G and J can be a double bond; Ra can be hydrogen; Rh can be —CH2CH2—Rc; Rc can be substituted C6-10 aryl, substituted with one or more E, wherein E is —OH; RK can be unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; D can be N; Rh can be C1-4 alkyl; J can be C; X can be C; Y can be N; and Z can be C; wherein the valency of any carbon atom is filled as needed with hydrogen atoms. In some embodiments, the compound of Formula (I-D) can be 4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol.


In some embodiments, the compound of Formula (I-D), or a pharmaceutically acceptable salt thereof, can selected from the group consisting of:

  • N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-amine; and 4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol.


The compounds provided herein may be enantiomerically pure, such as a single enantiomer or a single diastereomer, or be stereoisomeric mixtures, such as a mixture of enantiomers, e.g., a racemic mixture of two enantiomers; or a mixture of two or more diastereomers. As such, one of skill in the art will recognize that administration of a compound in its (R) form is equivalent, for compounds that undergo epimerization in vivo, to administration of the compound in its (5) form. Conventional techniques for the preparation/isolation of individual enantiomers include synthesis from a suitable optically pure precursor, asymmetric synthesis from achiral starting materials, or resolution of an enantiomeric mixture, for example, chiral chromatography, recrystallization, resolution, diastereomeric salt formation, or derivatization into diastereomeric adducts followed by separation.


5.4. Isolation of NK Cells


Methods of isolating natural killer cells are known in the art and can be used to isolate the natural killer cells, e.g., NK cells produced using the three-stage method, described herein. For example, NK cells can be isolated or enriched, for example, by staining cells, in one embodiment, with antibodies to CD56 and CD3, and selecting for CD56+CD3 cells. In certain embodiments, the NK cells are enriched for CD56+CD3 cells in comparison with total cells produced using the three-stage method, described herein. NK cells, e.g., cells produced using the three-stage method, described herein, can be isolated using a commercially available kit, for example, the NK Cell Isolation Kit (Miltenyi Biotec). NK cells, e.g., cells produced using the three-stage method, described herein, can also be isolated or enriched by removal of cells other than NK cells in a population of cells that comprise the NK cells, e.g., cells produced using the three-stage method, described herein. For example, NK cells, e.g., cells produced using the three-stage method, described herein, may be isolated or enriched by depletion of cells displaying non-NK cell markers using, e.g., antibodies to one or more of CD3, CD4, CD14, CD19, CD20, CD36, CD66b, CD123, HLA DR and/or CD235a (glycophorin A). Negative isolation can be carried out using a commercially available kit, e.g., the NK Cell Negative Isolation Kit (Dynal Biotech). Cells isolated by these methods may be additionally sorted, e.g., to separate CD11a+ and CD11a− cells, and/or CD117+ and CD117− cells, and/or CD16+ and CD16 cells, and/or CD94+ and CD94. In certain embodiments, cells, e.g., cells produced by the three-step methods described herein, are sorted to separate CD11a+ and CD11a− cells. In specific embodiments, CD11a+ cells are isolated. In certain embodiments, the cells are enriched for CD11a+ cells in comparison with total cells produced using the three-stage method, described herein. In specific embodiments, CD11a− cells are isolated. In certain embodiments, the cells are enriched for CD11a− cells in comparison with total cells produced using the three-stage method, described herein. In certain embodiments, cells are sorted to separate CD117+ and CD117− cells. In specific embodiments, CD117+ cells are isolated. In certain embodiments, the cells are enriched for CD117+ cells in comparison with total cells produced using the three-stage method, described herein. In specific embodiments, CD117− cells are isolated. In certain embodiments, the cells are enriched for CD117− cells in comparison with total cells produced using the three-stage method, described herein. In certain embodiments, cells are sorted to separate CD16+ and CD16 cells. In specific embodiments, CD16+ cells are isolated. In certain embodiments, the cells are enriched for CD16+ cells in comparison with total cells produced using the three-stage method, described herein. In specific embodiments, CD16 cells are isolated. In certain embodiments, the cells are enriched for CD16− cells in comparison with total cells produced using the three-stage method, described herein. In certain embodiments, cells are sorted to separate CD94+ and CD94 cells. In specific embodiments, CD94+ cells are isolated. In certain embodiments, the cells are enriched for CD94+ cells in comparison with total cells produced using the three-stage method, described herein. In specific embodiments, CD94 cells are isolated. In certain embodiments, the cells are enriched for CD94− cells in comparison with total cells produced using the three-stage method, described herein. In certain embodiments, isolation is performed using magnetic separation. In certain embodiments, isolation is performed using flow cytometry.


Methods of isolating ILC3 cells are known in the art and can be used to isolate the ILC3 cells, e.g., ILC3 cells produced using the three-stage method, described herein. For example, ILC3 cells can be isolated or enriched, for example, by staining cells, in one embodiment, with antibodies to CD56, CD3, and CD11a, and selecting for CD56+CD3CD11acells. ILC3 cells, e.g., cells produced using the three-stage method, described herein, can also be isolated or enriched by removal of cells other than ILC3 cells in a population of cells that comprise the ILC3 cells, e.g., cells produced using the three-stage method, described herein. For example, ILC3 cells, e.g., cells produced using the three-stage method, described herein, may be isolated or enriched by depletion of cells displaying non-ILC3 cell markers using, e.g., antibodies to one or more of CD3, CD4, CD11a, CD14, CD19, CD20, CD36, CD66b, CD94, CD123, HLA DR and/or CD235a (glycophorin A). Cells isolated by these methods may be additionally sorted, e.g., to separate CD117+ and CD117 cells. NK cells can be isolated or enriched, for example, by staining cells, in one embodiment, with antibodies to CD56, CD3, CD94, and CD11a, and selecting for CD56+CD3CD94+CD11 cells. NK cells, e.g., cells produced using the three-stage method, described herein, can also be isolated or enriched by removal of cells other than NK cells in a population of cells that comprise the NK cells, e.g., cells produced using the three-stage method, described herein. In certain embodiments, the NK cells are enriched for CD56+CD3CD94+CD11a+ cells in comparison with total cells produced using the three-stage method, described herein.


In one embodiment, ILC3 cells are isolated or enriched by selecting for CD56+CD3CD11a cells. In certain embodiments, the ILC3 cells are enriched for CD56+CD3CD11a cells in comparison with total cells produced using the three-stage method, described herein. In one embodiment, ILC3 cells are isolated or enriched by selecting for CD56+CD3CD11aCD117+ cells. In certain embodiments, the ILC3 cells are enriched for CD56+CD3CD11aCD117+ cells in comparison with total cells produced using the three-stage method, described herein. In one embodiment, ILC3 cells are isolated or enriched by selecting for CD56+CD3CD11aCD117+CDIL1R1+ cells. In certain embodiments, the ILC3 cells are enriched for CD56+CD3CD11aCD117+CDIL1R1+ cells in comparison with total cells produced using the three-stage method, described herein.


In one embodiment, NK cells are isolated or enriched by selecting for CD56+CD3CD94+CD11a+ cells. In certain embodiments, the NK cells are enriched for CD56+CD3CD94+CD11a+ cells in comparison with total cells produced using the three-stage method, described herein. In one embodiment, NK cells are isolated or enriched by selecting for CD56+CD3CD94+CD11a+CD117 cells. In certain embodiments, the NK cells are enriched for CD56+CD3CD94+CD11a+CD117 cells in comparison with total cells produced using the three-stage method, described herein.


Cell separation can be accomplished by, e.g., flow cytometry, fluorescence-activated cell sorting (FACS), or, in one embodiment, magnetic cell sorting using microbeads conjugated with specific antibodies. The cells may be isolated, e.g., using a magnetic activated cell sorting (MACS) technique, a method for separating particles based on their ability to bind magnetic beads (e.g., about 0.5-100 μm diameter) that comprise one or more specific antibodies, e.g., anti-CD56 antibodies. Magnetic cell separation can be performed and automated using, e.g., an AUTOMACS™ Separator (Miltenyi). A variety of useful modifications can be performed on the magnetic microspheres, including covalent addition of antibody that specifically recognizes a particular cell surface molecule or hapten. The beads are then mixed with the cells to allow binding. Cells are then passed through a magnetic field to separate out cells having the specific cell surface marker. In one embodiment, these cells can then isolated and re-mixed with magnetic beads coupled to an antibody against additional cell surface markers. The cells are again passed through a magnetic field, isolating cells that bound both the antibodies. Such cells can then be diluted into separate dishes, such as microtiter dishes for clonal isolation.


5.5. Placental Perfusate


NK cells and/or ILC3 cells, e.g., NK cell and/or ILC3 cell populations produced according to the three-stage method described herein may be produced from hematopoietic cells, e.g., hematopoietic stem or progenitors from any source, e.g., placental tissue, placental perfusate, umbilical cord blood, placental blood, peripheral blood, spleen, liver, or the like. In certain embodiments, the hematopoietic stem cells are combined hematopoietic stem cells from placental perfusate and from cord blood from the same placenta used to generate the placental perfusate. Placental perfusate comprising placental perfusate cells that can be obtained, for example, by the methods disclosed in U.S. Pat. Nos. 7,045,148 and 7,468,276 and U.S. Patent Application Publication No. 2009/0104164, the disclosures of which are hereby incorporated in their entireties.


5.5.1. Cell Collection Composition


The placental perfusate and perfusate cells, from which hematopoietic stem or progenitors may be isolated, or useful in tumor suppression or the treatment of an individual having tumor cells, cancer or a viral infection, e.g., in combination with the NK cells and/or ILC3 cells, e.g., NK cell and/or ILC3 cell populations produced according to the three-stage method provided herein, can be collected by perfusion of a mammalian, e.g., human post-partum placenta using a placental cell collection composition. Perfusate can be collected from the placenta by perfusion of the placenta with any physiologically-acceptable solution, e.g., a saline solution, culture medium, or a more complex cell collection composition. A cell collection composition suitable for perfusing a placenta, and for the collection and preservation of perfusate cells is described in detail in related U.S. Application Publication No. 2007/0190042, which is incorporated herein by reference in its entirety.


The cell collection composition can comprise any physiologically-acceptable solution suitable for the collection and/or culture of stem cells, for example, a saline solution (e.g., phosphate-buffered saline, Kreb's solution, modified Kreb's solution, Eagle's solution, 0.9% NaCl. etc.), a culture medium (e.g., DMEM, H.DMEM, etc.), and the like.


The cell collection composition can comprise one or more components that tend to preserve placental cells, that is, prevent the placental cells from dying, or delay the death of the placental cells, reduce the number of placental cells in a population of cells that die, or the like, from the time of collection to the time of culturing. Such components can be, e.g., an apoptosis inhibitor (e.g., a caspase inhibitor or JNK inhibitor); a vasodilator (e.g., magnesium sulfate, an antihypertensive drug, atrial natriuretic peptide (ANP), adrenocorticotropin, corticotropin-releasing hormone, sodium nitroprusside, hydralazine, adenosine triphosphate, adenosine, indomethacin or magnesium sulfate, a phosphodiesterase inhibitor, etc.); a necrosis inhibitor (e.g., 2-(1H-Indol-3-yl)-3-pentylamino-maleimide, pyrrolidine dithiocarbamate, or clonazepam); a TNF-α inhibitor; and/or an oxygen-carrying perfluorocarbon (e.g., perfluorooctyl bromide, perfluorodecyl bromide, etc.).


The cell collection composition can comprise one or more tissue-degrading enzymes, e.g., a metalloprotease, a serine protease, a neutral protease, a hyaluronidase, an RNase, or a DNase, or the like. Such enzymes include, but are not limited to, collagenases (e.g., collagenase I, II, III or IV, a collagenase from Clostridium histolyticum, etc.); dispase, thermolysin, elastase, trypsin, LIBERASE, hyaluronidase, and the like.


The cell collection composition can comprise a bacteriocidally or bacteriostatically effective amount of an antibiotic. In certain non-limiting embodiments, the antibiotic is a macrolide (e.g., tobramycin), a cephalosporin (e.g., cephalexin, cephradine, cefuroxime, cefprozil, cefaclor, cefixime or cefadroxil), a clarithromycin, an erythromycin, a penicillin (e.g., penicillin V) or a quinolone (e.g., ofloxacin, ciprofloxacin or norfloxacin), a tetracycline, a streptomycin, etc. In a particular embodiment, the antibiotic is active against Gram(+) and/or Gram(−) bacteria, e.g., Pseudomonas aeruginosa, Staphylococcus aureus, and the like.


The cell collection composition can also comprise one or more of the following compounds: adenosine (about 1 mM to about 50 mM); D-glucose (about 20 mM to about 100 mM); magnesium ions (about 1 mM to about 50 mM); a macromolecule of molecular weight greater than 20,000 daltons, in one embodiment, present in an amount sufficient to maintain endothelial integrity and cellular viability (e.g., a synthetic or naturally occurring colloid, a polysaccharide such as dextran or a polyethylene glycol present at about 25 g/l to about 100 g/l, or about 40 g/l to about 60 g/l); an antioxidant (e.g., butylated hydroxyanisole, butylated hydroxytoluene, glutathione, vitamin C or vitamin E present at about 25 μM to about 100 μM); a reducing agent (e.g., N-acetylcysteine present at about 0.1 mM to about 5 mM); an agent that prevents calcium entry into cells (e.g., verapamil present at about 2 μM to about 25 μM); nitroglycerin (e.g., about 0.05 g/L to about 0.2 g/L); an anticoagulant, in one embodiment, present in an amount sufficient to help prevent clotting of residual blood (e.g., heparin or hirudin present at a concentration of about 1000 units/1 to about 100,000 units/1); or an amiloride containing compound (e.g., amiloride, ethyl isopropyl amiloride, hexamethylene amiloride, dimethyl amiloride or isobutyl amiloride present at about 1.0 μM to about 5 μM).


5.5.2. Collection and Handling of Placenta


Generally, a human placenta is recovered shortly after its expulsion after birth. In one embodiment, the placenta is recovered from a patient after informed consent and after a complete medical history of the patient is taken and is associated with the placenta. In one embodiment, the medical history continues after delivery.


Prior to recovery of perfusate, the umbilical cord blood and placental blood are removed. In certain embodiments, after delivery, the cord blood in the placenta is recovered. The placenta can be subjected to a conventional cord blood recovery process. Typically a needle or cannula is used, with the aid of gravity, to exsanguinate the placenta (see, e.g., Anderson, U.S. Pat. No. 5,372,581; Hessel et al., U.S. Pat. No. 5,415,665). The needle or cannula is usually placed in the umbilical vein and the placenta can be gently massaged to aid in draining cord blood from the placenta. Such cord blood recovery may be performed commercially, e.g., LifeBank Inc., Cedar Knolls, N.J., ViaCord, Cord Blood Registry and CryoCell. In one embodiment, the placenta is gravity drained without further manipulation so as to minimize tissue disruption during cord blood recovery.


Typically, a placenta is transported from the delivery or birthing room to another location, e.g., a laboratory, for recovery of cord blood and collection of perfusate. The placenta can be transported in a sterile, thermally insulated transport device (maintaining the temperature of the placenta between 20-28° C.), for example, by placing the placenta, with clamped proximal umbilical cord, in a sterile zip-lock plastic bag, which is then placed in an insulated container. In another embodiment, the placenta is transported in a cord blood collection kit substantially as described in U.S. Pat. No. 7,147,626. In one embodiment, the placenta is delivered to the laboratory four to twenty-four hours following delivery. In certain embodiments, the proximal umbilical cord is clamped, for example within 4-5 cm (centimeter) of the insertion into the placental disc prior to cord blood recovery. In other embodiments, the proximal umbilical cord is clamped after cord blood recovery but prior to further processing of the placenta.


The placenta, prior to collection of the perfusate, can be stored under sterile conditions and at either room temperature or at a temperature of 5 to 25° C. (centigrade). The placenta may be stored for a period of longer than forty eight hours, or for a period of four to twenty-four hours prior to perfusing the placenta to remove any residual cord blood. The placenta can be stored in an anticoagulant solution at a temperature of 5° C. to 25° C. (centigrade). Suitable anticoagulant solutions are well known in the art. For example, a solution of heparin or warfarin sodium can be used. In one embodiment, the anticoagulant solution comprises a solution of heparin (e.g., 1% w/w in 1:1000 solution). In some embodiments, the exsanguinated placenta is stored for no more than 36 hours before placental perfusate is collected.


5.5.3. Placental Perfusion


Methods of perfusing mammalian placentae and obtaining placental perfusate are disclosed, e.g., in Hariri, U.S. Pat. Nos. 7,045,148 and 7,255,879, and in U.S. Application Publication Nos. 2009/0104164, 2007/0190042 and 20070275362, issued as U.S. Pat. No. 8,057,788, the disclosures of which are hereby incorporated by reference herein in their entireties.


Perfusate can be obtained by passage of perfusion solution, e.g., saline solution, culture medium or cell collection compositions described above, through the placental vasculature. In one embodiment, a mammalian placenta is perfused by passage of perfusion solution through either or both of the umbilical artery and umbilical vein. The flow of perfusion solution through the placenta may be accomplished using, e.g., gravity flow into the placenta. For example, the perfusion solution is forced through the placenta using a pump, e.g., a peristaltic pump. The umbilical vein can be, e.g., cannulated with a cannula, e.g., a TEFLON® or plastic cannula, that is connected to a sterile connection apparatus, such as sterile tubing. The sterile connection apparatus is connected to a perfusion manifold.


In preparation for perfusion, the placenta can be oriented in such a manner that the umbilical artery and umbilical vein are located at the highest point of the placenta. The placenta can be perfused by passage of a perfusion solution through the placental vasculature, or through the placental vasculature and surrounding tissue. In one embodiment, the umbilical artery and the umbilical vein are connected simultaneously to a pipette that is connected via a flexible connector to a reservoir of the perfusion solution. The perfusion solution is passed into the umbilical vein and artery. The perfusion solution exudes from and/or passes through the walls of the blood vessels into the surrounding tissues of the placenta, and is collected in a suitable open vessel from the surface of the placenta that was attached to the uterus of the mother during gestation. The perfusion solution may also be introduced through the umbilical cord opening and allowed to flow or percolate out of openings in the wall of the placenta which interfaced with the maternal uterine wall. In another embodiment, the perfusion solution is passed through the umbilical veins and collected from the umbilical artery, or is passed through the umbilical artery and collected from the umbilical veins, that is, is passed through only the placental vasculature (fetal tissue).


In one embodiment, for example, the umbilical artery and the umbilical vein are connected simultaneously, e.g., to a pipette that is connected via a flexible connector to a reservoir of the perfusion solution. The perfusion solution is passed into the umbilical vein and artery. The perfusion solution exudes from and/or passes through the walls of the blood vessels into the surrounding tissues of the placenta, and is collected in a suitable open vessel from the surface of the placenta that was attached to the uterus of the mother during gestation. The perfusion solution may also be introduced through the umbilical cord opening and allowed to flow or percolate out of openings in the wall of the placenta which interfaced with the maternal uterine wall. Placental cells that are collected by this method, which can be referred to as a “pan” method, are typically a mixture of fetal and maternal cells.


In another embodiment, the perfusion solution is passed through the umbilical veins and collected from the umbilical artery, or is passed through the umbilical artery and collected from the umbilical veins. Placental cells collected by this method, which can be referred to as a “closed circuit” method, are typically almost exclusively fetal.


The closed circuit perfusion method can, in one embodiment, be performed as follows. A post-partum placenta is obtained within about 48 hours after birth. The umbilical cord is clamped and cut above the clamp. The umbilical cord can be discarded, or can processed to recover, e.g., umbilical cord stem cells, and/or to process the umbilical cord membrane for the production of a biomaterial. The amniotic membrane can be retained during perfusion, or can be separated from the chorion, e.g., using blunt dissection with the fingers. If the amniotic membrane is separated from the chorion prior to perfusion, it can be, e.g., discarded, or processed, e.g., to obtain stem cells by enzymatic digestion, or to produce, e.g., an amniotic membrane biomaterial, e.g., the biomaterial described in U.S. Application Publication No. 2004/0048796. After cleaning the placenta of all visible blood clots and residual blood, e.g., using sterile gauze, the umbilical cord vessels are exposed, e.g., by partially cutting the umbilical cord membrane to expose a cross-section of the cord. The vessels are identified, and opened, e.g., by advancing a closed alligator clamp through the cut end of each vessel. The apparatus, e.g., plastic tubing connected to a perfusion device or peristaltic pump, is then inserted into each of the placental arteries. The pump can be any pump suitable for the purpose, e.g., a peristaltic pump. Plastic tubing, connected to a sterile collection reservoir, e.g., a blood bag such as a 250 mL collection bag, is then inserted into the placental vein. Alternatively, the tubing connected to the pump is inserted into the placental vein, and tubes to a collection reservoir(s) are inserted into one or both of the placental arteries. The placenta is then perfused with a volume of perfusion solution, e.g., about 750 ml of perfusion solution. Cells in the perfusate are then collected, e.g., by centrifugation.


