The present application claims priority of DE 10 2014 018 366.1 filed Dec. 10, 2014, which is incorporated herein by reference.
The invention concerns an expansion tank for the coolant of a fluid-cooled machine, in particular an internal combustion engine of a motor vehicle.
It is known in practice to produce coolant expansion tanks of the type cited initially which serve to receive the expanding coolant.
In operation, due to the heating and resulting expansion of the coolant, a pre-pressure is produced in the air volume 2 of the expansion tank 10. The pressure in the cooling system is balanced via the valve 5 in the expansion tank closing cover. An increase in coolant temperature leads to a pressure rise in the cooling system since the coolant expands. As a result, the pressure in the expansion tank 10 rises, whereupon the over-pressure valve 5 in the cover opens and allows air and possibly also coolant to escape. When the coolant temperature normalises, a vacuum is created in the cooling system. Coolant is drawn back from the tank 10. Thus a vacuum also occurs in the tank 10. Then the vacuum compensation valve in the cover of the container 10 opens. Air flows into the container 10 until a pressure balance has been achieved. Reference numeral 3 designates the outer skin or outer wall of the expansion tank 30.
Further expansion tanks known from the prior art are disclosed for example in DE 10 2008 019 227 B4, DE 41 07 183 C1, EP 0215 369 B1, DE 42 33 038 C1 or EP 0 441 275 A1.
When filled with coolant 1 to the maximum level, conventional expansion tanks 10 have a fixedly defined air volume 2. If internal combustion engines with different coolant circuits are to be equipped with the same expansion tank 10, this leads to the following disadvantages: in cooling circuits with low heat input, it is not possible to achieve an adequate pre-pressure. In cooling circuits with high heat input however, the pre-pressure is dissipated via the valve 5 or coolant is expelled. These disadvantages can be avoided by providing different expansion tanks which are adapted to the particular cooling circuits in which they are used. However this increases the number of variants and hence the development and component cost.
It is therefore an object of the invention to provide an improved expansion tank with which the disadvantages of conventional expansion tanks can be avoided. The object of the invention is in particular to provide an expansion tank which can be better adapted to the requirements of different cooling circuits. The invention is furthermore based on the object of a cost-saving design of such an expansion tank.
An expansion tank according to an embodiment of the invention for the coolant of a fluid-cooled machine has at least one inlet connection arranged in a lower region of the expansion tank and an outlet connection for connecting the expansion tank to a cooling circuit of the internal combustion engine. The expansion tank furthermore comprises a filler nozzle which is arranged in an upper region of the expansion tank and has a lower edge spaced from the cover of the expansion tank to limit the fill level, and at least one valve sealing the filler nozzle for filling the expansion tank and protecting the cooling system from over-pressure. The fluid-cooled machine may in particular be a fluid-cooled internal combustion engine of a vehicle. A preferred application concerns a machine-operated water-borne vehicle or truck.
According to general aspects of the invention, said objects are achieved in that an air volume in the expansion tank, which remains on maximum filling of the expansion tank with coolant, can be adjusted, i.e., set variably.
This offers the advantage that the expansion tank can be adapted to the different requirements of different cooling circuits merely by altering the volume available for the air in the expansion tank.
In cooling circuits with low heat input, a small air volume may be set so that a sufficiently high pre-pressure can be built up. In cooling circuits with high heat input however, a large air volume may be set so that the pre-pressure built up is not too high and no coolant is expelled.
The expansion tank with variable air volume can thus be used as a uniform component in cooling circuits which differ in their composition, in particular their coolant heat input. A particular advantage of the invention is therefore the increased flexibility in setting the pre-pressure in the cooling circuit, and the cost-saving from standardization or variant reduction since one component can be adapted for use in different cooling circuits or cooling systems.
According to a preferred embodiment of the invention, to adjust the remaining air volume in the expansion tank, at least one air chamber—also referred to below as an air pocket—may be provided, comprising an air inlet opening which lies in the interior of the expansion tank above the lower edge of the filler nozzle and can be opened and closed with an assigned closing device. Due to the arrangement of the outlet opening above the lower edge of the filler nozzle, when the expansion tank is filled with coolant, the same maximum fill level is always ensured.
In other words, to form a variable volume for the air or in general a gas in the expansion tank, one or more air pockets may be provided which can each be brought into fluidic connection with the basic gas volume of the expansion tank by means of the assigned closing device (closing element), in order to increase the gas volume in the expansion tank. In the closed position of the closing element, the air pocket is closed so that the gas volume available is not increased.
The at least one air chamber may be arranged on the inside in the upper region of the expansion tank. According to a further variant, the at least one air chamber may also be arranged outside the expansion tank and be connected to the upper region of the expansion tank via a hose or pipe connection. These variants offer the advantage of modular construction.
To increase the flexibility in setting the pre-pressure in cooling circuits, the expansion tank may have at least two air chambers. The number and volume of the air chambers may be established as a function of a desired stages of air volume. One embodiment according to the invention provides that the inner volume of the air chambers has different sizes. The inner volume of the air chambers may however also have the same size.
