This invention relates to a thermal expansion valve for a refrigeration system comprising a working element with a diaphragm chamber. The expansion valve has a closure member which is movable by the force of the working element.
A thermal expansion valve usually comprises a working element with a diaphragm clamped between a cover plate and a cover ring. The space above the diaphragm is connected by the way of a capillary tube to a pressure sensor or a pressure-generating temperature sensor, the pressure of which loads the diaphragm from above. The refrigerant pressure prevailing in the valve and a spring bearing against a plate acts on the diaphragm in the opposite direction.
In commercially available thermal expansion valves the diaphragm element is a single diaphragm made of a single layer of metal normally steel. The single diaphragm is exposed to stress and deformation from the forces acting on the diaphragm.
The stress and deformation with time will wear out the diaphragm reducing the life time of the valve.
The object of this invention is to make a diaphragm element for a thermal expansion valve for a refrigeration system that can stand up to the stress and deformation and improve the lifetime of the diaphragm element.
The problem is solved according to the invention by replacing the normal single diaphragm made of a single layer of metal with a multiple-diaphragm comprising two or more individual diaphragms.
A problem with the multiple-diaphragm is cold welding and wearing between the individual diaphragms. This problem can be solved by adding an antifriction layer between the individual diaphragms. The antifriction layer can be a small amount of grease or oil. Another way to solve this problem is to coat the diaphragms by a layer of carbon, rubber, plastic or a layer of a metal like cobber or tin.
The multiple-diaphragm comprises two or more individual diaphragms, the individual diaphragms in a multiple-diaphragm are thinner than a traditional single diaphragm and therefore the multiple-diaphragm have higher flexibility and are less susceptible to damage due to stress and deformations and therefore the multiple-diaphragm has a longer life time.
This invention is a thermal expansion valve for a refrigeration system comprising a working element comprising a diaphragm chamber, a base ring and a cover plate wherein the diaphragm chamber comprises a multiple-diaphragm placed between the base ring and the cover plate, the multiple-diaphragm comprises two or more individual diaphragms.
The multiple-diaphragm is placed between the base ring and the cover plate, the multiple-diaphragm is made of two, three or more individual diaphragms. The advantage is that the individual diaphragms are thinner than a traditional single diaphragm and therefore more flexible and less affected by stress, strains and deformations and therefore it has a longer life time. The individual diaphragms support each other and therefore the diaphragms element has the same stiffness as a traditional single diaphragm.
Each individual diaphragm is a complete diaphragm and can be used as a single diaphragm. Therefore if one individual diaphragm is broken, for instance by loose metal particles left over from the manufacturing process penetrating the individual diaphragm, then the other individual diaphragms are still in place and the valve is still working.
The individual diaphragms are separated by an antifriction layer. This is because without an antifriction layer the individual steel diaphragms can glide against each other and the friction causes tear and cold welding destroying the individual diaphragms. To avoid this, a layer of antifriction material is placed between the individual diaphragms.
The antifriction layer can be grease or oil or another suitable fluid. This solves the problem avoiding friction between the individual diaphragms.
The antifriction layer can also be rubber or plastic. This could be a layer of double adhesive tape. This is easier in the assembly process to place a slice of rubber or tape between the individual diaphragms than to use grease or oil.
Instead of placing a layer of grease, oil or some other material between the individual diaphragms, the diaphragms can be coated by a suitable material. This makes the assembly process even easier since no extra material is added during the assembly process.
The coating can be made of carbon, rubber or a plastic material. For instance diamond like carbon or Teflon can be used. The coating can also be made of cobber, tin, zinc, silver, nickel or another suitable metal or alloy. Besides protecting against tear and cold welding coating also makes the diaphragm harder and less likely to be damaged in case there should be loose metal particles in the valve.
The invention is described in further detail hereinafter with reference to a preferred embodiment illustrated in the drawings, in which
In the embodiment described the multiple-diaphragm comprises two individual diaphragms. But according to this invention the multiple-diagram can also comprise three or more diaphragms.
The valve 1 shown in
The double diaphragm 15 is therefore pressurised from above by the pressure owing to evaporation of the fluid in the sensor 14 and is pressured from below by the pressure of the refrigerant, which is detected at the nozzle 5, and by a spring, not illustrated.
A diaphragm is typically made of stainless steel. The individual diaphragms in the multiple-diaphragm typically are 0.08-0.20 mm thick. The multiple-diaphragm with two 0.08 mm thick individual diaphragms has the same stiffness as a 0.1 mm thick single diaphragm.
In the above embodiment two identical individual diaphragms is used. However it is also possible to use two or more diaphragms that are slightly different and fit better together. This could be done by forming the individual diaphragms at the same time using the same tool, so the waves in the individual diaphragms fit exactly. This will reduce the forces acting between the individual diaphragms and reduce the risk of tear.
Number | Date | Country | Kind |
---|---|---|---|
PA 2007 01606 | Nov 2007 | DK | national |
This application is entitled to the benefit of and incorporates by reference essential subject matter disclosed in International Patent Application No. PCT/DK2008/000402 filed on Nov. 12, 2008 and Danish Patent Application No. PA 2007 01606 filed Nov. 13, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2008/000402 | 11/12/2008 | WO | 00 | 9/10/2010 |