In one embodiment, the proximal umbilical cord is clamped during perfusion, and, more specifically, can be clamped within 4-5 cm (centimeter) of the cord's insertion into the placental disc.


The first collection of perfusion fluid from a mammalian placenta during the exsanguination process is generally colored with residual red blood cells of the cord blood and/or placental blood. The perfusion fluid becomes more colorless as perfusion proceeds and the residual cord blood cells are washed out of the placenta. Generally from 30 to 100 mL of perfusion fluid is adequate to initially flush blood from the placenta, but more or less perfusion fluid may be used depending on the observed results.


In certain embodiments, cord blood is removed from the placenta prior to perfusion (e.g., by gravity drainage), but the placenta is not flushed (e.g., perfused) with solution to remove residual blood. In certain embodiments, cord blood is removed from the placenta prior to perfusion (e.g., by gravity drainage), and the placenta is flushed (e.g., perfused) with solution to remove residual blood.


The volume of perfusion liquid used to perfuse the placenta may vary depending upon the number of placental cells to be collected, the size of the placenta, the number of collections to be made from a single placenta, etc. In various embodiments, the volume of perfusion liquid may be from 50 mL to 5000 mL, 50 mL to 4000 mL, 50 mL to 3000 mL, 100 mL to 2000 mL, 250 mL to 2000 mL, 500 mL to 2000 mL, or 750 mL to 2000 mL. Typically, the placenta is perfused with 700-800 mL of perfusion liquid following exsanguination.


The placenta can be perfused a plurality of times over the course of several hours or several days. Where the placenta is to be perfused a plurality of times, it may be maintained or cultured under aseptic conditions in a container or other suitable vessel, and perfused with a cell collection composition, or a standard perfusion solution (e.g., a normal saline solution such as phosphate buffered saline (“PBS”) with or without an anticoagulant (e.g., heparin, warfarin sodium, coumarin, bishydroxycoumarin), and/or with or without an antimicrobial agent (e.g., β-mercaptoethanol (0.1 mM); antibiotics such as streptomycin (e.g., at 40-100 μg/ml), penicillin (e.g., at 40 U/ml), amphotericin B (e.g., at 0.5 μg/ml). In one embodiment, an isolated placenta is maintained or cultured for a period of time without collecting the perfusate, such that the placenta is maintained or cultured for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 hours, or 2 or 3 or more days before perfusion and collection of perfusate. The perfused placenta can be maintained for one or more additional time(s), e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more hours, and perfused a second time with, e.g., 700-800 mL perfusion fluid. The placenta can be perfused 1, 2, 3, 4, 5 or more times, for example, once every 1, 2, 3, 4, 5 or 6 hours. In one embodiment, perfusion of the placenta and collection of perfusion solution, e.g., placental cell collection composition, is repeated until the number of recovered nucleated cells falls below 100 cells/ml. The perfusates at different time points can be further processed individually to recover time-dependent populations of cells, e.g., total nucleated cells. Perfusates from different time points can also be pooled.


5.5.4. Placental Perfusate and Placental Perfusate Cells


Typically, placental perfusate from a single placental perfusion comprises about 100 million to about 500 million nucleated cells, including hematopoietic cells from which NK cells and/or ILC3 cells, e.g., NK cells and/or ILC3 cells produced according to the three-stage method described herein, may be produced by the method disclosed herein. In certain embodiments, the placental perfusate or perfusate cells comprise CD34+ cells, e.g., hematopoietic stem or progenitor cells. Such cells can, in a more specific embodiment, comprise CD34+CD45 stem or progenitor cells, CD34+CD45+ stem or progenitor cells, or the like. In certain embodiments, the perfusate or perfusate cells are cryopreserved prior to isolation of hematopoietic cells therefrom. In certain other embodiments, the placental perfusate comprises, or the perfusate cells comprise, only fetal cells, or a combination of fetal cells and maternal cells.


5.6. NK Cells


5.6.1. NK Cells Produced by Three-Stage Method


In another embodiment, provided herein is an isolated NK cell population, wherein said NK cells are produced according to the three-stage method described above.


In one embodiment, provided herein is an isolated NK cell population produced by a three-stage method described herein, wherein said NK cell population comprises a greater percentage of CD3−CD56+ cells than an NK progenitor cell population produced by a three-stage method described herein, e.g., an NK progenitor cell population produced by the same three-stage method with the exception that the third culture step used to produce the NK progenitor cell population was of shorter duration than the third culture step used to produce the NK cell population. In a specific embodiment, said NK cell population comprises about 70% or more, in some embodiments, 75%, 80%, 85%, 90%, 95%, 98%, or 99% CD3−CD56+ cells. In another specific embodiment, said NK cell population comprises no less than 80%, 85%, 90%, 95%, 98%, or 99% CD3−CD56+ cells. In another specific embodiment, said NK cell population comprises between 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-99% CD3−CD56+ cells.


In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally NKp46+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD16−. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD16+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD94−. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD94+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD11a+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally NKp30+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally CD161+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally DNAM-1+. In certain embodiments, said CD3CD56+ cells in said NK cell population comprises CD3CD56+ cells that are additionally T-bet+.


In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which are CD117+. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which are NKG2D+. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which are NKp44+. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which are CD244+. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which express perforin. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which express EOMES. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which express granzyme B. In one embodiment, an NK cell population produced by a three-stage method described herein comprises cells which secrete IFNγ, GM-CSF and/or TNFα.


5.7. ILC3 Cells 5.7.1. ILC3 Cells Produced by Three-Stage Method


In another embodiment, provided herein is an isolated ILC3 cell population, wherein said ILC3 cells are produced according to the three-stage method described above.


In one embodiment, provided herein is an isolated ILC3 cell population produced by a three-stage method described herein, wherein said ILC3 cell population comprises a greater percentage of CD3−CD56+ cells than an ILC3 progenitor cell population produced by a three-stage method described herein, e.g., an ILC3 progenitor cell population produced by the same three-stage method with the exception that the third culture step used to produce the ILC3 progenitor cell population was of shorter duration than the third culture step used to produce the ILC3 cell population. In a specific embodiment, said ILC3 cell population comprises about 70% or more, in some embodiments, 75%, 80%, 85%, 90%, 95%, 98%, or 99% CD3−CD56+ cells. In another specific embodiment, said ILC3 cell population comprises no less than 80%, 85%, 90%, 95%, 98%, or 99% CD3−CD56+ cells. In another specific embodiment, said ILC3 cell population comprises between 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-99% CD3−CD56+ cells.


In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally NKp46. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally CD16−. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally IL1R1+. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally CD94-. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally RORγt+. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally CD11a. In certain embodiments, said CD3CD56+ cells in said ILC3 cell population comprises CD3CD56+ cells that are additionally T-bet+.


In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which are CD117+. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which are NKG2D. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which are NKp30. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which are CD244+. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which are DNAM-1+. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which express AHR. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which do not express perforin. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which do not express EOMES. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which do not express granzyme B. In one embodiment, an ILC3 cell population produced by a three-stage method described herein comprises cells which secrete IL-22 and/or IL-8.


In certain aspects, cell populations produced by the three-stage method described herein comprise CD11a+ cells and CD11a− cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 50:1. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 20:1. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 10:1. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 5:1. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 1:1. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 1:5. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 1:10. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 1:20. In certain aspects, a population of cells described herein comprises CD11a+ cells and CD11a− cells in a ratio of 1:50.


In certain aspects, cell populations described herein are produced by combining the CD11a+ cells with the CD11a− cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50 to produce a combined population of cells. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 50:1. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 20:1. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 10:1. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 5:1. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 1:1. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 1:5. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 1:10. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 1:20. In certain aspects, a combined population of cells described herein comprises CD11a+ cells and CD11a− cells combined in a ratio of 1:50.


In certain aspects, cell populations produced by the three-stage method described herein comprise NK cells and ILC3 cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 50:1. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 20:1. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 10:1. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 5:1. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 1:1. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 1:5. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 1:10. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 1:20. In certain aspects, a population of cells described herein comprises NK cells and ILC3 cells in a ratio of 1:50.


In certain aspects, cell populations described herein are produced by combining the NK cells with the ILC3 cells in a ratio of 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:30, 1:40, or 1:50 to produce a combined population of cells. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 50:1. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 20:1. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 10:1. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 5:1. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 1:1. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 1:5. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 1:10. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 1:20. In certain aspects, a combined population of cells described herein comprises NK cells and ILC3 cells combined in a ratio of 1:50.


5.8. NK Cells and/or ILC3 Cells In Combination With Placental Perfusate


Further provided herein are compositions comprising NK cells and/or ILC3 cells according to the three-stage method described herein, in combination with placental perfusate, placental perfusate cells and/or adherent placental cells, e.g., for use in suppressing the proliferation of a tumor cell or plurality of tumor cells.


5.8.1. Combinations of NK Cells and/or ILC3 Cells and Perfusate or


Perfusate Cells


Further provided herein are compositions comprising combinations of NK cell and/or ILC3 cell populations produced according to the three-stage method described herein, and placental perfusate and/or placental perfusate cells. In one embodiment, for example, provided herein is a volume of placental perfusate supplemented with NK cells and/or ILC3 cells produced using the methods described herein. In specific embodiments of a volume of placental perfusate supplemented with NK cells and ILC3 cells, the NK cells and ILC3 cells are present in ratios as described herein. In specific embodiments, for example, each milliliter of placental perfusate is supplemented with about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more NK cells and/or ILC3 cells produced using the methods described herein. In another embodiment, placental perfusate cells are supplemented with NK cells and/or ILC3 cells produced using the methods described herein. In certain other embodiments, when placental perfusate cells are combined with NK cells and/or ILC3 cells produced using the methods described herein, the placental perfusate cells generally comprise about, greater than about, or fewer than about, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 8%, 6%, 4%, 2% or 1% of the total number of cells. In certain other embodiments, when NK cells and/or ILC3 cells produced using the methods described herein are combined with a plurality of placental perfusate cells and/or combined natural killer cells, the NK cells and/or ILC3 cells or NK cell populations generally comprise about, greater than about, or fewer than about, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 8%, 6%, 4%, 2% or 1% of the total number of cells. In certain other embodiments, when NK cells and/or ILC3 cells produced using the methods described herein are used to supplement placental perfusate, the volume of solution (e.g., saline solution, culture medium or the like) in which the cells are suspended comprises about, greater than about, or less than about, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 8%, 6%, 4%, 2% or 1% of the total volume of perfusate plus cells, where the NK cells and/or ILC3 cells are suspended to about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more cells per milliliter prior to supplementation.


In other embodiments, any of the above combinations of cells is, in turn, combined with umbilical cord blood or nucleated cells from umbilical cord blood.


Further provided herein is pooled placental perfusate that is obtained from two or more sources, e.g., two or more placentas, and combined, e.g., pooled. Such pooled perfusate can comprise approximately equal volumes of perfusate from each source, or can comprise different volumes from each source. The relative volumes from each source can be randomly selected, or can be based upon, e.g., a concentration or amount of one or more cellular factors, e.g., cytokines, growth factors, hormones, or the like; the number of placental cells in perfusate from each source; or other characteristics of the perfusate from each source. Perfusate from multiple perfusions of the same placenta can similarly be pooled.


Similarly, provided herein are placental perfusate cells, and placenta-derived intermediate natural killer cells, that are obtained from two or more sources, e.g., two or more placentas, and pooled. Such pooled cells can comprise approximately equal numbers of cells from the two or more sources, or different numbers of cells from one or more of the pooled sources. The relative numbers of cells from each source can be selected based on, e.g., the number of one or more specific cell types in the cells to be pooled, e.g., the number of CD34+ cells, etc.


Further provided herein are NK cells and/or ILC3 cells produced using the methods described herein, and combinations of such cells with placental perfusate and/or placental perfusate cells, that have been assayed to determine the degree or amount of tumor suppression (that is, the potency) to be expected from, e.g., a given number of NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations or a given volume of perfusate. For example, an aliquot or sample number of cells is contacted or brought into proximity with a known number of tumor cells under conditions in which the tumor cells would otherwise proliferate, and the rate of proliferation of the tumor cells in the presence of placental perfusate, perfusate cells, placental natural killer cells, or combinations thereof, over time (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks, or longer) is compared to the proliferation of an equivalent number of the tumor cells in the absence of perfusate, perfusate cells, placental natural killer cells, or combinations thereof. The potency of the cells can be expressed, e.g., as the number of cells or volume of solution required to suppress tumor cell growth, e.g., by about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or the like.


In certain embodiments, NK cells and/or ILC3 cells produced using the methods described herein, are provided as pharmaceutical grade administrable units. Such units can be provided in discrete volumes, e.g., 15 mL, 20 mL, 25 mL, 30 nL. 35 mL, 40 mL, 45 mL, 50 mL, 55 mL, 60 mL, 65 mL, 70 mL, 75 mL, 80 mL, 85 mL, 90 mL, 95 mL, 100 mL, 150 mL, 200 mL, 250 mL, 300 mL, 350 mL, 400 mL, 450 mL, 500 mL, or the like. Such units can be provided so as to contain a specified number of cells, e.g., NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations in combination with other NK cells and/or ILC3 cells or perfusate cells, e.g., 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more cells per unit. In specific embodiments, the units can comprise about, at least about, or at most about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106 or more NK cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more cells per unit. Such units can be provided to contain specified numbers of NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations and/or any of the other cells.


In the above embodiments, the NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations or combinations of NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations with other NK cells and/or ILC3 cells, perfusate cells or perfusate can be autologous to a recipient (that is, obtained from the recipient), or allogeneic to a recipient (that is, obtained from at last one other individual from said recipient).


In certain embodiments, each unit of cells is labeled to specify one or more of volume, number of cells, type of cells, whether the unit has been enriched for a particular type of cell, and/or potency of a given number of cells in the unit, or a given number of milliliters of the unit, that is, whether the cells in the unit cause a measurable suppression of proliferation of a particular type or types of tumor cell.


5.8.2. Combinations of NK Cells and/or ILC3 Cells With Adherent


Placental Stem Cells


In other embodiments, the NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell populations produced using the three-stage method described herein, either alone or in combination with placental perfusate or placental perfusate cells, are supplemented with isolated adherent placental cells, e.g., placental stem cells and placental multipotent cells as described, e.g., in Hariri U.S. Pat. Nos. 7,045,148 and 7,255,879, and in U.S. Patent Application Publication No. 2007/0275362, the disclosures of which are incorporated herein by reference in their entireties. In specific embodiments, NK cells and ILC3 cells, the NK cells and ILC3 cells are present in ratios as described herein. “Adherent placental cells” means that the cells are adherent to a tissue culture surface, e.g., tissue culture plastic. The adherent placental cells useful in the compositions and methods disclosed herein are generally not trophoblasts, embryonic germ cells or embryonic stem cells.


The NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell populations, either alone or in combination with placental perfusate or placental perfusate cells can be supplemented with, e.g., 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more adherent placental cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more adherent placental cells. The adherent placental cells in the combinations can be, e.g., adherent placental cells that have been cultured for, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, or 40 population doublings, or more.


Isolated adherent placental cells, when cultured in primary cultures or expanded in cell culture, adhere to the tissue culture substrate, e.g., tissue culture container surface (e.g., tissue culture plastic). Adherent placental cells in culture assume a generally fibroblastoid, stellate appearance, with a number of cytoplasmic processes extending from the central cell body. Adherent placental cells are, however, morphologically distinguishable from fibroblasts cultured under the same conditions, as the adherent placental cells exhibit a greater number of such processes than do fibroblasts. Morphologically, adherent placental cells are also distinguishable from hematopoietic stem cells, which generally assume a more rounded, or cobblestone, morphology in culture.


The isolated adherent placental cells, and populations of adherent placental cells, useful in the compositions and methods provided herein, express a plurality of markers that can be used to identify and/or isolate the cells, or populations of cells that comprise the adherent placental cells. The adherent placental cells, and adherent placental cell populations useful in the compositions and methods provided herein include adherent placental cells and adherent placental cell-containing cell populations obtained directly from the placenta, or any part thereof (e.g., amnion, chorion, amnion-chorion plate, placental cotyledons, umbilical cord, and the like). The adherent placental stem cell population, in one embodiment, is a population (that is, two or more) of adherent placental stem cells in culture, e.g., a population in a container, e.g., a bag.


The adherent placental cells generally express the markers CD73, CD105, and CD200, and/or OCT-4, and do not express CD34, CD38, or CD45. Adherent placental stem cells can also express HLA-ABC (MHC-1) and HLA-DR. These markers can be used to identify adherent placental cells, and to distinguish the adherent placental cells from other cell types. Because the adherent placental cells can express CD73 and CD105, they can have mesenchymal stem cell-like characteristics. Lack of expression of CD34, CD38 and/or CD45 identifies the adherent placental stem cells as non-hematopoietic stem cells.


In certain embodiments, the isolated adherent placental cells described herein detectably suppress cancer cell proliferation or tumor growth.


In certain embodiments, the isolated adherent placental cells are isolated placental stem cells. In certain other embodiments, the isolated adherent placental cells are isolated placental multipotent cells. In a specific embodiment, the isolated adherent placental cells are CD34, CD10+ and CD105+ as detected by flow cytometry. In a more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are placental stem cells. In another more specific embodiment, the isolated CD34, CD10+, CD105+ placental cells are multipotent adherent placental cells. In another specific embodiment, the isolated CD34, CD10+, CD105+ placental cells have the potential to differentiate into cells of a neural phenotype, cells of an osteogenic phenotype, or cells of a chondrogenic phenotype. In a more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD200+. In another more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In another more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In a more specific embodiment, the CD34, CD10+, CD105+, CD200+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In another more specific embodiment, the CD34, CD10+, CD105+, CD200+ adherent placental cells are additionally CD90+ and CD45, as detected by flow cytometry. In another more specific embodiment, the CD34, CD10+, CD105+, CD200+, CD90+, CD45 adherent placental cells are additionally CD80 and CD86, as detected by flow cytometry.


In one embodiment, the isolated adherent placental cells are CD200+, HLA-G+. In a specific embodiment, said isolated adherent placental cells are also CD73+ and CD105+. In another specific embodiment, said isolated adherent placental cells are also CD34, CD38 or CD45. In a more specific embodiment, said isolated adherent placental cells are also CD34, CD38, CD45, CD73+ and CD105+. In another embodiment, said isolated adherent placental cells produce one or more embryoid-like bodies when cultured under conditions that allow the formation of embryoid-like bodies.


In another embodiment, the isolated adherent placental cells are CD73+, CD105+, CD200+. In a specific embodiment of said populations, said isolated adherent placental cells are also HLA-G+. In another specific embodiment, said isolated adherent placental cells are also CD34, CD38 or CD45. In another specific embodiment, said isolated adherent placental cells are also CD34, CD38 and CD45. In a more specific embodiment, said isolated adherent placental cells are also CD34, CD38, CD45, and HLA-G+. In another specific embodiment, said isolated adherent placental cells produce one or more embryoid-like bodies when cultured under conditions that allow the formation of embryoid-like bodies.


In another embodiment, the isolated adherent placental cells are CD200+, OCT-4+. In a specific embodiment, said isolated adherent placental cells are also CD73+ and CD105+. In another specific embodiment, said isolated adherent placental cells are also HLA-G+. In another specific embodiment, said isolated adherent placental cells are also CD34, CD38 and CD45. In a more specific embodiment, said isolated adherent placental cells are also CD34, CD38, CD45, CD73+, CD105+ and HLA-G+. In another specific embodiment, the isolated adherent placental cells also produce one or more embryoid-like bodies when cultured under conditions that allow the formation of embryoid-like bodies.


In another embodiment, the isolated adherent placental cells are CD73+, CD105+ and HLA-G+. In a specific embodiment, said isolated adherent placental cells are also CD34, CD38 or CD45. In another specific embodiment, said isolated adherent placental cells also CD34, CD38 and CD45. In another specific embodiment, said adherent stem cells are also OCT-4+. In another specific embodiment, said adherent stem cells are also CD200+. In a more specific embodiment, said adherent stem cells are also CD34, CD38, CD45, OCT-4+ and CD200+.


