A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates, in general, to a device for the extraction of oil from a seed, and more particularly to expeller press technology.
The basics of extracting oil from seeds is quite simple. Compress the seeds at a high pressure until they give up their oil, then filter the seeds from the extracted oil. Generally, the seeds are fed from a hopper via a rotating auger feed, into a fixed volume extraction chamber where the seeds are compressed under abrasive rotation between the contact surfaces of the extraction chamber. This type of compression leads to crushing, grinding and tearing of the seed, and the generation of high temperatures which are passed on to the seed oil.
There are drawbacks with the conventional way seed oils are processed. The crushing tearing and grinding of the seed leaves residual seed particles in the seed oil, which must then be filtered. The high pressure on the seed raises the temperature of the oil extracted such that oxidation and catalytic conversion of the oil occurs (both highly undesirable characteristics of seed oil).
Henceforth, an improved seed oil expeller press that can be precisely tuned to ensure the maximum amount of oil expelled from the seed under cold press conditions without crushing or physical grinding of the seed so that filtration is not necessary, would fulfill a long felt need in the seed oil extraction industry. This new invention utilizes and combines known and new technologies in a unique and novel configuration to overcome the aforementioned problems and accomplish this.
In accordance with various embodiments, a fully tunable apparatus for extracting the maximum amount of cold press seed oil (below 130 degrees F.) within specific pressure and temperature limits are provided.
In one aspect, a seed oil expeller press with the capability of extracting oil through a new design that does not crush or grind the seed so as to eliminate the need for filtration is provided.
In another aspect, a seed oil expeller press capable of preheating the seeds, adjusting the control pressure and extraction oil temperature by manipulation of the expeller speed, the head volume and the size of the pressed seed exit orifice is provided.
In yet another aspect, a seed oil expeller press capable of eliminating seed rotation within the head volume so as to eliminate crushing, grinding or tearing of the seed by a symmetrical knifed press head is provided.
In yet another aspect, a seed oil expeller press that regulates seed temperature, seed feed rate, seed pressure, seed rotation and extracted seed oil temperature to compensate for the seed size, seed hardness and seed oil content, so as to allow for seed compression (“pressing”) without crushing or tearing to accomplish seed oil extraction at a low (cold press) temperature.
Various modifications and additions can be made to the embodiments discussed without departing from the scope of the invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combination of features and embodiments that do not include all of the above described features.
A further understanding of the nature and advantages of particular embodiments may be realized by reference to the remaining portions of the specification and the drawings, in which like reference numerals are used to refer to similar components.
While various aspects and features of certain embodiments have been summarized above, the following detailed description illustrates at least on exemplary embodiment in further detail to enable one skilled in the art to practice such an embodiment. The described example is provided for illustrative purposes and is not intended to limit the scope of the invention.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the described embodiment. It will be apparent to one skilled in the art, however, that other embodiments of the present invention may be practiced without some of these specific details. While various features are ascribed to different embodiments, it should be appreciated that the features described with respect to one embodiment may be incorporated with other embodiments as well. By the same token, however, no single feature or features of any described embodiment should be considered essential to every embodiment of the invention, as other embodiments of the invention may omit such features.
In this description, the directional prepositions of up, upwardly, down, downwardly, front, back, top, upper, bottom, lower, left, right and other such terms refer to the device as it is oriented and appears in the drawings and are used for convenience only; they are not intended to be limiting or to imply that the device has to be used or positioned in any particular orientation.
Unless otherwise indicated, all numbers herein used to express quantities, dimensions, and so forth, should be understood as being modified in all instances by the term “about.” In this application, the use of the singular includes the plural unless specifically stated otherwise, and use of the terms “and” and “or” means “and/or” unless otherwise indicated. Moreover, the use of the term “including,” as well as other forms, such as “includes” and “included,” should be considered non-exclusive. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one unit, unless specifically stated otherwise.
The terms “distal” and “proximal” as used herein in reference to the various components or component parts of the device, relates to the designation of the driven end of the seed oil expeller press as the distal end and the seed ejection end of the seed oil expeller press as the proximal end. The end or face of the various components may be termed “distal” or “proximal” with respect to their proximity to the distal or proximal end of the device.
The term “extending normally” as used herein, refers to a geometric relationship between two joined parts such that there is an approximate 90-degree angle between these parts.
The present invention is a seed oil expeller press (“press”) for the extraction of oil from seeds through a pressing force that does not crush the seeds, physically grind the seeds or raise the temperature of the extracted oil over 130 degrees F., and leaves the seed bodies intact after compression for oil extraction.
It is to be noted the seed oil expeller press is discussed extracting oils from seeds, however the extraction process and press disclosed herein may be used to express desirable natural oils residing within plant material. “Oil” as used in this specification is not limited to the chemical definition of non-polar liquid, but includes here any liquid, emulsion, plant sap, grease, butter, resin, tar, juice, and any substantially viscous matter which resides in material fed into a press and extracted by mechanical distortion of said matter.
The seed oil expeller press includes a hopper or feedstock collection means, a pressing mechanism, and separate exits for the desirable oils and for the solid matter depleted of its desirable products. Typical plant matter fed into the machine for processing includes but is not limited to: seeds, fruits, flowers or buds, roots or tubers, pods, leaves, or stalks. Often such matter may be chopped or shaped by other machines in preparation for processing by the press.
The seed oil expeller press 2 disclosed herein is driven preferably by a 220-volt, single phase, variable frequency electric motor (running at 40-50 Hz) mechanically coupled to a gear reducer, preferably one with a 1439/39 reduction ratio. The press is operated at very low speed, in the range of 7 to 14 rpm, depending on the type of seed. These driver components are well known in the art and do not comprise any of the claimed elements of the seed oil expeller press.