The closing device assigned to an air chamber may be formed as a screw plug, a closing lid or a flap. This allows an economic embodiment for manual adjustment of the volume available for the air in the expansion tank.
According to a further embodiment, the closing device may be configured as a non-return valve, a spring-loaded valve or as a pneumatically or electrically controlled valve. This offers the advantage that the opening and closing of the air chambers may be pressure-dependent and/or automated, in particular during operation of a cooling circuit.
To prevent the penetration of coolant into the at least one air chamber, it is advantageous to arrange the air inlet opening of the at least one air chamber such that in operation of the expansion tank, no coolant can enter the at least one air chamber when this is opened. According to a further variant, a separate duct guide and/or diaphragm is provided.
A further aspect of the invention concerns a truck or a ship with at least one expansion tank as described above.
The preferred embodiments and features of the invention described above may be combined arbitrarily. Further details and advantages of the invention are described below with reference to the enclosed drawings. In the drawings:
The same or functionally equivalent elements carry the same reference numerals in all figures. To avoid repetition, with reference to the function of elements 1 to 5 and 9 of
The special feature of the expansion tanks 20 and 30 shown in
The embodiment shown in
To improve the dissipation of air bubbles, a baffle element is provided in the lower inner region of the expansion tank 30, which is preferably formed as a partition 13. Such a partition has the function of changing the flow direction of the fluid and extending the flow path of the coolant in the expansion tank in order to dissipate as much air as possible.
As already explained above, two air chambers 6, 6′ are provided below the expansion tank cover 14 in the upper region of the expansion tank 30 on the side opposite the valve 4, and the air inlet opening 8, 8′ of these chambers 6, 6′ can be closed or opened with a screw plug 7, 7′. The screw head here protrudes from the top of the expansion tank 30 and can be actuated from the outside. By adjusting the screw plugs 7, 7′, the air chambers 6, 6′ can be opened in order to vary the volume available inside the expansion tank for the air in the expansion tank and adapt this optimally to the respective coolant circuit.
As an example, a procedure is described below for adapting the expansion tank to a cooling circuit by adjusting the air volume available, e.g., during installation of the expansion tank 6, 6′ in the vehicle. Here first the air volume required is determined depending on the coolant expansion, the pre-pressure required and the opening pressure of the valve 5. The air volume required is set in the expansion tank by the base volume, i.e., all air pockets 6, 6′ are closed, or where applicable by the base volume and the specified number of required air pockets 6, 6′ if a larger air volume has been determined.
The required number of air pockets 6, 6′ is then opened, i.e., fluidically connected to the base volume, by means of the screw plug 7, 7′. The cooling circuit is then filled with coolant to the lower edge 9 of the filler nozzle 4 for the first fill. The engine is then operated until the cooling circuit is fully purged in order to remove any remaining air bubbles from the cooling circuit. Then when the engine is cold, coolant is added again up to the lower edge 9 of the filler nozzle 4. Then the pre-pressure is measured via the connection 17 while the engine is in real operation, in order to test the function of the expansion tank 30. If too high a pre-pressure is set or if the valve 5 blows off too early, a further air pocket 6, 6′ can be opened. If the pre-pressure is too low, an air pocket 6, 6′ may be closed. This offers the advantage that the expansion tank 30 can be adapted to the particular cooling circuit merely by changing the volume available for the air in the expansion tank.
Although the invention has been described with reference to specific exemplary embodiments, it is evident to the person skilled in the art that various changes may be made and equivalents used as replacement, without leaving the scope of the invention. In addition, many modifications can be made without leaving the associated area. Consequently, the invention is not limited to the exemplary embodiments disclosed, but comprises all exemplary embodiments which fall in the region of the attached claims. In particular, the invention also claims protection for the subject and features of the subclaims, irrespective of the claims to which reference is made.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 018 366 | Dec 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1606167 | King | Nov 1926 | A |
3076479 | Kai | Feb 1963 | A |
3521702 | Holmes | Jul 1970 | A |
4738228 | Jenz | Apr 1988 | A |
5163506 | Attinger | Nov 1992 | A |
5357909 | Attinger | Oct 1994 | A |
6247442 | Bedard | Jun 2001 | B1 |
20060118067 | Hewkin | Jun 2006 | A1 |
20110048345 | Popadiuc et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
41 07 183 | Aug 1992 | DE |
4107183 | Aug 1992 | DE |
42 33 038 | Nov 1993 | DE |
4233038 | Nov 1993 | DE |
4219892 | Dec 1993 | DE |
10 2008 019 227 | Oct 2009 | DE |
102010009757 | Aug 2011 | DE |
0215 369 | Mar 1987 | EP |
0160243 | Jul 1988 | EP |
0 441 275 | Aug 1991 | EP |
0441275 | Aug 1991 | EP |
2492467 | Aug 2012 | EP |
2884970 | Oct 2006 | FR |
2217809 | Nov 2003 | RU |
106660 | Jul 2011 | RU |
Entry |
---|
Russian Search Report, dated Apr. 11, 2019, 2 Pages. |
Chinese Office Action, dated Feb. 19, 2019, 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20160169084 A1 | Jun 2016 | US |