In another embodiment, the isolated adherent placental cells are CD73+, CD105+ stem cells, wherein said cells produce one or more embryoid-like bodies under conditions that allow formation of embryoid-like bodies. In a specific embodiment, said isolated adherent placental cells are also CD34, CD38 or CD45. In another specific embodiment, isolated adherent placental cells are also CD34, CD38 and CD45. In another specific embodiment, isolated adherent placental cells are also OCT-4+. In a more specific embodiment, said isolated adherent placental cells are also OCT-4+, CD34, CD38 and CD45.


In another embodiment, the adherent placental stem cells are OCT-4+ stem cells, wherein said adherent placental stem cells produce one or more embryoid-like bodies when cultured under conditions that allow the formation of embryoid-like bodies, and wherein said stem cells have been identified as detectably suppressing cancer cell proliferation or tumor growth.


In various embodiments, at least 10%, at least 20%, at least 30%, at least 40%, at least 50% at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% of said isolated adherent placental cells are OCT-4+. In a specific embodiment of the above populations, said isolated adherent placental cells are also CD73+ and CD105+. In another specific embodiment, said isolated adherent placental cells are also CD34, CD38, or CD45. In another specific embodiment, said stem cells are CD200+. In a more specific embodiment, said isolated adherent placental cells are also CD73+, CD105+, CD200+, CD34, CD38, and CD45. In another specific embodiment, said isolated adherent placental cells have been expanded, for example, passaged at least once, at least three times, at least five times, at least 10 times, at least 15 times, or at least 20 times.


In a more specific embodiment of any of the above embodiments, the isolated adherent placental cells express ABC-p (a placenta-specific ABC transporter protein; see, e.g., Allikmets et al., Cancer Res. 58(23):5337-9 (1998)).


In another embodiment, the isolated adherent placental cells CD29+, CD44+, CD73+, CD90+, CD105+, CD200+, CD34 and CD133. In another embodiment, the isolated adherent placental cells constitutively secrete IL-6, IL-8 and monocyte chemoattractant protein (MCP-1).


Each of the above-referenced isolated adherent placental cells can comprise cells obtained and isolated directly from a mammalian placenta, or cells that have been cultured and passaged at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30 or more times, or a combination thereof. Tumor cell suppressive pluralities of the isolated adherent placental cells described above can comprise about, at least, or no more than, 1×105, 5×105, 1×106 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more isolated adherent placental cells.


5.8.3. Compositions Comprising Adherent Placental Cell Conditioned Media


Also provided herein is the use of a composition comprising NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell populations produced using the three-stage method described herein, and additionally conditioned medium, wherein said composition is tumor suppressive, or is effective in the treatment of cancer or viral infection. In specific embodiments, the NK cells and ILC3 cells are present in ratios as described herein. Adherent placental cells as described herein can be used to produce conditioned medium that is tumor cell suppressive, anti-cancer or anti-viral that is, medium comprising one or more biomolecules secreted or excreted by the cells that have a detectable tumor cell suppressive effect, anti-cancer effect or antiviral effect. In various embodiments, the conditioned medium comprises medium in which the cells have proliferated (that is, have been cultured) for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more days. In other embodiments, the conditioned medium comprises medium in which such cells have grown to at least 30%, 40%, 50%, 60%, 70%, 80%, 90% confluence, or up to 100% confluence. Such conditioned medium can be used to support the culture of a separate population of cells, e.g., placental cells, or cells of another kind. In another embodiment, the conditioned medium provided herein comprises medium in which isolated adherent placental cells, e.g., isolated adherent placental stem cells or isolated adherent placental multipotent cells, and cells other than isolated adherent placental cells, e.g., non-placental stem cells or multipotent cells, have been cultured.


Such conditioned medium can be combined with any of, or any combination of NK cells and/or ILC3 cells produced using the methods described herein, placental perfusate, or placental perfusate cells to form a composition that is tumor cell suppressive, anticancer or antiviral. In certain embodiments, the composition comprises less than half conditioned medium by volume, e.g., about, or less than about, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% by volume.


Thus, in one embodiment, provided herein is a composition comprising NK cells and/or ILC3 cells produced using the methods described herein and culture medium from a culture of isolated adherent placental cells, wherein said isolated adherent placental cells (a) adhere to a substrate; and (b) are CD34, CD10+ and CD105+; wherein said composition detectably suppresses the growth or proliferation of tumor cells, or is anti-cancer or antiviral. In a specific embodiment, the isolated adherent placental cells are CD34, CD10+ and CD105+ as detected by flow cytometry. In a more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are placental stem cells. In another more specific embodiment, the isolated CD34, CD10+, CD105+ placental cells are multipotent adherent placental cells. In another specific embodiment, the isolated CD34, CD10+, CD105+ placental cells have the potential to differentiate into cells of a neural phenotype, cells of an osteogenic phenotype, or cells of a chondrogenic phenotype. In a more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD200+. In another more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In another more specific embodiment, the isolated CD34, CD10+, CD105+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In a more specific embodiment, the CD34, CD10+, CD105+, CD200+ adherent placental cells are additionally CD90+ or CD45, as detected by flow cytometry. In another more specific embodiment, the CD34, CD10+, CD105+, CD200+ adherent placental cells are additionally CD90+ and CD45, as detected by flow cytometry. In another more specific embodiment, the CD34, CD10+, CD105+, CD200+, CD90+, CD45 adherent placental cells are additionally CD80 and CD86, as detected by flow cytometry.


In another embodiment, provided herein is a composition comprising NK cells and/or ILC3 cells produced using the methods described herein, and culture medium from a culture of isolated adherent placental cells, wherein said isolated adherent placental cells (a) adhere to a substrate; and (b) express CD200 and HLA-G, or express CD73, CD105, and CD200, or express CD200 and OCT-4, or express CD73, CD105, and HLA-G, or express CD73 and CD105 and facilitate the formation of one or more embryoid-like bodies in a population of placental cells that comprise the placental stem cells when said population is cultured under conditions that allow formation of embryoid-like bodies, or express OCT-4 and facilitate the formation of one or more embryoid-like bodies in a population of placental cells that comprise the placental stem cells when said population is cultured under conditions that allow formation of embryoid-like bodies; wherein said composition detectably suppresses the growth or proliferation of tumor cells, or is anti-cancer or antiviral. In a specific embodiment, the composition further comprises a plurality of said isolated placental adherent cells. In another specific embodiment, the composition comprises a plurality of non-placental cells. In a more specific embodiment, said non-placental cells comprise CD34+ cells, e.g., hematopoietic progenitor cells, such as peripheral blood hematopoietic progenitor cells, cord blood hematopoietic progenitor cells, or placental blood hematopoietic progenitor cells. The non-placental cells can also comprise stem cells, such as mesenchymal stem cells, e.g., bone marrow-derived mesenchymal stem cells. The non-placental cells can also be one or more types of adult cells or cell lines. In another specific embodiment, the composition comprises an anti-proliferative agent, e.g., an anti-MIP-1a or anti-MIP-1β antibody.


In a specific embodiment, culture medium conditioned by one of the cells or cell combinations described above is obtained from a plurality of isolated adherent placental cells co-cultured with a plurality of tumor cells at a ratio of about 1:1, about 2:1, about 3:1, about 4:1, or about 5:1 isolated adherent placental cells to tumor cells. For example, the conditioned culture medium or supernatant can be obtained from a culture comprising about 1×105 isolated adherent placental cells, about 1×106 isolated adherent placental cells, about 1×107 isolated adherent placental cells, or about 1×108 isolated adherent placental cells, or more. In another specific embodiment, the conditioned culture medium or supernatant is obtained from a co-culture comprising about 1×105 to about 5×105 isolated adherent placental cells and about 1×105 tumor cells; about 1×106 to about 5×106 isolated adherent placental cells and about 1×106 tumor cells; about 1×107 to about 5×107 isolated adherent placental cells and about 1×107 tumor cells; or about 1×108 to about 5×108 isolated adherent placental cells and about 1×108 tumor cells.


5.9. Preservation of Cells


Cells, e.g., NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell populations produced using the three-stage method described herein, or placental perfusate cells comprising hematopoietic stem cells or progenitor cells, can be preserved, that is, placed under conditions that allow for long-term storage, or under conditions that inhibit cell death by, e.g., apoptosis or necrosis.


Placental perfusate can be produced by passage of a cell collection composition through at least a part of the placenta, e.g., through the placental vasculature. The cell collection composition comprises one or more compounds that act to preserve cells contained within the perfusate. Such a placental cell collection composition can comprise an apoptosis inhibitor, necrosis inhibitor and/or an oxygen-carrying perfluorocarbon, as described in related U.S. Application Publication No. 20070190042, the disclosure of which is hereby incorporated by reference in its entirety.


In one embodiment, perfusate or a population of placental cells are collected from a mammalian, e.g., human, post-partum placenta by bringing the perfusate or population of cells into proximity with a cell collection composition comprising an inhibitor of apoptosis and an oxygen-carrying perfluorocarbon, wherein said inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis in the population of placental cells, e.g., adherent placental cells, for example, placental stem cells or placental multipotent cells, as compared to a population of cells not contacted or brought into proximity with the inhibitor of apoptosis. For example, the placenta can be perfused with the cell collection composition, and placental cells, e.g., total nucleated placental cells, are isolated therefrom. In a specific embodiment, the inhibitor of apoptosis is a caspase inhibitor. In another specific embodiment, said inhibitor of apoptosis is a JNK inhibitor. In a more specific embodiment, said JNK inhibitor does not modulate differentiation or proliferation of adherent placental cells, e.g., adherent placental stem cells or adherent placental multipotent cells. In another embodiment, the cell collection composition comprises said inhibitor of apoptosis and said oxygen-carrying perfluorocarbon in separate phases. In another embodiment, the cell collection composition comprises said inhibitor of apoptosis and said oxygen-carrying perfluorocarbon in an emulsion. In another embodiment, the cell collection composition additionally comprises an emulsifier, e.g., lecithin. In another embodiment, said apoptosis inhibitor and said perfluorocarbon are between about 0° C. and about 25° C. at the time of bringing the placental cells into proximity with the cell collection composition. In another more specific embodiment, said apoptosis inhibitor and said perfluorocarbon are between about 2° C. and 10° C., or between about 2° C. and about 5° C., at the time of bringing the placental cells into proximity with the cell collection composition. In another more specific embodiment, said bringing into proximity is performed during transport of said population of cells. In another more specific embodiment, said bringing into proximity is performed during freezing and thawing of said population of cells.


In another embodiment, placental perfusate and/or placental cells can be collected and preserved by bringing the perfusate and/or cells into proximity with an inhibitor of apoptosis and an organ-preserving compound, wherein said inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis of the cells, as compared to perfusate or placental cells not contacted or brought into proximity with the inhibitor of apoptosis. In a specific embodiment, the organ-preserving compound is UW solution (described in U.S. Pat. No. 4,798,824; also known as VIASPAN™; see also Southard et al., Transplantation 49(2):251-257 (1990) or a solution described in Stern et al., U.S. Pat. No. 5,552,267, the disclosures of which are hereby incorporated by reference in their entireties. In another embodiment, said organ-preserving composition is hydroxyethyl starch, lactobionic acid, raffinose, or a combination thereof. In another embodiment, the placental cell collection composition additionally comprises an oxygen-carrying perfluorocarbon, either in two phases or as an emulsion.


In another embodiment of the method, placental cells are brought into proximity with a cell collection composition comprising an apoptosis inhibitor and oxygen-carrying perfluorocarbon, organ-preserving compound, or combination thereof, during perfusion. In another embodiment, placental cells are brought into proximity with said cell collection compound after collection by perfusion.


Typically, during placental cell collection, enrichment and isolation, it is preferable to minimize or eliminate cell stress due to hypoxia and mechanical stress. In another embodiment of the method, therefore, placental perfusate or a population of placental cells is exposed to a hypoxic condition during collection, enrichment or isolation for less than six hours during said preservation, wherein a hypoxic condition is a concentration of oxygen that is less than normal blood oxygen concentration. In a more specific embodiment, said perfusate or population of placental cells is exposed to said hypoxic condition for less than two hours during said preservation. In another more specific embodiment, said population of placental cells is exposed to said hypoxic condition for less than one hour, or less than thirty minutes, or is not exposed to a hypoxic condition, during collection, enrichment or isolation. In another specific embodiment, said population of placental cells is not exposed to shear stress during collection, enrichment or isolation.


Cells, e.g., placental perfusate cells, hematopoietic cells, e.g., CD34+ hematopoietic stem cells; NK cells and/or ILC3 cells produced using the methods described herein; isolated adherent placental cells provided herein can be cryopreserved, e.g., in cryopreservation medium in small containers, e.g., ampoules or septum vials. In certain embodiments, cells provided herein are cryopreserved at a concentration of about 1×104— 5×108 cells per mL. In specific embodiments, cells provided herein are cryopreserved at a concentration of about 1×106 — 1.5×107 cells per mL. In more specific embodiments, cells provided herein are cryopreserved at a concentration of about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 1.5×107 cells per mL.


Suitable cryopreservation medium includes, but is not limited to, normal saline, culture medium including, e.g., growth medium, or cell freezing medium, for example commercially available cell freezing medium, e.g., C2695, C2639 or C6039 (Sigma); CryoStor® CS2, CryoStor® CS5 or CryoStor®CS10 (BioLife Solutions). In one embodiment, cryopreservation medium comprises DMSO (dimethylsulfoxide), at a concentration of, e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10% (v/v). Cryopreservation medium may comprise additional agents, for example, methylcellulose, dextran, albumin (e.g., human serum albumin), trehalose, and/or glycerol. In certain embodiments, the cryopreservation medium comprises about 1%-10% DMSO, about 25%-75% dextran and/or about 20-60% human serum albumin (HSA). In certain embodiments, the cryopreservation medium comprises about 1%-10% DMSO, about 25%-75% trehalose and/or about 20-60% human HSA. In a specific embodiment, the cryopreservation medium comprises 5% DMSO, 55% dextran and 40% HSA. In a more specific embodiment, the cryopreservation medium comprises 5% DMSO, 55% dextran (10% w/v in normal saline) and 40% HSA. In another specific embodiment, the cryopreservation medium comprises 5% DMSO, 55% trehalose and 40% HSA. In a more specific embodiment, the cryopreservation medium comprises 5% DMSO, 55% trehalose (10% w/v in normal saline) and 40% HSA. In another specific embodiment, the cryopreservation medium comprises CryoStor® CS5. In another specific embodiment, the cryopreservation medium comprises CryoStorgCS10.


Cells provided herein can be cryopreserved by any of a variety of methods, and at any stage of cell culturing, expansion or differentiation. For example, cells provided herein can be cryopreserved right after isolation from the origin tissues or organs, e.g., placental perfusate or umbilical cord blood, or during, or after either the first, second, or third step of the methods outlined above. In certain embodiments, the hematopoietic cells, e.g., hematopoietic stem or progenitor cells are cryopreserved within about 1, 5, 10, 15, 20, 30, 45 minutes or within about 1, 2, 4, 6, 10, 12, 18, 20 or 24 hours after isolation from the origin tissues or organs. In certain embodiments, said cells are cryopreserved within 1, 2 or 3 days after isolation from the origin tissues or organs. In certain embodiments, said cells are cryopreserved after being cultured in a first medium as described above, for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days. In some embodiments, said cells are cryopreserved after being cultured in a first medium as described above, for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days, and in a second medium for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days as described above. In some embodiments, when NK cells are made using a three-stage method described herein, said cells are cryopreserved after being cultured in a first medium about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days; and/or after being cultured in a second medium about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days; and/or after being cultured in a third medium about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. In a specific embodiment, NK cells and/or ILC3 cells are made using a three-stage method described herein, and said cells are cryopreserved after being cultured in a first medium for 10 days; after being cultured in a second medium for 4 days; and after being cultured in a third medium for 21 days.


In one aspect, provided herein is a method of cryopreserving a population of NK cells and/or ILC3 cells, e.g., NK cells and/or ILC3 cells produced by a three-stage method described herein. In one embodiment, said method comprises: culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, CD16- or CD16+, and CD94+ or CD94−, and wherein at least 70%, or at least 80%, of the natural killer cells are viable, and next, cryopreserving the NK cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+ and next, cryopreserving the NK cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of stem cell factor (SCF) and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+ and next, cryopreserving the NK cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of SCF, a stem cell mobilizing agent, and LMWH, to produce a third population of cells; wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+ and next, cryopreserving the NK cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a+ cells from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises natural killer cells that are CD56+, CD3−, and CD11a+ and next, cryopreserving the NK cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a− and next, cryopreserving the ILC3 cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a− and next, cryopreserving the ILC3 cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a− and next, cryopreserving the ILC3 cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and (c) culturing the second population of cells in a third medium comprising a stem cell mobilizing agent, SCF, IL-2 and IL-15, and lacking LMWH, to produce a third population of cells; wherein the third population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a− and next, cryopreserving the ILC3 cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


In one embodiment, said method comprises: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells; (b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; (c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and LMWH, to produce a third population of cells; and (d) isolating CD11a− cells from the third population of cells to produce a fourth population of cells; wherein the fourth population of cells comprises ILC3 cells that are CD56+, CD3−, and CD11a− and next, cryopreserving the ILC3 cells in a cryopreservation medium. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin. In a specific embodiment, said cryopreservation step further comprises (1) preparing a cell suspension solution; (2) adding cryopreservation medium to the cell suspension solution from step (1) to obtain cryopreserved cell suspension; (3) cooling the cryopreserved cell suspension from step (3) to obtain a cryopreserved sample; and (4) storing the cryopreserved sample below −80° C. In certain embodiments, the method includes no intermediary steps.


Cells provided herein can be cooled in a controlled-rate freezer, e.g., at about 0.1, 0.3, 0.5, 1, or 2° C./min during cryopreservation. In one embodiment, the cryopreservation temperature is about −80° C. to about −180° C., or about −125° C. to about −140° C. Cryopreserved cells can be transferred to liquid nitrogen prior to thawing for use. In some embodiments, for example, once the ampoules have reached about −90° C., they are transferred to a liquid nitrogen storage area. Cryopreserved cells can be thawed at a temperature of about 25° C. to about 40° C., more specifically can be thawed to a temperature of about 37° C. In certain embodiments, the cryopreserved cells are thawed after being cryopreserved for about 1, 2, 4, 6, 10, 12, 18, 20 or 24 hours, or for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days. In certain embodiments, the cryopreserved cells are thawed after being cryopreserved for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 months. In certain embodiments, the cryopreserved cells are thawed after being cryopreserved for about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 years.


Suitable thawing medium includes, but is not limited to, normal saline, plasmalyte culture medium including, for example, growth medium, e.g., RPMI medium. In certain embodiments, the thawing medium comprises one or more of medium supplements (e.g., nutrients, cytokines and/or factors). Medium supplements suitable for thawing cells provided herein include, for example without limitation, serum such as human serum AB, fetal bovine serum (FBS) or fetal calf serum (FCS), vitamins, human serum albumin (HSA), bovine serum albumin (BSA), amino acids (e.g., L-glutamine), fatty acids (e.g., oleic acid, linoleic acid or palmitic acid), insulin (e.g., recombinant human insulin), transferrin (iron saturated human transferrin), β-mercaptoethanol, stem cell factor (SCF), Fms-like-tyrosine kinase 3 ligand (F1t3-L), cytokines such as interleukin-2 (IL-2), interleukin-7 (IL-7), interleukin-15 (IL-15), thrombopoietin (Tpo) or heparin. In a specific embodiment, the thawing medium useful in the methods provided herein comprises RPMI. In another specific embodiment, said thawing medium comprises plasmalyte. In another specific embodiment, said thawing medium comprises about 0.5-20% FBS. In another specific embodiment, said thawing medium comprises about 1, 2, 5, 10, 15 or 20% FBS. In another specific embodiment, said thawing medium comprises about 0.5%-20% HSA. In another specific embodiment, said thawing medium comprises about 1, 2.5, 5, 10, 15, or 20% HSA. In a more specific embodiment, said thawing medium comprises RPMI and about 10% FBS. In another more specific embodiment, said thawing medium comprises plasmalyte and about 5% HSA.


