Not Applicable.
The present invention relates to wind turbines and structural towers and, more particularly, to equipment and methods used in assembling high elevation structural towers for wind turbines and for mounting wind turbines and blades upon high elevation structural towers.
Wind turbines are an increasingly popular source of energy in the United States and Europe and in many other countries around the globe. In order to realize scale efficiencies in capturing energy from the wind, developers are erecting wind turbine farms having increasing numbers of wind turbines with larger turbines positioned at greater heights.
Towers of this size under go large force loads and may experience these loads in cyclical patterns, which can cause damage with in the structure members. These cycles may become resonating in nature and cause premature wear in the structure and may further cause failure. A rigid structure would not have cyclical patterns develop as readily as a non-rigid structure. However a perfectly rigid structure is more theoretical then real, yet the goal still remains to come as close the ideal as possible.
Dampening may also be used to interrupt the destructive force cycles. In damping applications where relatively little displacement occurs in order for the forces to be transferred into the damper it is necessary to lock intervening movement locations as much as possible so that the damper is working on the intended force. If the damper is acting on unintentional movement, say joint movement for example, rather then structural movement the damper will transfer the force rather then dampen it. Thus it is critical to lock any connection within a structure in order to properly dampen the structure.
Further details of the components making up such structural towers for wind turbine applications are presented in commonly-owned and pending U.S. patent application Ser. No. 11/433,147, entitled “STRUCTURAL TOWER,” commonly-owned and pending U.S. Provisional Patent Application Ser. No. 60/899,492, filed Feb. 5, 2007, entitled “WIND TURBINE SYSTEMS WITH DAMPING MEMBERS,” commonly-owned and pending U.S. Provisional Patent Application Ser. No. 60/848,725, filed Oct. 2, 2006, entitled “LIFTING SYSTEM FOR WIND TURBINE AND STRUCTURAL TOWER,” commonly-owned and pending U.S. Provisional Patent Application Ser. No. 60/848,726, filed Oct. 2, 2006, entitled “CLADDING SYSTEM FOR A WIND TURBINE STRUCTURAL TOWER,” commonly-owned and pending U.S. patent application Ser. No. 11/649,033, filed Jan. 3, 2007, entitled “LIFTING SYSTEM AND APPARATUS FOR CONSTRUCTING WIND TURBINE TOWERS,” commonly-owned and pending U.S. Provisional Patent Application Ser. No. 60/848,857, filed Oct. 2, 2006, entitled “SYSTEM AND APPARATUS FOR CONSTRUCTING AND ENCLOSING WIND TURBINE TOWERS,” commonly-owned and pending U.S. Provisional Patent Application Ser. No. 60/899,470, filed Feb. 5, 2007, entitled “WIND TURBINE SYSTEMS WITH WIND TURBINE TOWER DAMPING MEMBERS,” commonly-owned and pending U.S. patent application Ser. No. ______, filed Oct. 2, 2007, entitled “SYSTEM AND APPARATUS FOR CONSTRUCTING AND ENCLOSING WIND TURBINE TOWERS,” commonly-owned and pending U.S. patent application Ser. No. ______, filed Oct. 2, 2007, entitled “DRIVE PIN SYSTEM FOR A WIND TURBINE STRUCTURAL TOWER,” all of the disclosures of which are now incorporated herein in their entireties by this reference. The publications and other reference materials referred to herein to describe the background of the disclosure, and to provide additional detail regarding its practice, are hereby incorporated by reference herein in their entireties, with the following exception: In the event that any portion of said reference materials is inconsistent with this application, this application supercedes said reference materials. The reference materials discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as a suggestion or admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure, or to distinguish the present disclosure from the subject matter disclosed in the reference materials.
Additionally, as stated above these structures cost hundreds of thousands of dollars to construct in materials and construction costs. It is desirable to have the ability to perform maintenance on these structures to keep the working life span as long as possible. Metal bonding techniques have become popular for joining and can provide adequately rigid connections, however they tend to be less serviceable then mechanically joined connections. Where maintenance is preferable to rebuilding a bonded joint either made with an adhesive or welding, hinders maintenance and often requires replacement. A standard industry practice is to pin the damper end to the structure being damped, or where rigidity is desired. These standard pin joints still allow displacement enough to defeat effective dampening. A joint is needed to non-permanently connect the damper to the item or structure being damped with zero or near zero loss of the displacement. In cases where there is large displacement, this pinning approach is sufficient because the relatively small displacement loss-not transferred to the damper, due to tolerance slop in the pin joint—does not adversely influence the efficiency or operation of the damper. In cases where there is relatively small displacement, the amount of lost motion due to the slop, or free movement, of the pin in the connection of the damper to the structure can reduce the efficiency that the damper to the point of the damper is not effective. The expanding pin design allows for a damper to be connected to the structure in a non-permanent fashion while at the same time eliminating any free movement of the pin in the connection joint. This allows for all motion of the structure to be transferred through the joint and into the damper. Both for structural rigidity and any desired dampening applications a new connection joint is need.
It is possible that there are other applications where zero or near zero loss of displacement is needed which do not include a damper as one of the elements being connected to the structure, but possibly just two different members of the structure needing to be joined together. The expanding pin can be used in these applications also.
It is thus advantageous to be able to assemble high-elevation structural towers, to mount heavy wind turbines on the top of such towers without relying on relatively large and prohibitively expensive crane equipment, and hold those structures rigid for longevity and maintenance.