The cryopreservation methods provided herein can be optimized to allow for long-term storage, or under conditions that inhibit cell death by, e.g., apoptosis or necrosis. In one embodiments, the post-thaw cells comprise greater than 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98% of viable cells, as determined by, e.g., automatic cell counter or trypan blue method. In another embodiment, the post-thaw cells comprise about 0.5, 1, 5, 10, 15, 20 or 25% of dead cells. In another embodiment, the post-thaw cells comprise about 0.5, 1, 5, 10, 15, 20 or 25% of early apoptotic cells. In another embodiment, about 0.5, 1, 5, 10, 15 or 20% of post-thaw cells undergo apoptosis after 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days after being thawed, e.g., as determined by an apoptosis assay (e.g., TO-PRO3 or AnnV/PI Apoptosis assay kit). In certain embodiments, the post-thaw cells are re-cryopreserved after being cultured, expanded or differentiated using methods provided herein.


5.10. Compositions Comprising NK Cells and/or ILC3 Cells


5.10.1. NK Cells and/or ILC3 Cells Produced Using The Three-Stage Method


In some embodiments, provided herein is a composition, e.g., a pharmaceutical composition, comprising an isolated NK cell and/or ILC3 cell population produced using the three-stage method described herein. In a specific embodiment, said isolated NK cell and/or ILC3 cell population is produced from hematopoietic cells, e.g., hematopoietic stem or progenitor cells isolated from placental perfusate, umbilical cord blood, and/or peripheral blood. In another specific embodiment, said isolated NK cell and/or ILC3 cell population comprises at least 50% of cells in the composition. In another specific embodiment, said isolated NK cell and/or ILC3 cell population, e.g., CD3CD56+ cells, comprises at least 80%, 85%, 90%. 95%, 98% or 99% of cells in the composition. In certain embodiments, no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, or 40% of the cells in said isolated NK cell and/or ILC3 cell population are CD3CD56+ cells. In certain embodiments, said CD3CD56+ cells are CD16.


NK cell and/or ILC3 cell populations produced using the three-stage method described herein, can be formulated into pharmaceutical compositions for use in vivo. Such pharmaceutical compositions comprise a population of NK cells and/or ILC3 cells in a pharmaceutically-acceptable carrier, e.g., a saline solution or other accepted physiologically-acceptable solution for in vivo administration. Pharmaceutical compositions of the invention can comprise any of the NK cell and/or ILC3 cell populations described elsewhere herein.


The pharmaceutical compositions of the invention comprise populations of cells that comprise 50% viable cells or more (that is, at least 50% of the cells in the population are functional or living). Preferably, at least 60% of the cells in the population are viable. More preferably, at least 70%, 80%, 90%, 95%, or 99% of the cells in the population in the pharmaceutical composition are viable.


The pharmaceutical compositions of the invention can comprise one or more compounds that, e.g., facilitate engraftment; stabilizers such as albumin, dextran 40, gelatin, hydroxyethyl starch, and the like.


When formulated as an injectable solution, in one embodiment, the pharmaceutical composition of the invention comprises about 1.25% HSA and about 2.5% dextran. Other injectable formulations, suitable for the administration of cellular products, may be used.


In one embodiment, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for systemic or local administration. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for parenteral administration. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for injection, infusion, intravenous (IV) administration, intrafemoral administration, or intratumor administration. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for administration via a device, a matrix, or a scaffold. In specific embodiments, the compositions, e.g., pharmaceutical compositions provided herein are suitable for injection. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for administration via a catheter. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for local injection. In more specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for local injection directly into a solid tumor (e.g., a sarcoma). In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for injection by syringe. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for administration via guided delivery. In specific embodiments, the compositions, e.g., pharmaceutical compositions, provided herein are suitable for injection aided by laparoscopy, endoscopy, ultrasound, computed tomography, magnetic resonance, or radiology.


In certain embodiments, the compositions, e.g., pharmaceutical compositions provided herein, comprising NK cells and/or ILC3 cells produced using the methods described herein, are provided as pharmaceutical grade administrable units. Such units can be provided in discrete volumes, e.g., 15 mL, 20 mL, 25 mL, 30 nL. 35 mL, 40 mL, 45 mL, 50 mL, 55 mL, 60 mL, 65 mL, 70 mL, 75 mL, 80 mL, 85 mL, 90 mL, 95 mL, 100 mL, 150 mL, 200 mL, 250 mL, 300 mL, 350 mL, 400 mL, 450 mL, 500 mL, or the like. Such units can be provided so as to contain a specified number of cells, e.g., NK cells and/or ILC3 cells, e.g., 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more cells per unit. In specific embodiments, the units can comprise about, at least about, or at most about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106 or more NK cells and/or ILC3 cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more cells per unit. Such units can be provided to contain specified numbers of NK cells and/or ILC3 cells or NK cell and/or ILC3 cell populations and/or any of the other cells. In specific embodiments, the NK cells and ILC3 cells are present in ratios provided herein.


In another specific embodiment, said isolated NK cells and/or ILC3 cells in said composition are from a single individual. In a more specific embodiment, said isolated NK cells and/or ILC3 cells comprise NK cells and/or ILC3 cells from at least two different individuals. In another specific embodiment, said isolated NK cells and/or ILC3 cells in said composition are from a different individual than the individual for whom treatment with the NK cells and/or ILC3 cells is intended. In another specific embodiment, said NK cells have been contacted or brought into proximity with an immunomodulatory compound or thalidomide in an amount and for a time sufficient for said NK cells to express detectably more granzyme B or perforin than an equivalent number of natural killer cells, i.e. NK cells not contacted or brought into proximity with said immunomodulatory compound or thalidomide. In another specific embodiment, said composition additionally comprises an immunomodulatory compound or thalidomide. In certain embodiments, the immunomodulatory compound is a compound described below. See, e.g., U.S. Pat. No. 7,498,171, the disclosure of which is hereby incorporated by reference in its entirety. In certain embodiments, the immunomodulatory compound is an amino-substituted isoindoline. In one embodiment, the immunomodulatory compound is 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione; 3-(4′aminoisolindoline-1′-one)-1-piperidine-2,6-dione; 4-(amino)-2-(2,6-dioxo(3-piperidyl))-isoindoline-1,3-dione; or 4-Amino-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione. In another embodiment, the immunomodulatory compound is pomalidomide, or lenalidomide. In another embodiment, said immunomodulatory compound is a compound having the structure




embedded image


wherein one of X and Y is C═O, the other of X and Y is C═O or CH2, and R2 is hydrogen or lower alkyl, or a pharmaceutically acceptable salt, hydrate, solvate, clathrate, enantiomer, diastereomer, racemate, or mixture of stereoisomers thereof. In another embodiment, said immunomodulatory compound is a compound having the structure




embedded image


wherein one of X and Y is C═O and the other is CH2 or C═O;


R1 is H, (C1-C8)alkyl, (C3-C7)cycloalkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, benzyl, aryl, (C0-C4)alkyl-(C1-C6)heterocycloalkyl, (C0-C4)alkyl-(C2-C5)heteroaryl, C(O)R3, C(S)R3, C(O)OR4, (C1-C8)alkyl-N(R6)2, (C1-C8)alkyl-OR5, (C1-C8)alkyl-C(O)OR5, C(O)NHR3, C(S)NHR3, C(O)NR3R3′, C(S)NR3R3′ or (C1-C8)alkyl-O(CO)R5;


R2 is H, F, benzyl, (C1-C8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl;


R3 and R3′ are independently (C1-C8)alkyl, (C3-C7)cycloalkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, benzyl, aryl, (C0-C4)alkyl-(C1-C6)heterocycloalkyl, (C0-C4)alkyl-(C2-C5)heteroaryl, (C0-C8)alkyl-N(R6)2, (C1-C8)alkyl-OR5, (C1-C8)alkyl-C(O)OR5, (C1-C8)alkyl-O(CO)R5, or C(O)OR5;


R4 is (C1-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, (C1-C4)alkyl-OR5, benzyl, aryl, (C0-C4)alkyl-(C1-C6)heterocycloalkyl, or (C0-C4)alkyl-(C2-C5)heteroaryl;


R5 is (C1-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, benzyl, aryl, or (C2-C5)heteroaryl;


each occurrence of R6 is independently H, (C1-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, benzyl, aryl, (C2-C5)heteroaryl, or (C0-C8)alkyl-C(O)O—R5 or the R6 groups can join to form a heterocycloalkyl group;


n is 0 or 1; and


* represents a chiral-carbon center;


or a pharmaceutically acceptable salt, hydrate, solvate, clathrate, enantiomer, diastereomer, racemate, or mixture of stereoisomers thereof. In another embodiment, said immunomodulatory compound is a compound having the structure




embedded image


wherein:


one of X and Y is C═O and the other is CH2 or C═O;


R is H or CH2OCOR′;


(i) each of R′, R2, R3, or R4, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R′, R2, R3, or R4 is nitro or —NHR5 and the remaining of R′, R2, R3, or R4 are hydrogen;


R5 is hydrogen or alkyl of 1 to 8 carbons


R6 hydrogen, alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro;


R′ is R7—CHR10—N(R8R9);


R7 is m-phenylene or p-phenylene or —(CnH2n)— in which n has a value of 0 to 4;


each of R8 and R9 taken independently of the other is hydrogen or alkyl of 1 to 8 carbon atoms, or R8 and R9 taken together are tetramethylene, pentamethylene, hexamethylene, or —CH2CH2X1CH2CH2— in which X1 is —O—, —S—, or —NH—;


R10 is hydrogen, alkyl of to 8 carbon atoms, or phenyl; and


* represents a chiral-carbon center;


or a pharmaceutically acceptable salt, hydrate, solvate, clathrate, enantiomer, diastereomer, racemate, or mixture of stereoisomers thereof.


In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In a more specific embodiment, the composition comprises NK cells and/or ILC3 cells from another source, or made by another method. In a specific embodiment, said other source is placental blood and/or umbilical cord blood. In another specific embodiment, said other source is peripheral blood. In more specific embodiments, the NK cell and/or ILC3 cell population in said composition is combined with NK cells and/or ILC3 cells from another source, or made by another method in a ratio of about 100:1, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45: 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95, 100:1, 95:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, or the like.


In another specific embodiment, the composition comprises an NK cell and/or ILC3 cell population produced using the three-stage method described herein and either isolated placental perfusate or isolated placental perfusate cells. In a more specific embodiment, said placental perfusate is from the same individual as said NK cell and/or ILC3 cell population. In another more specific embodiment, said placental perfusate comprises placental perfusate from a different individual than said NK cell and/or ILC3 cell population. In another specific embodiment, all, or substantially all (e.g., greater than 90%, 95%, 98% or 99%) of cells in said placental perfusate are fetal cells. In another specific embodiment, the placental perfusate or placental perfusate cells, comprise fetal and maternal cells. In a more specific embodiment, the fetal cells in said placental perfusate comprise less than about 90%, 80%, 70%, 60% or 50% of the cells in said perfusate. In another specific embodiment, said perfusate is obtained by passage of a 0.9% NaCl solution through the placental vasculature. In another specific embodiment, said perfusate comprises a culture medium. In another specific embodiment, said perfusate has been treated to remove erythrocytes. In another specific embodiment, said composition comprises an immunomodulatory compound, e.g., an immunomodulatory compound described below, e.g., an amino-substituted isoindoline compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


In another specific embodiment, the composition comprises an NK cell and/or ILC3 cell population and placental perfusate cells. In a more specific embodiment, said placental perfusate cells are from the same individual as said NK cell and/or ILC3 cell population. In another more specific embodiment, said placental perfusate cells are from a different individual than said NK cell and/or ILC3 cell population. In another specific embodiment, the composition comprises isolated placental perfusate and isolated placental perfusate cells, wherein said isolated perfusate and said isolated placental perfusate cells are from different individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate, said placental perfusate comprises placental perfusate from at least two individuals. In another more specific embodiment of any of the above embodiments comprising placental perfusate cells, said isolated placental perfusate cells are from at least two individuals. In another specific embodiment, said composition comprises an immunomodulatory compound. In another specific embodiment, the composition additionally comprises one or more anticancer compounds, e.g., one or more of the anticancer compounds described below.


5.11. Uses of NK Cells and/or ILC3 Cells Produced Using the Three-Stage Method


The NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell produced according to the three-stage method described herein, provided herein can be used in methods of treating individuals having cancer, e.g., individuals having solid tumor cells and/or blood cancer cells, or persons having a viral infection. In some such embodiments, an effective dosage of NK cells and/or ILC3 cells produced using the methods described herein ranges from 1×104 to 5×104, 5×104 to 1×105, 1×105 to 5×105, 5×105 to 1×106, 1×106 to 5×106, 5×106 to 1×107, or more cells/kilogram body weight. The NK cells and/or ILC3 cells produced using the methods described herein, can also be used in methods of suppressing proliferation of tumor cells.


5.11.1. Treatment of Individuals Having Cancer


In one embodiment, provided herein is a method of treating an individual having a cancer, for example, a blood cancer or a solid tumor, comprising administering to said individual a therapeutically effective amount of NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein. In one embodiment, provided herein is a method of treating an individual having a cancer, for example, a blood cancer or a solid tumor, comprising administering to said individual a therapeutically effective amount of ILC3 cells produced using the methods described herein, e.g., ILC3 cell populations produced using the three-stage method described herein. In certain embodiments, the individual has a deficiency of natural killer cells, e.g., a deficiency of NK cells active against the individual's cancer. In a specific embodiment, the method additionally comprises administering to said individual isolated placental perfusate or isolated placental perfusate cells, e.g., a therapeutically effective amount of placental perfusate or isolated placental perfusate cells. In another specific embodiment, the method comprises additionally administering to said individual an effective amount of an immunomodulatory compound, e.g., an immunomodulatory compound described above, or thalidomide. As used herein, an “effective amount” is an amount that, e.g., results in a detectable improvement of, lessening of the progression of, or elimination of, one or more symptoms of a cancer from which the individual suffers.


Administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof may be systemic or local. In specific embodiments, administration is parenteral. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection, infusion, intravenous (IV) administration, intrafemoral administration, or intratumor administration. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is performed with a device, a matrix, or a scaffold. In specific embodiments, administration an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection. In specific embodiments, administration an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is via a catheter. In specific embodiments, the injection of NK cells and/or ILC3 cells is local injection. In more specific embodiments, the local injection is directly into a solid tumor (e.g., a sarcoma). In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection by syringe. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is via guided delivery. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject by injection is aided by laparoscopy, endoscopy, ultrasound, computed tomography, magnetic resonance, or radiology.


In a specific embodiment, the cancer is a blood cancer, e.g., a leukemia or a lymphoma. In more specific embodiments, the cancer is an acute leukemia, e.g., acute T cell leukemia, acute myelogenous leukemia (AML), acute promyelocytic leukemia, acute myeloblastic leukemia, acute megakaryoblastic leukemia, precursor B acute lymphoblastic leukemia, precursor T acute lymphoblastic leukemia, Burkitt's leukemia (Burkitt's lymphoma), or acute biphenotypic leukemia; a chronic leukemia, e.g., chronic myeloid lymphoma, chronic myelogenous leukemia (CIVIL), chronic monocytic leukemia, chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma, or B-cell prolymphocytic leukemia; hairy cell lymphoma; T-cell prolymphocytic leukemia; or a lymphoma, e.g., histiocytic lymphoma, lymphoplasmacytic lymphoma (e.g., Waldenström macroglobulinemia), splenic marginal zone lymphoma, plasma cell neoplasm (e.g., plasma cell myeloma, plasmacytoma, a monoclonal immunoglobulin deposition disease, or a heavy chain disease), extranodal marginal zone B cell lymphoma (MALT lymphoma), nodal marginal zone B cell lymphoma (NMZL), follicular lymphoma, mantle cell lymphoma, diffuse large B cell lymphoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, T cell large granular lymphocytic leukemia, aggressive NK cell leukemia, adult T cell leukemia/lymphoma, extranodal NK/T cell lymphoma, nasal type, enteropathy-type T cell lymphoma, hepatosplenic T cell lymphoma, blastic NK cell lymphoma, mycosis fungoides (Sezary syndrome), a primary cutaneous CD30-positive T cell lymphoproliferative disorder (e.g., primary cutaneous anaplastic large cell lymphoma or lymphomatoid papulosis), angioimmunoblastic T cell lymphoma, peripheral T cell lymphoma, unspecified, anaplastic large cell lymphoma, a Hodgkin's lymphoma or a nodular lymphocyte-predominant Hodgkin's lymphoma. In another specific embodiment, the cancer is multiple myeloma or myelodysplastic syndrome.


In certain other specific embodiments, the cancer is a solid tumor, e.g., a carcinoma, such as an adenocarcinoma, an adrenocortical carcinoma, a colon adenocarcinoma, a colorectal adenocarcinoma, a colorectal carcinoma, a ductal cell carcinoma, a lung carcinoma, a thyroid carcinoma, a nasopharyngeal carcinoma, a melanoma (e.g., a malignant melanoma), a non-melanoma skin carcinoma, or an unspecified carcinoma; a desmoid tumor; a desmoplastic small round cell tumor; an endocrine tumor; an Ewing sarcoma; a germ cell tumor (e.g., testicular cancer, ovarian cancer, choriocarcinoma, endodermal sinus tumor, germinoma, etc.); a hepatosblastoma; a hepatocellular carcinoma; a neuroblastoma; a non-rhabdomyosarcoma soft tissue sarcoma; an osteosarcoma; a retinoblastoma; a rhabdomyosarcoma; or a Wilms tumor. In another embodiment, the solid tumor is pancreatic cancer or breast cancer. In other embodiments, the solid tumor is an acoustic neuroma; an astrocytoma (e.g., a grade I pilocytic astrocytoma, a grade II low-grade astrocytoma; a grade III anaplastic astrocytoma; or a grade IV glioblastoma multiforme); a chordoma; a craniopharyngioma; a glioma (e.g., a brain stem glioma; an ependymoma; a mixed glioma; an optic nerve glioma; or a subependymoma); a glioblastoma; a medulloblastoma; a meningioma; a metastatic brain tumor; an oligodendroglioma; a pineoblastoma; a pituitary tumor; a primitive neuroectodermal tumor; or a schwannoma. In another embodiment, the cancer is prostate cancer. In another embodiment, the cancer is liver cancer. In another embodiment, the cancer is lung cancer. In another embodiment, the cancer is renal cancer.


In certain embodiments, the individual having a cancer, for example, a blood cancer or a solid tumor, e.g., an individual having a deficiency of natural killer cells, is an individual that has received a bone marrow transplant before said administering. In certain embodiments, the bone marrow transplant was in treatment of said cancer. In certain other embodiments, the bone marrow transplant was in treatment of a condition other than said cancer. In certain embodiments, the individual received an immunosuppressant in addition to said bone marrow transplant. In certain embodiments, the individual who has had a bone marrow transplant exhibits one or more symptoms of graft-versus-host disease (GVHD) at the time of said administration. In certain other embodiments, the individual who has had a bone marrow transplant is administered said cells before a symptom of GVHD has manifested.


In certain specific embodiments, the individual having a cancer, for example, a blood cancer, has received at least one dose of a TNFα inhibitor, e.g., ETANERCEPT® (Enbrel), prior to said administering. In specific embodiments, said individual received said dose of a TNFα inhibitor within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months of diagnosis of said cancer. In a specific embodiment, the individual who has received a dose of a TNFα inhibitor exhibits acute myeloid leukemia. In a more specific embodiment, the individual who has received a dose of a TNFα inhibitor and exhibits acute myeloid leukemia further exhibits deletion of the long arm of chromosome 5 in blood cells. In another embodiment, the individual having a cancer, for example, a blood cancer, exhibits a Philadelphia chromosome.


In certain other embodiments, the cancer, for example, a blood cancer or a solid tumor, in said individual is refractory to one or more anticancer drugs. In a specific embodiment, the cancer is refractory to GLEEVEC® (imatinib mesylate).


In certain embodiments, the cancer, for example, a blood cancer, in said individual responds to at least one anticancer drug; in this embodiment, placental perfusate, isolated placental perfusate cells, isolated natural killer cells, e.g., placental natural killer cells, e.g., placenta-derived intermediate natural killer cells, isolated combined natural killer cells, or NK cells described herein, and/or combinations thereof, and optionally an immunomodulatory compound, are added as adjunct treatments or as a combination therapy with said anticancer drug. In certain other embodiments, the individual having a cancer, for example, a blood cancer, has been treated with at least one anticancer drug, and has relapsed, prior to said administering. In certain embodiments, the individual to be treated has a refractory cancer. In one embodiment, the cancer treatment method with the cells described herein protects against (e.g., prevents or delays) relapse of cancer. In one embodiment, the cancer treatment method described herein results in remission of the cancer for 1 month or more, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or more, 1 year or more, 2 years or more, 3 years or more, or 4 years or more.


In one embodiment, provided herein is a method of treating an individual having multiple myeloma, comprising administering to the individual (1) lenalidomide; (2) melphalan; and (3) NK cells, wherein said NK cells are effective to treat multiple myeloma in said individual. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said NK cells have been produced by a three-stage method described herein for producing NK cells. In another embodiment, said lenalidomide, melphalan, and/or NK cells are administered separately from each other. In certain specific embodiments of the method of treating an individual with multiple myeloma, said NK cells are produced by a method comprising: culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, CD16− or CD16+, and CD94+ or CD94−, and wherein at least 70%, or at least 80%, of the natural killer cells are viable. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In another embodiment, provided herein is a method of treating an individual having acute myelogenous leukemia (AML), comprising administering to the individual NK cells (optionally activated by pretreatment with IL2 alone, or IL-15 alone, IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18), wherein said NK cells are effective to treat AML in said individual. In a specific embodiment, the isolated NK cell population produced using the three-stage methods described herein has been pretreated with one or more of IL2, IL12, IL18, or IL15 prior to said administering. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said NK cells have been produced by a three-stage method described herein for producing NK cells. In certain specific embodiments of the method of treating an individual with AML, said NK cells are produced by a three-stage method, as described herein. In a particular embodiment, the AML to be treated by the foregoing methods comprises refractory AML, poor-prognosis AML, or childhood AML. Methods known in the art for administering NK cells for the treatment of refractory AML, poor-prognosis AML, or childhood AML may be adapted for this purpose; see, e.g., Miller et al., 2005, Blood 105:3051-3057; Rubnitz et al., 2010, J Clin Oncol. 28:955-959, each of which is incorporated herein by reference in its entirety. In certain embodiments, said individual has AML that has failed at least one non-natural killer cell therapeutic against AML. In specific embodiments, said individual is 65 years old or greater, and is in first remission. In specific embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said natural killer cells.


In one embodiment, provided herein is a method of treating an individual having multiple myeloma, comprising administering to the individual (1) lenalidomide; (2) melphalan; and (3) ILC3 cells, wherein said ILC3 cells are effective to treat multiple myeloma in said individual. In a specific embodiment, said ILC3 cells are cord blood ILC3 cells, or ILC3 cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said ILC3 cells have been produced by a three-stage method described herein for producing ILC3 cells. In another embodiment, said lenalidomide, melphalan, and/or ILC3 cells are administered separately from each other. In certain specific embodiments of the method of treating an individual with multiple myeloma, said ILC3 cells are produced by a method comprising: culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, CD16− or CD16+, and CD94+ or CD94−, and wherein at least 70%, or at least 80%, of the natural killer cells are viable. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In another embodiment, provided herein is a method of treating an individual having acute myelogenous leukemia (AML), comprising administering to the individual ILC3 cells (optionally activated by pretreatment with IL2 and IL12 and IL18, IL12 and IL15, IL12 and IL18, IL2 and IL12 and IL15 and IL18, or IL2 and IL15 and IL18), wherein said ILC3 cells are effective to treat AML in said individual. In a specific embodiment, the ILC3 cell population produced using the three-stage methods described herein has been pretreated with one or more of IL2, IL12, IL18, or IL15 prior to said administering. In a specific embodiment, said ILC3 cells are cord blood ILC3 cells, or ILC3 cells produced from cord blood hematopoietic cells, e.g., hematopoietic stem cells. In another embodiment, said ILC3 cells have been produced by a three-stage method described herein for producing ILC3 cells. In certain specific embodiments of the method of treating an individual with AML, said ILC3 cells are produced by a three-stage method, as described herein. In a particular embodiment, the AML to be treated by the foregoing methods comprises refractory AML, poor-prognosis AML, or childhood AML. Methods known in the art for administering ILC3 cells for the treatment of refractory AML, poor-prognosis AML, or childhood AML may be adapted for this purpose; see, e.g., Miller et al., 2005, Blood 105:3051-3057; Rubnitz et al., 2010, J Clin Oncol. 28:955-959, each of which is incorporated herein by reference in its entirety. In certain embodiments, said individual has AML that has failed at least one non-natural killer cell therapeutic against AML. In specific embodiments, said individual is 65 years old or greater, and is in first remission. In specific embodiments, said individual has been conditioned with fludarabine, cytarabine, or both prior to administering said natural killer cells.


In other specific embodiments of the method of treating an individual with AML, said NK cells are produced by a method comprising: culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, CD16− or CD16+, and CD94+ or CD94−, and wherein at least 70%, or at least 80%, of the natural killer cells are viable. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


In another embodiment, provided herein is a method of treating an individual having chronic lymphocytic leukemia (CLL), comprising administering to the individual a therapeutically effective dose of (1) lenalidomide; (2) melphalan; (3) fludarabine; and (4) NK cells, e.g., NK cells produced by a three-stage method described herein, wherein said NK cells are effective to treat said CLL in said individual. In a specific embodiment, said NK cells are cord blood NK cells, or NK cells produced from cord blood hematopoietic stem cells. In another embodiment, said NK cells have been produced by a three-stage method described herein for producing NK cells. In a specific embodiment of any of the above methods, said lenalidomide, melphalan, fludarabine, and expanded NK cells are administered to said individual separately. In certain specific embodiments of the method of treating an individual with CLL, said NK cells are produced by a method comprising: culturing hematopoietic stem cells or progenitor cells, e.g., CD34+ stem cells or progenitor cells, in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells, subsequently culturing said first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells, and subsequently culturing said second population of cells in a third medium comprising IL-2 and IL-15, and lacking a stem cell mobilizing agent and LMWH, to produce a third population of cells, wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, CD16− or CD16+, and CD94+ or CD94−, and wherein at least 70%, or at least 80%, of the natural killer cells are viable. In certain embodiments, said first medium and/or said second medium lack leukemia inhibiting factor (LIF) and/or macrophage inflammatory protein-1 alpha (MIP-1α). In certain embodiments, said third medium lacks LIF, MIP-1α, and FMS-like tyrosine kinase-3 ligand (Flt-3L). In specific embodiments, said first medium and said second medium lack LIF and MIP-1α, and said third medium lacks LIF, MIP-1α, and Flt3L. In certain embodiments, none of the first medium, second medium or third medium comprises heparin, e.g., low-molecular weight heparin.


5.11.2. Suppression of Tumor Cell Proliferation


Further provided herein is a method of suppressing the proliferation of tumor cells, comprising bringing NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, into proximity with the tumor cells, e.g., contacting the tumor cells with NK cells produced using the methods described herein. A plurality of the NK cells can thus be used in the method of suppressing the proliferation of the tumor cells comprising bringing a therapeutically effective amount of the NK cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in the NK cell population. Optionally, isolated placental perfusate or isolated placental perfusate cells is brought into proximity with the tumor cells and/or NK cells produced using the methods described herein. In another specific embodiment, an immunomodulatory compound, e.g., an immunomodulatory compound described above, or thalidomide is additionally brought into proximity with the tumor cells and/or NK cells produced using the methods described herein, such that proliferation of the tumor cells is detectably reduced compared to tumor cells of the same type not brought into proximity with NK cells produced using the methods described herein. Optionally, isolated placental perfusate or isolated placental perfusate cells are brought into proximity with the tumor cells and/or NK cells produced using the methods described herein that have been contacted or brought into proximity with an immunomodulatory compound.


Also provided herein is a method of suppressing the proliferation of tumor cells, comprising bringing ILC3 cells produced using the methods described herein, e.g., ILC3 cell populations produced using the three-stage method described herein, into proximity with the tumor cells, e.g., contacting the tumor cells with ILC3 cells produced using the methods described herein. A plurality of the ILC3 cells can thus be used in the method of suppressing the proliferation of the tumor cells comprising bringing a therapeutically effective amount of the ILC3 cell population into proximity with the tumor cells, e.g., contacting the tumor cells with the cells in the ILC3 cell population. Optionally, isolated placental perfusate or isolated placental perfusate cells is brought into proximity with the tumor cells and/or ILC3 cells produced using the methods described herein. In another specific embodiment, an immunomodulatory compound, e.g., an immunomodulatory compound described above, or thalidomide is additionally brought into proximity with the tumor cells and/or ILC3 cells produced using the methods described herein, such that proliferation of the tumor cells is detectably reduced compared to tumor cells of the same type not brought into proximity with ILC3 cells produced using the methods described herein. Optionally, isolated placental perfusate or isolated placental perfusate cells are brought into proximity with the tumor cells and/or ILC3 cells produced using the methods described herein that have been contacted or brought into proximity with an immunomodulatory compound.


As used herein, in certain embodiments, “contacting,” or “bringing into proximity,” with respect to cells, in one embodiment encompasses direct physical, e.g., cell-cell, contact between placental perfusate, placental perfusate cells, natural killer cells, e.g., NK cell populations produced according to the three-stage method described herein, ILC3 cells, e.g., ILC3 cell populations produced according to the three-stage method described herein, and/or isolated combined natural killer cells and the tumor cells. In another embodiment, “contacting” encompasses presence in the same physical space, e.g., placental perfusate, placental perfusate cells, natural killer cells, e.g., placental intermediate natural killer cells, natural killer cells described herein, e.g., NK cell populations produced according to the three-stage method described herein, ILC3 cells described herein, e.g., ILC3 cell populations produced according to the three-stage method described herein, and/or isolated combined natural killer cells are placed in the same container (e.g., culture dish, multiwell plate) as tumor cells. In another embodiment, “contacting” placental perfusate, placental perfusate cells, combined natural killer cells, placental intermediate natural killer cells, or natural killer cells described herein, e.g., NK cell populations produced according to the three-stage method described herein or ILC3 cells described herein, e.g., ILC3 cell populations produced according to the three-stage method described herein, and tumor cells is accomplished, e.g., by injecting or infusing the placental perfusate or cells, e.g., placental perfusate cells, combined natural killer cells, natural killer cells, e.g., placental intermediate natural killer cells, or ILC3 cells, into an individual, e.g., a human comprising tumor cells, e.g., a cancer patient. “Contacting,” in the context of immunomodulatory compounds and/or thalidomide, means, e.g., that the cells and the immunomodulatory compound and/or thalidomide are directly physically contacted with each other, or are placed within the same physical volume (e.g., a cell culture container or an individual).


In a specific embodiment, the tumor cells are blood cancer cells, e.g., leukemia cells or lymphoma cells. In more specific embodiments, the cancer is an acute leukemia, e.g., acute T cell leukemia cells, acute myelogenous leukemia (AML) cells, acute promyelocytic leukemia cells, acute myeloblastic leukemia cells, acute megakaryoblastic leukemia cells, precursor B acute lymphoblastic leukemia cells, precursor T acute lymphoblastic leukemia cells, Burkitt's leukemia (Burkitt's lymphoma) cells, or acute biphenotypic leukemia cells; chronic leukemia cells, e.g., chronic myeloid lymphoma cells, chronic myelogenous leukemia (CIVIL) cells, chronic monocytic leukemia cells, chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma cells, or B-cell prolymphocytic leukemia cells; hairy cell lymphoma cells; T-cell prolymphocytic leukemia cells; or lymphoma cells, e.g., histiocytic lymphoma cells, lymphoplasmacytic lymphoma cells (e.g., Waldenström macroglobulinemia cells), splenic marginal zone lymphoma cells, plasma cell neoplasm cells (e.g., plasma cell myeloma cells, plasmacytoma cells, monoclonal immunoglobulin deposition disease, or a heavy chain disease), extranodal marginal zone B cell lymphoma (MALT lymphoma) cells, nodal marginal zone B cell lymphoma (NMZL) cells, follicular lymphoma cells, mantle cell lymphoma cells, diffuse large B cell lymphoma cells, mediastinal (thymic) large B cell lymphoma cells, intravascular large B cell lymphoma cells, primary effusion lymphoma cells, T cell large granular lymphocytic leukemia cells, aggressive NK cell leukemia cells, adult T cell leukemia/lymphoma cells, extranodal NK/T cell lymphoma—nasal type cells, enteropathy-type T cell lymphoma cells, hepatosplenic T cell lymphoma cells, blastic NK cell lymphoma cells, mycosis fungoides (Sezary syndrome), primary cutaneous CD30-positive T cell lymphoproliferative disorder (e.g., primary cutaneous anaplastic large cell lymphoma or lymphomatoid papulosis) cells, angioimmunoblastic T cell lymphoma cells, peripheral T cell lymphoma—unspecified cells, anaplastic large cell lymphoma cells, Hodgkin lymphoma cells or nodular lymphocyte-predominant Hodgkin lymphoma cells. In another specific embodiment, the tumor cells are multiple myeloma cells or myelodysplastic syndrome cells.


In specific embodiments, the tumor cells are solid tumor cells, e.g., carcinoma cells, for example, adenocarcinoma cells, adrenocortical carcinoma cells, colon adenocarcinoma cells, colorectal adenocarcinoma cells, colorectal carcinoma cells, ductal cell carcinoma cells, lung carcinoma cells, thyroid carcinoma cells, nasopharyngeal carcinoma cells, melanoma cells (e.g., malignant melanoma cells), non-melanoma skin carcinoma cells, or unspecified carcinoma cells; desmoid tumor cells; desmoplastic small round cell tumor cells; endocrine tumor cells; Ewing sarcoma cells; germ cell tumor cells (e.g., testicular cancer cells, ovarian cancer cells, choriocarcinoma cells, endodermal sinus tumor cells, germinoma cells, etc.); hepatosblastoma cells; hepatocellular carcinoma cells; neuroblastoma cells; non-rhabdomyosarcoma soft tissue sarcoma cells; osteosarcoma cells; retinoblastoma cells; rhabdomyosarcoma cells; or Wilms tumor cells. In another embodiment, the tumor cells are pancreatic cancer cells or breast cancer cells. In other embodiments, the solid tumor cells are acoustic neuroma cells; astrocytoma cells (e.g., grade I pilocytic astrocytoma cells, grade II low-grade astrocytoma cells; grade III anaplastic astrocytoma cells; or grade IV glioblastoma multiforme cells); chordoma cells; craniopharyngioma cells; glioma cells (e.g., brain stem glioma cells; ependymoma cells; mixed glioma cells; optic nerve glioma cells; or subependymoma cells); glioblastoma cells; medulloblastoma cells; meningioma cells; metastatic brain tumor cells; oligodendroglioma cells; pineoblastoma cells; pituitary tumor cells; primitive neuroectodermal tumor cells; or schwannoma cells. In another embodiment, the tumor cells are prostate cancer cells.


As used herein, “therapeutically beneficial” and “therapeutic benefits” include, but are not limited to, e.g., reduction in the size of a tumor; lessening or cessation of expansion of a tumor; reducing or preventing metastatic disease; reduction in the number of cancer cells in a tissue sample, e.g., a blood sample, per unit volume; the clinical improvement in any symptom of the particular cancer or tumor said individual has, the lessening or cessation of worsening of any symptom of the particular cancer the individual has, etc.


5.11.3. Treatment of Cancers Using NK Cells and/or ILC3 Cells and Other Anticancer Agents


Treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, can be part of an anticancer therapy regimen that includes one or more other anticancer agents. Likewise, treatment of an individual having cancer using the ILC3 cells produced using the methods described herein, e.g., ILC3 cell populations produced using the three-stage method described herein, can be part of an anticancer therapy regimen that includes one or more other anticancer agents. In addition or alternatively, treatment of an individual having cancer using the NK cells and/or ILC3 cells produced using the methods described herein can be used to supplement an anticancer therapy that includes one or more other anticancer agents. Such anticancer agents are well-known in the art and include anti-inflammatory agents, immumodulatory agents, cytotoxic agents, cancer vaccines, chemotherapeutics, HDAC inhibitors (e.g., HDAC6i (ACY-241)), and siRNAs. Specific anticancer agents that may be administered to an individual having cancer, e.g., an individual having tumor cells, in addition to the NK cells produced using the methods described herein and optionally perfusate, perfusate cells, natural killer cells other than NK cells produced using the methods described herein include, but are not limited to: acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; adriamycin; adrucil; aldesleukin; altretamine; ambomycin; ametantrone acetate; amsacrine; anastrozole; anthramycin; asparaginase (e.g., from Erwinia chrysan; Erwinaze); asperlin; avastin (bevacizumab); azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefingol; celecoxib (COX-2 inhibitor); Cerubidine; chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; eflomithine hydrochloride; elsamitrucin; Elspar; enloplatin; enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; Etopophos; etoprine; fadrozole hydrochloride; fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine; fosquidone; fostriecin sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; Idamycin; idarubicin hydrochloride; ifosfamide; ilmofosine; iproplatin; irinotecan; irinotecan hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitindomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; Proleukin; Purinethol; puromycin; puromycin hydrochloride; pyrazofurin; Rheumatrex; riboprine; safingol; safingol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; streptonigrin; streptozocin; sulofenur; Tabloid; talisomycin; tecogalan sodium; taxotere; tegafur; teloxantrone hydrochloride; temoporfin; teniposide; teroxirone; testolactone; thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; Toposar; toremifene citrate; trestolone acetate; Trexall; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; vapreotide; verteporfin; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; and zorubicin hydrochloride.


Other anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-azacytidine; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin 3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptosar (also called Campto; irinotecan) camptothecin derivatives; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; CC-122; CC-220; CC-486; cecropin B; cetrorelix; chlorins; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin; crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacliximab; decitabine; dehydrodidenmin B; deslorelin; dexamethasone; dexifosfamide; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel; docosanol; dolasetron; doxifluridine; doxorubicin; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; eflornithine; elemene; emitefur; epirubicin; epristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; fluasterone; fludarabine (e.g., Fludara); fluorodaunorunicin hydrochloride; forfenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; homoharringtonine (HHT, omacetaxine mepesuccinate); hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; imatinib (e.g., GLEEVEC®), imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane; iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole; isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin A; marimastat; masoprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; anti-EGFR antibody (e.g., Erbitux (cetuximab)); anti-CD19 antibody; anti-CD20 antibody (e.g., rituximab); anti-CS-1 antibody (e.g., elotuzumab (BMS/AbbVie)); anti-CD38 antibody (e.g., daratumumab (Genmab/Janssen Biotech); anti-CD138 antibody (e.g., indatuximab (Biotest AG Dreieich)); anti-PD-1 antibody; anti-PD-L1 antibody (e.g., durvalumab (AstraZeneca)); anti-NKG2A antibody (e.g., monalizumab (IPH2201; Innate Pharma)); anti-DLL4 antibody (e.g., demcizumab (Oncomed/Celgene)); anti-DLL4 and anti-VEGF bispecific antibody; anti-RSPO3 antibody; anti-TIGIT antibody; ICOS agonist antibody; anti-disialoganglioside (GD2) antibody (e.g., monoclonal antibody 3F8 or ch14.18); anti-ErbB2 antibody (e.g., herceptin); human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone+pentazocine; napavin; naphterpin; nartograstim; nedaplatin; nemorubicin; neridronic acid; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; oblimersen (GENASENSE®); O6-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin (e.g., Floxatin); oxaunomycin; paclitaxel; paclitaxel analogues; paclitaxel derivatives; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine; pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxyl; safingol; saintopin; SarCNU; sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; sizofiran; sobuzoxane; sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stipiamide; stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; teniposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; Vectibix (panitumumab)velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; Welcovorin (leucovorin); Xeloda (capecitabine); zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.


Treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, can be part of an anticancer therapy regimen that includes one or more immune checkpoint modulator. In certain embodiments, the immune checkpoint modulator modulates an immune checkpoint molecule such as CD28, OX40, Glucocorticoid-Induced Tumour-necrosis factor Receptor-related protein (GITR), CD137 (4-1BB), CD27, Herpes Virus Entry Mediator (HVEM), T cell Immunoglobulin and Mucin-domain containing-3 (TIM-3), Lymphocyte-Activation Gene 3 (LAG-3), Cytotoxic T-Lymphocyte-associated Antigen-4 (CTLA-4), V-domain Immunoglobulin Suppressor of T cell Activation (VISTA), B and T Lymphocyte Attenuator (BTLA), PD-1, and/or PD-L1. In certain embodiments, the immune checkpoint molecule is an antibody or antigen-binding fragment thereof.