Generally, the present invention relates to an apparatus and methods used to assemble or construct high elevation structural towers supporting heavy loads, as in structural towers supporting wind turbines. In further detail, the present invention relates to an apparatus and method for providing a zero or near zero loss of displacement in a structural tower. In yet further detail, the present invention relates to an apparatus, system and method for a joining pin for assembling and constructing a high elevation structural. The present invention relates in particular to wind turbine applications, where the wind turbine is elevated to heights approaching eighty to one hundred meters or higher and where rotor diameters approach seventy meters or greater. Details of exemplary embodiments of the present invention are set forth below.
On a second side of the tapered pin 31 that protrudes through the second side of the joint, a second wedge washer 32b is inserted over the tapered pin 31. Following the wedge washer a clamping washer 34 may be placed over the drive pin 31. Clamping washer 34 will be discussed later in greater detail below. Following the clamping washer 34 a nut 36c may be threaded onto threads on the second end of the drive pin 31 to hold the clamping washer 34, and in turn the wedge washer 32b in position. The nut 36c is sized to impact the clamp 34 around the center hole 340 (
Referring now to
The body 312 also may comprise tapered surfaces 316 and 317. It is the tapered surfaces 316 and 317 that provide the off axis expansion forces of the tapered pin 31 within the assembly. The tapered surface 316 tapers from larger toward the middle of the pin to smaller toward the protruding stud 314. As can be seen in
The wedge washer 32a is sized such that it fits within the connection holes of the male flange 29 and the female flanges 27. Referring to
On a second side of the tapered pin 31 that protrudes through the second side of the forming joint, a second wedge washer 32b is inserted. Following the wedge washer a clamping washer 34 may be placed over the drive pin 31. Referring to
Referring
Next the zero displacement fit is created between the wedge washer 32b and flange 27b. Because of possible thickness tolerances on the three tabs, and also length tolerances in the fabrication of the expanding pin and specifically tapered pin 31, it may not be possible to ensure that both flange 29 and flange 27b independently achieve a zero displacement fit at the same time through the clamping of clamping washer 34. The purpose of the studs on the studded washer 35 and the matching holes on item 34 now become apparent. Studded washer 35 is slid over tapered pin's 31 protruding threaded end. Aligning the studs on studded washer 35 so that they penetrate the holes on the clamping washer 34 allows studded washer 35 to be pushed toward flange 27b till the end surfaces of the studs on studded washer 35 press against the outer surface of wedge washer 32. A hex nut 36 is then used to press studded washer 35 forward which in turn presses wedge washer 32 further into the hole in flange 27b wedging it between the inner surface of the hole in flange 27b and the outer surface of the long tapered surface of tapered pin 31. This action creates the zero displacement fit between flange 27b and the expanding pin 31. A standard style flat washer 33b can be used between studded washer 35 and the hex nut 36 to help spread the load applied by the nut 36. The studs on studded washer 35 are sized long enough that they allow wedge washer 32 to travel to the zero displacement wedged position while preventing studded washer 35 from being stopped by the hex nut 36 securing clamping washer 34 in the desired position.
The zero displacement fit between flange 27a and the expanding pin 31 is created by inserting an wedge washer 32 into the hole in flange 27a and then applying a standard style flat washer 33a, sized just smaller than the flange 27a hole so that interference does not occur, and a hex nut 36a over the protruding expanding pin 31 threaded shaft and pressing the wedge washer 32 into the flange 27a hole till the zero displacement fit is created by wedging item wedge washer 32 between the inner surface of the hole in flange 27a and the outer surface of the shorter tapered surface of expanding pin 31.
Referring to
The tapered washer can be made out of different materials depending on the desired expansion and application. For example, if the joint requires all of the possible space with in the joint be filled, then the tapered washers can be fabricated from material, which is softer and flow as force is applied. If shear design capability is critical in the joint then the tapered washer can be fabricated from a material that will resist shear.
The tapered washer may further comprise knurling or and interrupted surface on the tapered slope 632. This interrupted surface allows for increased penetration of the tapered washer 630 into the other members of the assembly.
Additionally, the fingers 634 on the tapered washer 630 may be long enough, and the bolt and washers can be sized such that once fully engaged in the joint the fingers 634 extend beyond the outer surface of the opposing tapered washer 630. With the fingers engaged in the reverse slope areas of the tapered penetrating washer 630 the fingers can be deflected outwardly away from the center axis of the bolt 610. This creates both a locking interface between the tapered washer 630 and the structural members of the join (not shown), and also provides a constant and continual force locking against the bolt 610 and nut 620, further preventing the nut 620 from being able to walk off the bolt 610.
Certain embodiments and details have been included herein and in the attached invention disclosure for purposes of illustrating the invention. Nevertheless, it will be apparent to those skilled in the art that various changes in the methods and apparatuses disclosed herein may be made without departing form the scope of the invention, which is defined in the appended claims.
In the foregoing Detailed Description, various features of the present disclosure are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present disclosure and the appended claims are intended to cover such modifications and arrangements. Thus, while the present disclosure has been shown in the drawings and described above with particularity and detail, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.
This present application claims priority to U.S. Provisional Patent Application Ser. No. 60/848,675, filed Oct. 2, 2006, entitled “EXPANSION PIN SYSTEM FOR A WIND TURBINE STRUCTURAL TOWER.”
Number | Date | Country | |
---|---|---|---|
60848726 | Oct 2006 | US | |
60932731 | Jun 2007 | US |