In certain embodiments, the immune checkpoint modulator is an agonist of an immune checkpoint molecule. In certain embodiments, the immune checkpoint molecule is CD28, OX40, Glucocorticoid-Induced Tumour-necrosis factor Receptor-related protein (GITR), CD137 (4-1BB), CD27, ICOS (CD278); Inducible T-cell Costimulator) and/or Herpes Virus Entry Mediator (HVEM). In certain embodiments, the immune checkpoint modulator is an antibody or antigen-binding fragment thereof.


In certain embodiments, the immune checkpoint modulator is an antagonist of an immune checkpoint molecule. In certain embodiments, the immune checkpoint molecule is T cell Immunoglobulin and Mucin-domain containing-3 (TIM-3), Lymphocyte-Activation Gene 3 (LAG-3), Cytotoxic T-Lymphocyte-associated Antigen-4 (CTLA-4), V-domain Immunoglobulin Suppressor of T cell Activation (VISTA), B and T Lymphocyte Attenuator (BTLA), PD-1, and/or PD-L1. In certain embodiments, the immune checkpoint modulator is an antibody or antigen-binding fragment thereof.


In certain embodiments, the immune checkpoint modulator is an antibody or antigen-binding fragment thereof. In certain embodiments, the antibody or antibody-binding fragment thereof binds PD-1. In certain embodiments, the antibody or antibody-binding fragment thereof that binds PD-1 is nivolumab (OPDIVO®, BMS-936558, MDX-1106, ONO-4538; Bristol-Myers Squibb, Ono Pharmaceuticals, Inc.), pembrolizumab (KEYTRUDA®, lambrolizumab, MK-3475; Merck), pidilizumab (CT-011; Curetech, Medivation); MEDI0680 (AMP-514; MedImmune, AstraZeneca); PDR-001 (Novartis), SHR1210, or INCSHR1210; Incyte, Jiangsu Hengrui). In certain embodiments, the antibody or antigen-binding fragment thereof binds PD-L1. In certain embodiments, the antibody or antigen-binding fragment thereof that binds PD-L1 is durvalumab (MEDI4736; MedImmune, AstraZeneca), BMS-936559 (MDX-1105; Bristol-Myers Squibb), avelumab (MSB0010718C; Merck Serono, Pfizer), or atezolizumab (MPDL-3280A; Genentech, Roche). In certain embodiments, the antibody or antibody-binding fragment thereof binds LAG-3. In certain embodiments, the antibody or antibody-binding fragment thereof that binds LAG-3 is BMS-986016 (Bristol-Myers Squibb), GSK2831781 (GlaxoSmithKline), or LAG525 (Novartis). In certain embodiments, the antibody or antibody-binding fragment thereof binds CTLA-4. In certain embodiments, the antibody or antibody-binding fragment thereof that binds CTLA-4 is ipilimumab (YERVOY™, BMS-734016, MDX010, MDX-101; Bristol-Myers Squibb), or tremelimumab (CP-675,206; MedImmune, AstraZeneca). In certain embodiments, the antibody or antibody-binding fragment thereof binds OX40. In certain embodiments, the antibody or antibody-binding fragment thereof that binds OX40 is MEDI6469 (MedImmune, AstraZeneca), MEDI0562 (MedImmune, AstraZeneca), or KHK4083 (Kyowa Hakko Kirin). In certain embodiments, the antibody or antibody-binding fragment thereof binds GITR. In certain embodiments, the antibody or antibody-binding fragment thereof that binds GITR is TRX518 (Leap Therapeutics) or MEDI1873 (MedImmune, AstraZeneca). In certain embodiments, the antibody or antibody-binding fragment thereof binds CD137 (4-1BB). In certain embodiments, the antibody or antibody-binding fragment thereof that binds CD137 (4-1BB) is PF-2566 (PF-05082566; Pfizer), or urelumab (BMS-663513; Bristol-Myers Squibb). In certain embodiments, the antibody or antibody-binding fragment thereof binds CD27. In certain embodiments, the antibody or antibody-binding fragment thereof that binds CD27 is varilumab (CDX-1127; Celldex Therapies).


In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes lenalidomide or pomalidomide. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an HDAC inhibitor. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-CS-1 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-CD38 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-CD138 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-PD-1 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-PD-L1 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-NKG2A antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-CD20 antibody (e.g., rituximab; RITUXAN®). In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes CC-122. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes CC-220. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-DLL4 antibody (e.g., demcizumab). In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-DLL4 and anti-VEGF bispecific antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-RSPO3 antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an anti-TIGIT antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes an ICOS agonist antibody. In certain embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein, is part of an anticancer therapy regimen that includes homoharringtonine (e.g., omacetaxine mepesuccinate).


In some embodiments, treatment of an individual having cancer using the NK cells produced using the methods described herein is part of an anticancer therapy regimen for antibody-dependent cell-mediated cytotoxicity (ADCC). In some embodiments, treatment of an individual having cancer using the ILC3 cells produced using the methods described herein is part of an anticancer therapy regimen for antibody-dependent cell-mediated cytotoxicity (ADCC). In one embodiment, the ADCC regimen comprises administration of one or more antibodies (e.g., an antibody described in the foregoing paragraph) in combination with NK cells and/or ILC3 cells produced using the methods described herein. Several types of cancer can be treated using such ADCC methods, including but not limited to acute lymphoblastic leukemia (ALL) or other B-cell malignancies (lymphomas and leukemias), neuroblastoma, melanoma, breast cancers, and head and neck cancers. In specific embodiments, the ADCC therapy comprises administration of one or more of the following antibodies anti-EGFR antibody (e.g., Erbitux (cetuximab)), anti-CD19 antibody, anti-CD20 antibody (e.g., rituximab), anti-disialoganglioside (GD2) antibody (e.g., monoclonal antibody 3F8 or ch14.18), or anti-ErbB2 antibody (e.g., herceptin), in combination with NK cells and/or ILC3 cells produced using the methods described herein. In one embodiment, the ADCC regimen comprises administration of an anti-CD33 antibody in combination with NK cells and/or ILC3 cells produced using the methods described herein. In one embodiment, the ADCC regimen comprises administration of an anti-CD20 antibody in combination with NK cells and/or ILC3 cells produced using the methods described herein. In one embodiment, the ADCC regimen comprises administration of an anti-CD138 antibody in combination with NK cells and/or ILC3 cells produced using the methods described herein. In one embodiment, the ADCC regimen comprises administration of an anti-CD32 antibody in combination with NK cells and/or ILC3 cells produced using the methods described herein.


5.11.4. Treatment of Viral Infection


In another embodiment, provided herein is a method of treating an individual having a viral infection, comprising administering to said individual a therapeutically effective amount of NK cells produced using the methods described herein, e.g., NK cell populations produced using the three-stage method described herein. In another embodiment, provided herein is a method of treating an individual having a viral infection, comprising administering to said individual a therapeutically effective amount of ILC3 cells produced using the methods described herein, e.g., ILC3 cell populations produced using the three-stage method described herein. In certain embodiments, the individual has a deficiency of natural killer cells, e.g., a deficiency of NK cells or other innate lymphoid cells active against the individual's viral infection. In certain specific embodiments, said administering additionally comprises administering to the individual one or more of isolated placental perfusate, isolated placental perfusate cells, isolated natural killer cells, e.g., placental natural killer cells, e.g., placenta-derived intermediate natural killer cells, isolated combined natural killer cells, and/or combinations thereof. In certain specific embodiments, the NK cells and/or ILC3 cells produced using the methods described herein are contacted or brought into proximity with an immunomodulatory compound, e.g., an immunomodulatory compound above, or thalidomide, prior to said administration. In certain other specific embodiments, said administering comprises administering an immunomodulatory compound, e.g., an immunomodulatory compound described above, or thalidomide, to said individual in addition to said NK cells and/or ILC3 cells produced using the methods described herein, wherein said amount is an amount that, e.g., results in a detectable improvement of, lessening of the progression of, or elimination of, one or more symptoms of said viral infection. In specific embodiments, the viral infection is an infection by a virus of the Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae, Orthomyxoviridae, Paramyxoviridae, Papilommaviridae, Rhabdoviridae, or Togaviridae family. In more specific embodiments, said virus is human immunodeficiency virus (HIV).coxsackievirus, hepatitis A virus (HAV), poliovirus, Epstein-Barr virus (EBV), herpes simplex type 1 (HSV1), herpes simplex type 2 (HSV2), human cytomegalovirus (CMV), human herpesvirus type 8 (HHV8), herpes zoster virus (varicella zoster virus (VZV) or shingles virus), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), hepatitis E virus (HEV), influenza virus (e.g., influenza A virus, influenza B virus, influenza C virus, or thogotovirus), measles virus, mumps virus, parainfluenza virus, papillomavirus, rabies virus, or rubella virus.


In other more specific embodiments, said virus is adenovirus species A, serotype 12, 18, or 31; adenovirus species B, serotype 3, 7, 11, 14, 16, 34, 35, or 50; adenovirus species C, serotype 1, 2, 5, or 6; species D, serotype 8, 9, 10, 13, 15, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, or 51; species E, serotype 4; or species F, serotype 40 or 41.


In certain other more specific embodiments, the virus is Apoi virus (APOIV), Aroa virus (AROAV), bagaza virus (BAGV), Banzi virus (BANV), Bouboui virus (BOUV), Cacipacore virus (CPCV), Carey Island virus (CIV), Cowbone Ridge virus (CRV), Dengue virus (DENV), Edge Hill virus (EHV), Gadgets Gully virus (GGYV), Ilheus virus (ILHV), Israel turkey meningoencephalomyelitis virus (ITV), Japanese encephalitis virus (JEV), Jugra virus (JUGV), Jutiapa virus (JUTV), kadam virus (KADV), Kedougou virus (KEDV), Kokobera virus (KOKV), Koutango virus (KOUV), Kyasanur Forest disease virus (KFDV), Langat virus (LGTV), Meaban virus (MEAV), Modoc virus (MODV), Montana myotis leukoencephalitis virus (MMLV), Murray Valley encephalitis virus (MVEV), Ntaya virus (NTAV), Omsk hemorrhagic fever virus (OHFV), Powassan virus (POWV), Rio Bravo virus (RBV), Royal Farm virus (RFV), Saboya virus (SABV), St. Louis encephalitis virus (SLEV), Sal Vieja virus (SVV), San Perlita virus (SPV), Saumarez Reef virus (SREV), Sepik virus (SEPV), Tembusu virus (TMUV), tick-borne encephalitis virus (TBEV), Tyuleniy virus (TYUV), Uganda S virus (UGSV), Usutu virus (USUV), Wesselsbron virus (WESSV), West Nile virus (WNV), Yaounde virus (YAOV), Yellow fever virus (YFV), Yokose virus (YOKV), or Zika virus (ZIKV).


In other embodiments, the NK cells produced using the methods described herein, and optionally placental perfusate and/or perfusate cells, are administered to an individual having a viral infection as part of an antiviral therapy regimen that includes one or more other antiviral agents. Specific antiviral agents that may be administered to an individual having a viral infection include, but are not limited to: imiquimod, podofilox, podophyllin, interferon alpha (IFNα), reticolos, nonoxynol-9, acyclovir, famciclovir, valaciclovir, ganciclovir, cidofovir; amantadine, rimantadine; ribavirin; zanamavir and oseltaumavir; protease inhibitors such as indinavir, nelfinavir, ritonavir, or saquinavir; nucleoside reverse transcriptase inhibitors such as didanosine, lamivudine, stavudine, zalcitabine, or zidovudine; and non-nucleoside reverse transcriptase inhibitors such as nevirapine, or efavirenz.


5.11.5. Other Treatment Uses for ILC3 Cells


Provided herein are ILC3 cells that can be used in all the methods as provided herein. Exemplary methods in which ILC3 cells can be used are disclosed in the following aspects.


In another aspect, provided herein is a method of repairing the gastrointestinal tract after chemotherapy comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are by a three-stage method described herein.


In another aspect, provided herein is a method of protecting an individual against radiation comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. In certain aspects, said ILC3 cells are used as an adjunct to bone marrow transplantation.


In another aspect, provided herein is a method of reconstituting the thymus of an individual comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein.


In another aspect, provided herein is a method of promoting protective immunity to pathogens in an individual comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells are produced by a three-stage method described herein. In certain aspects, promoting protective immunity to pathogens is performed to treat intestinal infection. In certain aspects, promoting protective immunity to pathogens is performed to prevent intestinal infection. In certain aspects, the intestinal infection is Citrobacter rodentium.


In another aspect, provided herein is a method of tumor rejection comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells have been produced by a three-stage method described herein.


In another aspect, provided herein is a method of maintaining tissue integrity during organogenesis comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells have been produced by a three-stage method described herein.


In another aspect, provided herein is a method of tissue repair comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells have been produced by a three-stage method described herein.


In another aspect, provided herein is a method of regulation of inflammation comprising administering to an individual a plurality of ILC3 cells, wherein the ILC3 cells have been produced by a three-stage method described herein.


5.11.6. Administration


Determination of the number of cells, e.g., placental perfusate cells, e.g., nucleated cells from placental perfusate, combined natural killer cells, ILC3 cells, and/or isolated natural killer cells, e.g., NK cell populations produced using the three-stage method described herein, and determination of the amount of an immunomodulatory compound, e.g., an immunomodulatory compound, or thalidomide, can be performed independently of each other.


Administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof may be systemic or local. In specific embodiments, administration is parenteral. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection, infusion, intravenous (IV) administration, intrafemoral administration, or intratumor administration. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is performed with a device, a matrix, or a scaffold. In specific embodiments, administration an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection. In specific embodiments, administration an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is via a catheter. In specific embodiments, the injection of NK cells and/or ILC3 cells is local injection. In more specific embodiments, the local injection is directly into a solid tumor (e.g., a sarcoma). In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is by injection by syringe. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject is via guided delivery. In specific embodiments, administration of an isolated population of NK cells and/or ILC3 cells or a pharmaceutical composition thereof to a subject by injection is aided by laparoscopy, endoscopy, ultrasound, computed tomography, magnetic resonance, or radiology.


5.11.6.1. Administration of Cells


In certain embodiments, NK cells and/or ILC3 cells produced using the methods described herein, e.g., NK cell and/or ILC3 cell populations produced using the three-stage method described herein, are used, e.g., administered to an individual, in any amount or number that results in a detectable therapeutic benefit to the individual, e.g., an effective amount, wherein the individual has a viral infection, cancer, or tumor cells, for example, an individual having tumor cells, a solid tumor or a blood cancer, e.g., a cancer patient. Such cells can be administered to such an individual by absolute numbers of cells, e.g., said individual can be administered at about, at least about, or at most about, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×101°, 5×1010, or 1×1011 NK cells and/or ILC3 cells produced using the methods described herein. In other embodiments, NK cells and/or ILC3 cells produced using the methods described herein can be administered to such an individual by relative numbers of cells, e.g., said individual can be administered at about, at least about, or at most about, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×101°, 5×1010, or 1×1011 NK cells and/or ILC3 cells produced using the methods described herein per kilogram of the individual. In other embodiments, NK cells and/or ILC3 cells produced using the methods described herein can be administered to such an individual by relative numbers of cells, e.g., said individual can be administered at about, at least about, or at most about, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, or 5×108 NK cells and/or ILC3 cells produced using the methods described herein per kilogram of the individual. NK cells and/or ILC3 cells produced using the methods described herein can be administered to such an individual according to an approximate ratio between a number of NK cells and/or ILC3 cells produced using the methods described herein, and optionally placental perfusate cells and/or natural killer cells other than NK cells and/or ILC3 cells produced using the methods described herein, and a number of tumor cells in said individual (e.g., an estimated number). For example, NK cells and/or ILC3 cells produced using the methods described herein can be administered to said individual in a ratio of about, at least about or at most about 1:1, 1:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 15:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1, 50:1, 55:1, 60:1, 65:1, 70:1, 75:1, 80:1, 85:1, 90:1, 95:1 or 100:1 to the number of tumor cells in the individual. The number of tumor cells in such an individual can be estimated, e.g., by counting the number of tumor cells in a sample of tissue from the individual, e.g., blood sample, biopsy, or the like. In specific embodiments, e.g., for solid tumors, said counting is performed in combination with imaging of the tumor or tumors to obtain an approximate tumor volume. In a specific embodiment, an immunomodulatory compound or thalidomide, e.g., an effective amount of an immunomodulatory compound or thalidomide, are administered to the individual in addition to the NK cells and/or ILC3 cells produced using the methods described herein, optionally placental perfusate cells and/or natural killer cells other than NK cells and/or ILC3 cells produced using the methods described herein.


In certain embodiments, the method of suppressing the proliferation of tumor cells, e.g., in an individual; treatment of an individual having a deficiency in the individual's natural killer cells; or treatment of an individual having a viral infection; or treatment of an individual having cancer, e.g., an individual having tumor cells, a blood cancer or a solid tumor, comprises bringing the tumor cells into proximity with, or administering to said individual, a combination of NK cells and/or ILC3 cells produced using the methods described herein and one or more of placental perfusate and/or placental perfusate cells. In specific embodiments, the method additionally comprises bringing the tumor cells into proximity with, or administering to the individual, an immunomodulatory compound or thalidomide.


In a specific embodiment, for example, treatment of an individual having a deficiency in the individual's natural killer cells (e.g., a deficiency in the number of NK cells or in the NK cells' reactivity to a cancer, tumor or virally-infected cells); or treatment of an individual having a cancer or a viral infection, or suppression of tumor cell proliferation, comprises bringing said tumor cells into proximity with, or administering to said individual, NK cells and/or ILC3 cells produced using the methods described herein supplemented with isolated placental perfusate cells or placental perfusate. In specific embodiments, about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more NK cells produced using the methods described herein per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more NK cells produced using the methods described herein are supplemented with about, or at least about, 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more isolated placental perfusate cells per milliliter, or 1×104, 5×104, 1×105 5×105 1×106 5×106 1×107 5×107 1×108 5×108 1×109 5×109 1×1010, 5×1010, 1×1011 or more isolated placental perfusate cells. In other more specific embodiments, about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more NK cells produced using the methods described herein or 1×104, 5×104, 1×105, 5×105 1×106 5×106 1×107 5×107 1×108 5×108 1×109 5×109 1×101° 5×1010 1×1011 or more NK cells produced using the methods described herein are supplemented with about, or at least about, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 mL of perfusate, or about 1 unit of perfusate.


In another specific embodiment, treatment of an individual having a deficiency in the individual's natural killer cells; treatment of an individual having cancer; treatment of an individual having a viral infection; or suppression of tumor cell proliferation, comprises bringing the tumor cells into proximity with, or administering to the individual, NK cells and/or ILC3 cells produced using the methods described herein, wherein said cells are supplemented with adherent placental cells, e.g., adherent placental stem cells or multipotent cells, e.g., CD34, CD10+, CD105+, CD200+ tissue culture plastic-adherent placental cells. In specific embodiments, the NK cells and/or ILC3 cells produced using the methods described herein are supplemented with about 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108 or more adherent placental stem cells per milliliter, or 1×104, 5×104, 1×105, 5×105, 1×106, 5×106, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more adherent placental cells, e.g., adherent placental stem cells or multipotent cells.


In another specific embodiment, treatment of an individual having a deficiency in the individual's natural killer cells; treatment of an individual having cancer; treatment of an individual having a viral infection; or suppression of tumor cell proliferation, is performed using an immunomodulatory compound or thalidomide in combination with NK cells and/or ILC3 cells produced using the methods described herein, wherein said cells are supplemented with conditioned medium, e.g., medium conditioned by CD34, CD10+, CD105+, CD200+ tissue culture plastic-adherent placental cells, e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.1, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mL of stem cell-conditioned culture medium per unit of perfusate, or per 104, 105, 106, 107, 108, 109, 1010, or 1011 NK cells and/or ILC3 cells produced using the methods described herein. In certain embodiments, the tissue culture plastic-adherent placental cells are the multipotent adherent placental cells described in U.S. Pat. Nos. 7,468,276 and 8,057,788, the disclosures of which are incorporated herein by reference in their entireties. In another specific embodiment, the method additionally comprises bringing the tumor cells into proximity with, or administering to the individual, an immunomodulatory compound or thalidomide.


In another specific embodiment, treatment of an individual having a deficiency in the individual's natural killer cells; treatment of an individual having cancer; treatment of an individual having a viral infection; or suppression of tumor cell proliferation, in which said NK cells and/or ILC3 cells produced using the methods described herein are supplemented with placental perfusate cells, the perfusate cells are brought into proximity with interleukin-2 (IL-2) for a period of time prior to said bringing into proximity. In certain embodiments, said period of time is about, at least, or at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 or 48 hours prior to said bringing into proximity.


The NK cells and/or ILC3 cells produced using the methods described herein and optionally perfusate or perfusate cells, can be administered once to an individual having a viral infection, an individual having cancer, or an individual having tumor cells, during a course of anticancer therapy; or can be administered multiple times, e.g., once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 hours, or once every 1, 2, 3, 4, 5, 6 or 7 days, or once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 36 or more weeks during therapy. In embodiments in which cells and an immunomodulatory compound or thalidomide are used, the immunomodulatory compound or thalidomide, and cells or perfusate, can be administered to the individual together, e.g., in the same formulation; separately, e.g., in separate formulations, at approximately the same time; or can be administered separately, e.g., on different dosing schedules or at different times of the day. Similarly, in embodiments in which cells and an antiviral compound or anticancer compound are used, the antiviral compound or anticancer compound, and cells or perfusate, can be administered to the individual together, e.g., in the same formulation; separately, e.g., in separate formulations, at approximately the same time; or can be administered separately, e.g., on different dosing schedules or at different times of the day. The NK cells and/or ILC3 cells produced using the methods described herein and perfusate or perfusate cells, can be administered without regard to whether NK cells and/or ILC3 cells produced using the methods described herein, perfusate, or perfusate cells have been administered to the individual in the past.


6. KITS

Provided herein is a pharmaceutical pack or kit comprising one or more containers filled with one or more of the compositions described herein, e.g., a composition comprising NK cells and/or ILC3 cells produced by a method described herein, e.g., NK cell and/or ILC3 cell populations produced using the three-stage method described herein. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.


The kits encompassed herein can be used in accordance with the methods described herein, e.g., methods of suppressing the growth of tumor cells and/or methods of treating cancer, e.g., hematologic cancer, and/or methods of treating viral infection. In one embodiment, a kit comprises NK cells and/or ILC3 cells produced by a method described herein or a composition thereof, in one or more containers. In a specific embodiment, provided herein is a kit comprising an NK cell and/or ILC3 cell population produced by a three-stage method described herein, or a composition thereof.


7. EXAMPLES
7.1. Example 1: Three-Stage Method of Producing Natural Killer Cells from Hematopoietic Stem or Progenitor Cells

CD34+ cells are cultured in the following medium formulations for the indicated number of days, and aliquots of cells are taken for assessment of cell count, cell viability, characterization of natural killer cell differentiation and functional evaluation.


Stage 1 medium: 90% Stem Cell Growth Medium (SCGM) (CellGro®), 10% Human Serum-AB, supplemented with 25 ng/mL or 250 ng/mL recombinant human thrombopoietin (TPO), 25 ng/mL recombinant human Flt3L, 27 ng/mL recombinant human stem cell factor (SCF), 25 ng/mL recombinant human IL-7, 0.05 ng/mL or 0.025 ng/mL recombinant human IL-6, 0.25 ng/mL or 0.125 ng/mL recombinant human granulocyte colony-stimulating factor (G-CSF), 0.01 ng/mL or 0.025 ng/mL recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), 0.10% gentamicin, and 1 to 10 μm StemRegenin-1 (SR-1) or other stem cell mobilizing agent.


Stage 2 medium: 90% SCGM, 10% Human Serum-AB, supplemented with 25 ng/mL recombinant human Flt3L, 27 ng/mL recombinant human SCF, 25 ng/mL recombinant human IL-7, 20 ng/mL recombinant human IL-15, 0.05 ng/mL or 0.025 ng/mL recombinant human IL-6, 0.25 ng/mL or 0.125 ng/mL recombinant human granulocyte colony-stimulating factor (G-CSF), 0.01 ng/mL or 0.025 ng/mL recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), 0.10% gentamicin, and 1 to 10 μm SR1 or other stem cell mobilizing agent.


Stage 3 medium: 90% STEMMACS′, 10% Human Serum-AB, 0.025 mM 2-mercaptoethanol (55 mM), supplemented with 22 ng/mL recombinant human SCF, 1000 U/mL recombinant human IL-2, 20 ng/mL recombinant human IL-7, 20 ng/mL recombinant human IL-15, 0.05 ng/mL or 0.025 ng/mL recombinant human IL-6, 0.25 ng/mL or 0.125 ng/mL recombinant human granulocyte colony-stimulating factor (G-CSF), 0.01 ng/mL or 0.025 ng/mL recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), and 0.10% gentamicin.


Cells are seeded at Day 0 at 3×104 cells/mL in Stage 1 media, and cells are tested for purity by a CD34+ and CD45+ count and viability by 7AAD staining. At Day 5 cells are counted and seeded to a concentration of 1×105 cells/mL with Stage 1 medium. At Day 7 cells are counted and seeded to a concentration of 1×105 cells/mL with Stage 1 medium.


At Day 10, cells are counted and seeded to a concentration of 1×105 cells/mL in Stage 2 medium. At Day 12, cells are counted and seeded to a concentration of 3×105 cells/mL in Stage 2 medium. At Day 14, cells are counted and seeded in Stage 3 medium. Cells are maintained in Stage 3 media until day 35.


Alternatively, the following protocol is used through Day 14: Cells seeded at Day 0 at 7.5×103 cells/mL in Stage 1 media, and cells are tested for purity by a CD34+ and CD45+ count and viability by 7AAD staining. At Day 7 cells are counted and seeded to a concentration of 3×105 cells/mL with Stage 1 medium. At Day 9 cells are counted and seeded to a concentration of 3×105 cells/mL with Stage 2 medium. At Day 12, cells are counted and seeded to a concentration of 3×105 cells/mL in Stage 2 medium. At Day 14, cells are counted and seeded to a concentration of 3×105 cells/mL in Stage 2 medium.


Seeding of cells into at passage is performed either by dilution of the culture with fresh media or by centrifugation of cells and resuspension/addition of fresh media.


For harvest, cells are spun at 400×g for seven minutes, followed by suspension of the pellet in an equal volume of Plasmalyte A. The suspension is spun at 400×g for seven minutes, and the resulting pellet is suspended in 10% HSA (w/v), 60% Plasmalyte A (v/v) at the target cell concentration. The cells are then strained through a 70 μm mesh, the final container is filled, an aliquot of the cells are tested for viability, cytotoxicity, purity, and cell count, and the remainder is packaged.


7.2. Example 2: Selection of Stem Cell Mobilizing Agents for the Expansion of NK Cells

The following compounds were investigated for their ability to promote the expansion of NK cell populations in vitro:

  • 4-(2-((2-(benzo[b]thiophen-3-yl)-6-(isopropylamino)pyrimidin-4-yl)amino)ethyl)phenol) (“CRL1”)




embedded image


  • 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol)) (“CRL2”)





embedded image


  • 4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)phenol (“CRL3”)





embedded image


  • 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (“CRL4”)





embedded image


  • 3-((2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide (“CRL5”)





embedded image


  • 4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol (“CRL6”)





embedded image


  • 5-(2-((2-(1H-indol-3-yl)ethyl)amino)-6-(sec-butylamino)pyrimidin-4-yl)nicotinonitrile (“CRL7”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine (“CRL8”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine (“CRL9”)





embedded image


  • 3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide (“CRL10”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine (“CRL11”)





embedded image


  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile (“CRL12”)





embedded image


  • N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine (“CRL13”)





embedded image


  • 2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile (“CRL14”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-amine (“CRL15”)





embedded image


  • 4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol (“CRL16”)





embedded image


  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile (“CRL17”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine (“CRL18”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine (“CRL19”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine (“CRL20”)





embedded image


  • N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine (“CRL21”)





embedded image


and

  • 5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile (“CRL22”)




embedded image


7.3. Example 3: Characterization of Three-Stage NK Cells
Methods

UCB CD34+ cells were cultivated in presence of cytokines including thrombopoietin, SCF, Flt3 ligand, IL-7, IL-15 and IL-2 for 35 days to produce three-stage NK cells, as described in Example 1. Multi-color flow cytometry was used to determine the phenotypic characteristics of three-stage NK cells.


For biological testing, the compounds were provided to culture to evaluate their effects on NK cell expansion and differentiation. Specifically, donors of CD34+ cells (StemCell Technology) were thawed and expanded in vitro following NK culture protocol. During the first 14 days of the culture, each CRL compounds was dissolved in DMSO and added to the culture at 10 μM concentration. SR1 (at 10 μM) served as a positive control compound, while DMSO alone without any compound served as a negative control. At the end of the culture on Day 35, cell expansion, natural killer (NK) cell differentiation and cytotoxicity of the cells against K562 tumor cell line were characterized. Due to the large number of the compounds, the testing was performed in two experiments, CRL1-11 and CRL 12-22. The same donors were used for each experiment. Positive and negative controls were also included in both experiments.


Results

Cell expansion data showed that 20 out of the 22 compounds supported NK expansion at 10 μM concentration. Except for CRL7 and CRL13, the rest of the compounds all resulted in a NK expansion of 2,000-15,000 fold over 35 days (FIG. 1 and FIG. 2). Among all the compounds, CRL19, 20 and 22 supported cell expansion the best, and they demonstrated a similar level of expansion compared to SR1 at Day 35 (FIG. 3). CD34 cell expansion at Day 14 of the culture showed a similar trend that most of the compounds supported CD34 cells expansion, and CRL19, 20 and 22 achieved the highest CD34 cell expansion at Day 14 (FIG. 4).


Cytotoxicity assay was run using compound cultured cells against K562 tumor cells at 10:1 effector to target ratio (FIG. 5) to evaluate cell functions. The results showed that the cells cultured with compounds killed 3060% of K562 cells at 10:1 E:T ratio, indicating that the cells present NK functions. For both donors, cells cultured with CRL17, 18, 19 and 21 demonstrated similar or greater killing activities compared to those cultured with SR1.


Conclusions

In summary, we found that all the compounds except CRL7 and CRL13 supported PNK-007 expansion and differentiation. Expansion with the compounds ranged from 2,000˜15, 000 fold over 35 days, and the culture achieved more than 70% of NK cells. Among these compounds, CRL 19, 20 and 22 demonstrated very similar expansion, differentiation and cytotoxicity profiles as SR1 for PNK-007 culture. CRL 17, 18, and 21 resulted in slightly less expansion compared to SR1 but increased CD56+/CD11a+ subpopulation, and also increased killing activities of the cells.


7.4 Example 4: Further Characterization of Three-Stage NK Cells
Methods

Cells: Frozen PBMC were acquired from Stem Cell Technologies. Peripheral blood derived NKs (PB-NK) cells were isolated from fresh blood of healthy donors using the Human NK Cell Enrichment Kit (Stem Cell Technologies) according to manufacturer's instructions. CYNK cells were generated from umbilical cord blood-derived CD34+ stem cells (Ref: Zhang et al. J Immunother Cancer. 2015). Briefly, the CD34+ cells were cultivated in the presence of cytokines including thromobopoietin, SCF, Flt3 ligand, IL-7, IL-15 and IL-2 for 35 days. PBNK and CYNK cells were cryopreserved until analysis.


Magnetic-activated cell sorting: PNK cells were stained with PE Mouse Anti-Human CD11a (BD) and CD11a+ PNK cells concentrated using anti-PE MicroBeads according to manufacturer's instructions (Miltenyi Biotec).


Single cell RNA sequencing: CYNK cells were combined with PB-NK at 1:1 ratio and gene expression analyzed on single cell level using 10× Genomics Chromium platform and Illumina sequencing. Bioinformatics analysis utilized 10× Genomics Cell Ranger analysis pipeline.


Flow Cytometry: Cryopreserved cells were rapidly thawed in a 37° C. water bath and washed once in RPMI1640+10% hiFBS (heat inactivated Fetal Bovine Serum, Gibco), followed by LIVE/DEAD™ Fixable Aqua Stain in PBS. Cells were washed with FACS buffer (PBS+2% FBS) followed by incubation in blocking solution (Brilliant Stain buffer, Mouse IgG2a isotype k control and Human BD Fc Block (all from BD)). Cells were washed with FACS buffer and incubated with fluorophore-coupled antibodies in FACS buffer for 25 min on ice. Cells were washed with FACS buffer before analysis on Fortessa X20 flow cytometer (BD).


qRT-PCR: RNA was isolated from cells using Quick-RNA Miniprep kit (Qiagen) according to the manufacturer's instructions. cDNA was synthesized using SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific) in a standard reaction. RT-PCR was performed using Taqman Gene expression assays (Applied Biosystems). Expression levels were calculated relative to GAPDH (Hs02758991) using the ΔΔCt method.


Results

CYNK cells efficiently kill various tumor cell lines in vitro, however, the mechanisms CYNK cells use to induce cell death remains poorly understood (ref). To elucidate on the activating NK cell receptors, the intracellular signaling pathways and molecular mechanisms CYNK cells employ to carry out their functional roles, we used single-cell RNA sequencing (scRNAseq) as an unbiased approach to compare CYNK cells to peripheral blood NK cells (PB-NK) (FIG. 6A). Unbiased transcriptional clustering revealed two distinct signatures differentiating between CYNK and PB-NK cells (FIG. 6B). Tables 1 and 2 list top 50 upregulated genes per cluster in PB-NK and CYNK cells, respectively. The gene set expressed higher in PB-NK cells included genes associated with NK cell functional roles, including FGFBP2, granzymes (GZMH, GZMM), CXCR4, KLRF1, KLF2, IFNG (Table 1).

    • FGFBP2, encoding fibroblast growth factor-binding protein, is known to be secreted by cytotoxic lymphocytes.
    • Granzymes are a group of serine proteases which are stored in the cytotoxic granules of NK cells and cytotoxic T lymphocytes (ref). While GzmA and GzmB induce target cell death upon release to their cytoplasm and have been extensively studied, less is known about the functional role of GzmH, GzmK and GzmM.
    • CXCR4 regulates NK cell homing to bone marrow.
    • KLRF1 encodes NKp80, an activating C-type lectin-like immunoreceptor that is activated upon binding to activation-induced C-type lectin (AICL), inducing NK cell cytotoxicity and cytokine secretion.
    • Transcription factor KLF2 that regulates both NK cell proliferation and survival.
    • NK cell-derived IFN-γ (IFNG gene) is a key immunoregulatory factor secreted from activated NK cells that promotes adaptive immune response by modulating dendritic cell and T cell responses.









TABLE 1







Top 50 upregulated genes per PB-NK cluster.


















PB-NK















CYNK
PB-NK
Log2 Fold
PB-NK


Feature ID
Feature Name
Average
Average
Change
P-Value
















 1
ENSG00000137441
FGFBP2
0.099352
 2.935962
4.88363 
4.09E−78


 2
ENSG00000100450
GZMH
0.136708
 2.484828
4.182845
2.49E−58


 3
ENSG00000276085
CCL3L3
0.072152
 1.251852
4.115143
2.13E−49


 4
ENSG00000197540
GZMM
0.134235
 1.982728
3.883559
1.40E−50


 5
ENSG00000121966
CXCR4
0.403236
 5.935725
3.879087
9.19E−51


 6
ENSG00000169554
ZEB2
0.127877
 1.860789
3.861967
7.03E−50


 7
ENSG00000127528
KLF2
0.172475
 1.92761 
3.481483
1.86E−40


 8
ENSG00000189067
LITAF
0.297791
 3.231559
3.439184
1.06E−39


 9
ENSG00000069667
RORA
0.101913
 1.055542
3.371425
3.26E−37


10
ENSG00000145220
LYAR
0.142448
 1.306592
3.196402
2.39E−33


11
ENSG00000125107
CNOT1
0.208595
 1.809824
3.116348
3.39E−32


12
ENSG00000111537
IFNG
0.193317
 1.639941
3.083863
1.11E−29


13
ENSG00000158050
DUSP2
0.40774 
 3.322164
3.025836
4.12E−30


14
ENSG00000110046
ATG2A
0.190226
 1.508942
2.987028
3.39E−29


15
ENSG00000173762
CD7
0.492697
 3.641922
2.885402
1.77E−27


16
ENSG00000141682
PMAIP1
0.252398
 1.820017
2.849558
6.51E−26


17
ENSG00000078304
PPP2R5C
0.381864
 2.591665
2.762207
6.15E−25


18
ENSG00000153234
NR4A2
0.399174
 2.622622
2.715393
5.59E−24


19
ENSG00000152518
ZFP36L2
0.856899
 5.585388
2.703993
4.72E−24


20
ENSG00000145675
PIK3R1
0.325168
 2.078618
2.675822
2.70E−23


21
ENSG00000150045
KLRF1
0.191285
 1.177103
2.620822
4.78E−22


22
ENSG00000255198
SNHG9
0.516983
 2.951818
2.512937
1.34E−20


23
ENSG00000125148
MT2A
0.51504 
 2.913311
2.499426
9.06E−20


24
ENSG00000116741
RGS2
0.203737
 1.147279
2.492865
1.51E−19


25
ENSG00000153922
CHD1
0.252574
 1.350762
2.418474
9.42E−19


26
ENSG00000120129
DUSP1
2.078529
 9.865317
2.24638 
2.58E−16


27
ENSG00000143924
EML4
0.256284
 1.150299
2.165756
7.80E−15


28
ENSG00000128016
ZFP36
2.22866 
 9.777355
2.132849
1.32E−14


29
ENSG00000163874
ZC3H12A
0.261759
 1.120475
2.097382
7.47E−14


30
ENSG00000105993
DNAJB6
0.6506  
 2.667169
2.035058
2.98E−13


31
ENSG00000126524
SBDS
0.534822
 2.185078
2.030148
3.57E−13


32
ENSG00000125347
IRF1
1.450448
 5.812277
2.002193
7.32E−13


33
ENSG00000157514
TSC22D3
1.103379
 4.30409 
1.963373
2.57E−12


34
ENSG00000184205
TSPYL2
0.592137
 2.247746
1.924086
1.14E−11


35
ENSG00000146278
PNRC1
1.362312
 5.156149
1.919832
7.77E−12


36
ENSG00000135070
ISCA1
0.27898 
 1.043084
1.90227 
2.06E−11


37
ENSG00000171223
JUNB
4.09462 
15.11622 
1.883884
2.20E−11


38
ENSG00000156232
WHAMM
0.316425
 1.146147
1.856513
7.14E−11


39
ENSG00000164327
RICTOR
0.318279
 1.101977
1.791406
3.85E−10


40
ENSG00000118503
TNFAIP3
0.550807
 1.902316
1.787777
3.93E−10


41
ENSG00000120616
EPCI
0.562199
 1.846066
1.714953
2.17E−09


42
ENSG00000167508
MVD
0.309448
 1.00722 
1.702322
4.11E−09


43
ENSG00000013441
CLKI
0.690164
 2.216412
1.682859
4.62E−09


44
ENSG00000188042
ARL4C
0.437325
 1.388136
1.666056
8.18E−09


45
ENSG00000162924
REL
0.553809
 1.736208
1.648145
1.14E−08


46
ENSG00000005483
KMT2E
0.79402 
 2.460289
1.631225
1.47E−08


47
ENSG00000119801
YPEL5
0.966141
 2.98202 
1.625617
1.70E−08


48
ENSG00000123505
AMD1
0.558578
 1.664102
1.574595
6.03E−08


49
ENSG00000159388
BTG2
0.751541
 2.22132 
1.563151
7.55E−08


50
ENSG00000010404
IDS
0.723193
 2.128073
1.556757
8.48E−08









Top differentially expressed genes in CYNK cluster that are encode factors associated with NK cell functional role include surface receptors and co-receptors (CD96, NCR3, CD59, KLRc1), TNFSF10, immune checkpoint genes (TNFRSF18, TNFRSF4, HAVCR2), NK cell receptor adaptor molecule genes (FCER1G and LAT2) (Table 2).









TABLE 2







Top 50 unregulated genes per CYNK cluster.














CYNK














Feature
PBNK
CYNK
Log2 Fold
CYNK


Feature ID
Name
Average
Average
Change
P-Value
















 1
ENSG00000102471
NDFIP2
0.077391
 1.45981 
4.230949
1.69E−22


 2
ENSG00000242258
LINC00996
0.063046
 1.183921
4.222944
5.04E−22


 3
ENSG00000172005
MAL
0.057005
 1.03529 
4.173813
1.35E−21


 4
ENSG00000108702
CCL1
0.078524
 1.334494
4.080611
5.11E−09


 5
ENSG00000198125
MB
0.10193 
 1.683947
4.041355
1.45E−20


 6
ENSG00000128040
SPINK2
0.087962
 1.233641
3.804242
7.88E−19


 7
ENSG00000166920
C15orf48
0.078901
 1.018246
3.683547
6.40E−18


 8
ENSG00000134072
CAMK1
0.151762
 1.932724
3.667647
2.13E−18


 9
ENSG00000134545
KLRC1
0.509273
 4.740451
3.217889
9.47E−16


10
ENSG00000121858
TNFSF10
0.295975
 2.682764
3.178801
6.44E−15


11
ENSG00000186891
TNFRSF18
1.182011
10.09017 
3.093605
6.96E−15


12
ENSG00000008517
IL32
4.345617
37.08234 
3.093395
6.60E−15


13
ENSG00000042493
CAPG
0.369213
 3.112494
3.074529
9.91E−15


14
ENSG00000235576
AC092580.4
0.44736 
 3.660475
3.031759
2.23E−14


15
ENSG00000163191
S100A11
0.41527 
 3.364804
3.017543
2.42E−14


16
ENSG00000186827
TNFRSF4
0.135529
 1.097816
3.01448 
1.91E−13


17
ENSG00000074800
ENO1
2.166202
16.05066 
2.889567
1.86E−13


18
ENSG00000158869
FCERIG
0.734274
 5.393877
2.876632
2.43E−13


19
ENSG00000118971
CCND2
0.457175
 3.324621
2.861636
3.21E−13


20
ENSG00000205426
KRT81
0.169883
 1.187806
2.803005
3.69E−12


21
ENSG00000243927
MRPS6
0.358643
 2.29304 
2.675597
6.10E−12


22
ENSG00000182718
ANXA2
0.206125
 1.282389
2.635118
3.48E−11


23
ENSG00000125384
PTGER2
0.175546
 1.08713 
2.628037
4.29E−11


24
ENSG00000124767
GLO1
0.214053
 1.289543
2.588793
6.50E−11


25
ENSG00000135077
HAVCR2
0.175924
 1.031051
2.548543
1.51E−10


26
ENSG00000103490
PYCARD
0.183097
 1.070527
2.545209
1.34E−10


27
ENSG00000086730
LAT2
0.178566
 1.04156 
2.541707
1.53E−10


28
ENSG00000141526
SLC16A3
0.282006
 1.622835
2.523282
1.73E−10


29
ENSG00000103187
COTL1
0.894342
 5.013779
2.486834
1.45E−10


30
ENSG00000067225
PKM
1.099712
 6.145949
2.482453
1.11E−10


31
ENSG00000177156
TALDO1
0.196687
 1.084745
2.46115 
4.23E−10


32
ENSG00000153283
CD96
0.368458
 2.029162
2.460314
1.66E−10


33
ENSG00000204475
NCR3
0.640272
 3.472457
2.438804
2.31E−10


34
ENSG00000170442
KRT86
0.257845
 1.372733
2.410873
1.02E−09


35
ENSG00000117632
STMN1
0.468878
 2.413499
2.36315 
1.22E−09


36
ENSG00000227507
LTB
3.831437
19.41653 
2.341609
1.09E−09


37
ENSG00000130429
ARPCIB
0.570053
 2.846585
2.31957 
1.27E−09


38
ENSG00000162704
ARPC5
0.347317
 1.717418
2.30484 
1.66E−09


39
ENSG00000088832
FKBP1A
0.40017 
 1.978205
2.304629
1.60E−09


40
ENSG00000102265
TIMP1
0.385447
 1.902345
2.302248
1.96E−09


41
ENSG00000113088
GZMK
0.290312
 1.403201
2.27168 
1.37E−08


42
ENSG00000085063
CD59
0.215186
 1.035997
2.265377
7.12E−09


43
ENSG00000102144
PGK1
1.405879
 6.735348
2.260328
2.92E−09


44
ENSG00000148908
RGS10
0.217451
 1.014713
2.220352
1.33E−08


45
ENSG00000196405
EVL
1.186164
 5.50471 
2.214345
5.41E−09


46
ENSG00000128340
RAC2
1.063092
 4.917253
2.209516
5.72E−09


47
ENSG00000100097
LGALS1
4.427539
20.46621 
2.208968
6.05E−09


48
ENSG00000139626
ITGB7
0.50059 
 2.285445
2.19016 
8.54E−09


49
ENSG00000196230
TUBB
1.062715
 4.838214
2.186651
1.22E−08


50
ENSG00000171314
PGAM1
0.670096
 3.046436
2.18433 
8.56E−09









To better understand how the cytotoxic response is initiated in CYNK cells, we specifically analyzed the expression of manually chosen genes encoding well characterized proteins leading from target detection to a cytolytic response, with main focus on NK cell receptors and adaptor molecule (Table 3). Differential gene expression analysis showed high expression of the two key cytotoxic molecules perforin (PRF1) and granzyme B (GZMB) in CYNK cells. Similarly, most receptors that were differentially expressed between CYNK and PB-NK cells, with the exception of KLRF1 (encoding NKp80), were higher expressed on CYNK cells. Expression of selected NK cell effector and receptor genes is visualized on tSNE plots in FIG. 6C. Elevated expression of genes encoding components of the NK cell cytotoxic machinery correlate well with the high cytotoxic activity of CYNK cells against a broad range of target cells.









TABLE 3







Top differentially expressed genes encoding factors regulating NK cell cytolytic


function. Genes that had <1 count per cell across the entire cluster were excluded.




















CYNK





Feature

CYNK
PBNK
Log2 Fold
CYNK













Feature ID
Name
Alias
Average
Average
Change
P-Value

















 1
ENSG00000134545
KLRC1
NKG2A,
 4.740451
 0.509273
  3.217889
9.47E−16





CD159a






 2
ENSG00000121858
TNFSF10
TRAIL
 2.682764
 0.295975
  3.178801
6.44E−15


 3
ENSG00000186891
TNFRSF18
GITR
10.09017 
 1.182011
  3.093605
6.96E−15


 4
ENSG00000186827
TNFRSF4
CD134,
 1.097816
 0.135529
  3.014481
1.91E−13





OX40






 5
ENSG00000135077
HAVCR2
TIM-3
 1.031051
 0.175924
  2.548543
1.51E−10


 6
ENSG00000153283
CD96
Tactile
 2.029162
 0.368458
  2.460314
1.66E−10


 7
ENSG00000204475
NCR3
CD337,
 3.472457
 0.640272
  2.438804
2.31E−10





NKp30






 8
ENSG00000085063
CD59
MAC-IP,
 1.035997
 0.215186
  2.265377
7.12E−09





MIRL,









protectin






 9
ENSG00000139626
ITGB7

 2.285445
 0.50059 
  2.19016 
8.54E−09


10
ENSG00000180644
PRF1

 3.589295
 0.887169
  2.016259
8.95E−08


11
ENSG00000100453
GZMB

11.6194  
 3.515453
  1.725026
4.27E−06


12
ENSG00000100385
IL2RB

 2.568753
 0.956632
  1.424929
0.000126


13
ENSG00000205809
KLRC2
NKG2C,
 1.419451
 0.784861
  0.854636
0.026587





CD159c






14
ENSG00000111796
KLRB1
CD161
18.74844 
10.45953 
  0.842324
0.027995


15
ENSG00000150045
KLRF1
NKp80
 0.191285
 1.177103
−2.62082 
4.78E−22









We next analyzed the transcriptional profile of CYNK and PB-NK cells by quantitative real-time PCR (qRT-PCR) focusing on selected NK cell-associated genes that were highly and/or differentially expressed in the scRNAseq dataset (FIG. 7). RNA was extracted from freshly thawed naïve cells post isolation or culture. qRT-PCR demonstrated high expression of CD69, KLRK1 and KLRB1 relative to the housekeeping gene GAPDH in both CYNK and PB-NK cells, whereas, KLRK1 and KLRB1, encoding for NKG2D and CD161/KLRB1, respectively, were significantly higher expressed in PB-NK cells. Significant differential expression of NKp80, encoded by KLRF1 gene, earlier seen by scRNAseq (Table 3), was confirmed by qRT-PCR. Similarly, KLRD1 was higher expressed on PB-NK compared to CYNK cells. Together, the data show higher expression of the inhibitory killer cell lectin-like receptor (KLRB1, KLRD1, KLRF1) expression on PB-NK cells when compared to CYNK cells. The two C-type lectin receptor genes KLRc1 and KLRc2, encoding the inhibitory NKG2A and the activating NKG2C, were higher expressed in CYNK cells. Of the natural cytotoxicity receptors (NCRs), only NCR2 (encoding NKp44) was differentially expressed with high expression in CYNK cells and almost no expression in PB-NK cells. Two co-activating NK cell receptor genes CD244 (2B4) and CD226 (DNAM-1) were slightly higher expressed in PB-NK compared to CYNK cells. Alongside the typical ligand-activated NK cell receptor genes, we also analyzed the expression of FCGR3A encoding an Fc receptor CD16 that is required for antibody-dependent cell-mediated cytotoxicity. Whereas scRNAseq data demonstrated no significant differential expression of FCGR3A, by qRT-PCR it was highly expressed in the PB-NK cells and at a very low level in CYNK cells. The expression of two genes TNFRSF18 and TNFSF10 that were highly differentially expressed by scRNAseq and elevated in the CYNK cluster, were also analyzed by qRT-PCR. The PCR data confirms high expression of these genes encoding for GITR and TRAIL, respectively, on CYNK cells relative to low level expression in PB-NK cells.


Lastly, we characterized CYNK cells relative to PB-NK by surface protein expression using flow cytometry. Antibodies targeting various NK cell receptors were chosen based on the transcriptional characterization by scRNAseq and qRT-PCR (Tables 1-3, GIG. 6 and FIG. 7). NK cells express high level of the NK cell marker CD56 and lack the expression of T cell, B cell and myeloid cell markers CD3, CD19 and CD14, respectively (FIG. 8). Whereas a majority of PB-NK cells express CD56 at a low level, a small subset of PB-NK cells express CD56 at a level seen in CYNK cells (FIG. 9). NCR analysis demonstrated a high expression of NKp44 in CYNK cells, whereas, NKp44 was expressed at a low level in PB-NK, corresponding well to our transcriptional analysis (FIG. 7). NKp80, on the other hand, was expressed on PB-NK cell and little on CYNK, also confirming the transcriptional data of KLRF1 expression (Table 1 and FIG. 7). CD16 was virtually not expressed on CYNK cells, whereas the majority of PB-NK cells expressed CD16 at a high level. CD16 protein expression, therefore, also corresponds well to transcriptional analysis (Table 1 and FIG. 7). The expression of killer cell lectin-like receptors was comparable between CYNK and PB-NK cells, with CYNK cells demonstrating higher mean fluorescence intensity compared to PB-NK cells for NKG2D, NKG2C, CD94 (NKG2C) and NKG2A. GITR, a checkpoint inhibitor molecule, encoded by TNFRSF18, was not expressed on PB-NK cells but highly on all CYNK cells, correlating well to qRT-PCR data.


We used the flow cytometry dataset (FIG. 8 and FIG. 9) to perform an unbiased analysis of the surface marker expression on CYNK and PB-NK cell populations (FIG. 10). Antibody-stained CYNK and PBMC cells were mixed for acquisition and analyzed by flow cytometry. It is evident from the tSNE plots that CYNK and PB-NK cells cluster separately from each other and other peripheral blood cells when looking at the localization of CD56- and CD3/CD14/CD19-positive cells on the plot. High expression of NKp44 (CD336) and GITR (CD357) enable the identification of CYNK cells as GITR is virtually not expressed in any cell type in the PBMC subsets. PB-NK cells on the other hand, highly express CD16 and NKp80 that are not expressed on CYNK cells. Altogether, we have identified cell surface markers that allow to distinguish CYNK cells from PB-NK with high confidence.


Equivalents

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.


All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Claims
  • 1. A method of producing a cell population comprising natural killer cells, comprising the steps of: (a) culturing hematopoietic stem or progenitor cells in a first medium comprising a stem cell mobilizing agent and thrombopoietin (Tpo) to produce a first population of cells;(b) culturing the first population of cells in a second medium comprising a stem cell mobilizing agent and interleukin-15 (IL-15), and lacking Tpo, to produce a second population of cells; and(c) culturing the second population of cells in a third medium comprising IL-2 and IL-15, and lacking each of a stem cell mobilizing agent and low molecular weight heparin (LMWH), to produce a third population of cells;wherein the third population of cells comprises natural killer cells that are CD56+, CD3−, andwherein at least 80% of the natural killer cells are viable.
  • 2.-25. (canceled)
  • 26. The method of claim 1, wherein said hematopoietic stem or progenitor cells are CD34+ hematopoietic stem cells.
  • 27. The method of claim 1, wherein said hematopoietic stem or progenitor cells are placental cells.
  • 28.-33. (canceled)
  • 34. The method of claim 1, wherein said Tpo is present in the first medium at a concentration of from 1 ng/mL to 50 ng/mL.
  • 35.-36. (canceled)
  • 37. The method of claim 1, wherein said IL-15 is present in said second medium at a concentration of from 1 ng/mL to 50 ng/mL.
  • 38.-39. (canceled)
  • 40. The method of claim 1, wherein said IL-2 is present in said third medium at a concentration of from 10 U/mL to 10,000 U/mL and said IL-15 is present in said third medium at a concentration of from 1 ng/mL to 50 ng/mL.
  • 42.-44. (canceled)
  • 45. The method of claim 1, wherein said stem cell mobilizing agent is a compound of Formula (I) has the following structure:
  • 46. The method of claim 45, wherein: Ra is hydrogen;Rb is —(C1-C4alkyl)-Rc;Rc is selected from the group consisting of: —C(═O)NH2; unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a Rc moiety indicated as substituted is substituted with one or more substituents E, wherein each E is independently selected from the group consisting of: —OH, C1-C4 alkyl, C1-C4 haloalkyl, —O(C1-C4 alkyl), and —O(C1-C4 haloalkyl);RK is selected from the group consisting of: hydrogen, unsubstituted C1-6 alkyl; —NH(C1-4 alkyl); —N(C1-4 alkyl)2, unsubstituted C6-10 aryl; substituted C6-10 aryl; unsubstituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; and substituted five- to ten-membered heteroaryl having 1-4 atoms selected from the group consisting of O, N, and S; wherein a RK moiety indicated as substituted is substituted with one or more substituents Q, wherein each Q is independently selected from the group consisting of: —OH, C1-4 alkyl, C1-4 haloalkyl, halo, cyano, —O—(C1-4 alkyl), and —O—(C1-4 haloalkyl);RG is —(C1-4 alkyl)-C(═O)NH2;RY and RZ are each independently absent or selected from the group consisting of: hydrogen, C1-6 alkyl, and —NH(C1-4 alkyl);or RY and RZ taken together with the atoms to which they are attached are joined together to form a ring selected from:
  • 47. The method of claim 45, wherein, wherein: Ra is hydrogen;Rb is —CH2CH2—Rc;Rc is selected from the group consisting of: unsubstituted phenyl, substituted phenyl, indolyl, and —C(═O)NH2;RK is selected from the group consisting of: hydrogen, methyl, substituted pyridinyl, unsubstituted benzothiophenyl, and —NH(C1-C4 alkyl);RG is —CH2CH2—C(═O)NH2;RY is —NH(C1-C4 alkyl);RZ is absent or hydrogen;or RY and RZ taken together with the atoms to which they are attached are joined together to form a ring selected from:
  • 48. The method of claim 45, wherein, wherein: Ra is hydrogen;Rb is —CH2CH2—Rc;Rc is selected from the group consisting of: unsubstituted phenyl, substituted phenyl, indolyl, and —C(═O)NH2; wherein the substituted phenyl is substituted with one substituent E, wherein E is —OH;RK is selected from the group consisting of: hydrogen, methyl, substituted pyridinyl, unsubstituted benzothiophenyl, and —NH (sec-butyl); wherein the substituted pyridinyl moiety is substituted with one substituent Q, wherein Q is selected from the group consisting of: C1-4 alkyl, halo, and cyano;RG is —CH2CH2—C(═O)NH2;RY is —NH (isopropyl) or —NH (sec-butyl);RZ is absent or hydrogen;or RY and RZ taken together with the atoms to which they are attached are joined together to form a ring selected from:
  • 49. The method of claim 45, wherein the compound of Formula (I) has the structure of Formula (I-A):
  • 50.-52. (canceled)
  • 53. The method of claim 45, wherein the compound of Formula (I) has the structure of Formula (I-B):
  • 54.-56. (canceled)
  • 57. The method of claim 45, wherein the compound of Formula (I) has the structure of Formula (I-C):
  • 58.-61. (canceled)
  • 62. The method of claim 45, wherein the compound of Formula (I) has the structure of Formula (I-D):
  • 63.-66. (canceled)
  • 67. The method of claim 65, wherein the compound is selected from the group consisting of, or a pharmaceutically acceptable salt of: N-(2-(1H-indol-3-yl)ethyl)-7-isopropyl-2-(5-methylpyridin-3-yl)thieno[3,2-d]pyrimidin-4-amine;5-(4-((2-(1H-indol-3-yl)ethyl)amino)-7-isopropylthieno[3,2-d]pyrimidin-2-yl)nicotinonitrile;N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-amine;4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropylthieno[3,2-d]pyrimidin-4-yl)amino)ethyl)phenol;N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)furo[3,2-d]pyrimidin-4-amine;N-(2-(1H-indol-3-yl)ethyl)-2-(5-methylpyridin-3-yl)furo[3,2-d]pyrimidin-4-amine;5-(4-((2-(1H-indol-3-yl)ethyl)amino)furo[3,2-d]pyrimidin-2-yl)nicotinonitrile;3-((2-(benzo[b]thiophen-3-yl)-9-isopropyl-9H-purin-6-yl)oxy)propanamide;3-(2-(benzo[b]thiophen-3-yl)-9-isopropyl-6-oxo-6,9-dihydro-1H-purin-1-yl)propanamide;2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile;N-(2-(1H-indol-3-yl)ethyl)-2-methyl-6-phenylthieno[2,3-d]pyrimidin-4-amine;N-(2-(1H-indol-3-yl)ethyl)-6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-amine;4-(2-((2-(benzo[b]thiophen-3-yl)-8-(dimethylamino)pyrimido[5,4-d]pyrimidin-4-yl)amino)ethyl)phenol;N-(2-(1H-indol-3-yl)ethyl)-2-(5-fluoropyridin-3-yl)quinazolin-4-amine;5-(4-((2-(1H-indol-3-yl)ethyl)amino)quinazolin-2-yl)nicotinonitrile;N4-(2-(1H-indol-3-yl)ethyl)-N2-(sec-butyl)quinazoline-2,4-diamine;N-(2-(1H-indol-3-yl)ethyl)-6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-amine;4-(2-((6-(benzo[b]thiophen-3-yl)-3-isopropylimidazo[1,5-a]pyrazin-8-yl)amino)ethyl)phenol;5-(2-((2-(1H-indol-3-yl)ethyl)amino)-6-(sec-butylamino)pyrimidin-4-yl)nicotinonitrile;4-(2-((2-(benzo[b]thiophen-3-yl)-6-(isopropylamino)pyrimidin-4-yl)amino)ethyl)phenol;4-(2-((2-(benzo[b]thiophen-3-yl)-7-isopropyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)phenol; and2-(benzo[b]thiophen-3-yl)-4-((4-hydroxyphenethyl)amino)-7-isopropyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one.
  • 68.-69. (canceled)
  • 70. The method of claim 1, wherein said first medium comprises each of Flt-3L, SCF, IL-6, IL-7, G-CSF, and GM-CSF.
  • 71. A population of natural killer cells produced by the method of claim 1.
  • 72. (canceled)
  • 73. A method of suppressing the proliferation of tumor cells comprising contacting the tumor cells with a plurality of natural killer cells and/or ILC3 cells, wherein the natural killer cells are produced by the method of claim 1.
  • 74. (canceled)
  • 75. The method of claim 73, wherein said contacting takes place in vivo.
  • 76.-84. (canceled)
  • 85. The method of claim 1, wherein said natural killer cells have been cryopreserved prior to said contacting or said administering.
  • 86.-95. (canceled)
PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/063876 11/29/2019 WO
Provisional Applications (1)
Number Date Country
62774114 Nov 2018 US