The present invention is a slow speed seed oil expeller press having a novel design that maximizes the compressive forces put on the seed and eliminates the shear forces put on the seed by eliminating the rotation of the seeds once introduced into the head volume of the press. In this way there is no abrading of the seeds against the walls of the press cavity. The compressed seeds exit the press in a hardened waste curl, with up to 95% of their original oil content removed, but with the seeds intact rather than torn open or ground into particles. The press is tunable, in that the pressure of compression and temperature of extracted seed oil may be adjusted by altering the seed feed rate (via the speed of motor and the size of the thorn orifice); the pressure cavity volume (via the gap between the expeller and the head surfaces); the amount of seed preheat (via the temperature applied to the head). The resultant extracted seed oil does not need to be filtered and does not undergo oxidation and catalytic conversion, common with the extracted seed oils produced by conventional seed oil expeller presses.
Looking at
The main housing 4 can best be seen with reference to
Frictionally fit into the distal end of the interior of the main housing, there is a replaceable thrust bearing 12. (
Frictionally fit into the distal end of the interior cavity of the main housing 4 is there is a replaceable thrust bearing 38. (
The feedstock means is made of three parts (hopper 6
A transfer housing 18 lies between the main housing 4 and the head collar 20. In the preferred embodiment the distal and proximal ends of the transfer housing 18 have external threads, which engage matingly conformed internal threads on the proximal end of the main housing 4 and internal threads on the distal end of the head collar 20. (Threads are omitted for visual clarity on all the FIGS. except
The head collar 20 connects the proximal end of the transfer housing 18 to the distal end of the press head 22. The head collar is a circular cylinder having a distal set of internal threads matingly conformed to the external threads formed on the proximal end of the transfer housing 18 as well as a proximal set of internal threads matingly engageable with the external threads formed on the outer face of the distal end of the pressure head 22.
As
Looking at
It is noteworthy that in the preferred embodiment, single helical feed groove (straight thread) 82 has a concave root formed between the bottom 89 of the opposing flanks of the groove. There is a flank separation 99 defined as the distance between the tops of opposing flanks. The crests 85 of the groove have a crest width 101 of their top planar faces that is less than or equal to the flank separation 99. In alternate embodiments, this relationship need not hold true.
There is a circular cylindrical stopped bore 86 formed parallel to its linear axis that extends inward from the distal end of the expeller 16 and terminates in a cone. There is a tapered flange 88 formed at the distal end of the expeller 16. The stopped bore 86 has a second internal keyway 90 formed partially along the length of the side wall of the stopped bore 86 is sized for the frictional engagement of a second key (not shown for visual clarity) with the circular, cylindrical shaft 60 of the bearing support 14 to lock the rotation of the bearing support 14 to the expeller 16.
In component assembly, the transfer housing 18 is threadingly engaged with the main housing 4 and rotated to draw the two together so as to push the expeller 16 at its tapered flange 88 down into the main housing until the tapered flange 88 formed at the distal end of the expeller 16 contacts the proximal face of circular cylindrical disc 52 of the bearing support 14 and forces the bearing support 14 into contact with the proximal face 50 of thrust bearing 12 moving the entire assembly backwards until the distal face 48 of the thrust bearing contacts the circular thrust disk 36 extending normally inward at the distal end of the main housing 4. (Alternately the bearing support 14 and expeller 16 may be connected via a bolt passing through the socket 56 and engaging internal threads formed therein the expeller.) The transfer housing is continually threaded downward (toward the distal end of the press 2) until there is a sufficient compressive force exerted onto the thrust bearing 12, and the thrust bearing 12, the expeller 16, the transfer housing 18, the head collar 20 are drawn into operational tolerances and their centerlines are collinear with the linear axis of the press 2.
The tapered flange 88 at the distal end of the expeller 16 resides below and behind the bottom edge of the hopper support 10. In this way, the incoming seed fed from the hopper is directed into the single helical feed groove 82 with no place to amass or back up and cause a feed jam. Similarly, the distal end 68 of the transfer housing 18
is below and ahead of the inner side wall of the hopper support 10. This is best seen in
This knife faced configuration of the pressure head 22 is responsible for the squeezing of the seeds during compression rather than their tearing, ripping and grinding. The seeds get compressed in packets or groupings of seeds held together from rotational movement between the bars 98 in the trough 96 by the friction between the seed's outer surfaces and the sides of the trough 96. Preheating the seeds with the strap on heaters begins the release of the seed's oil such that the seeds have a sticky exterior surface, also helping them remain in groupings. Thus, the seeds compress and surrender their internal oil, but their shells remain intact. In conventional seed presses, there is no such configuration of the pressure head and the seeds rotate and abrade against each other, tearing apart, raising the oil temperature and adding particulate to the seed oil that must be filtered.
There is central through bore 100 passing through the press head 22 and residing centered along the linear axis of the press head. This bore 100 increases in diameter in two steps along its length so as to make three different diameter regions along the through bore 100. The first step 102, serves as a shoulder that the distal edge of the thorn housing 26 abuts, allowing the seeds a smooth transition from the smallest diameter distal region 140 of the press head 22 into the distal concave opening 106 of the thorn housing 26 with no exposed edges for seeds to tear or grind onto. The second step 104 increases the diameter of the bore to allow for the internal threads in the largest diameter proximal region 142 at the proximal end 105 of the press head 22 to engage the external threads of the thorn housing 26.
The press head 22 is adjustably affixed to the proximal end of the head collar 20 by a set of external threads about its outer side wall 92 (threads not illustrated for visual clarity) that engage the proximal set of internal threads formed at the proximal end of the head collar 22. Drawing these components together sets the size of the gap (head space) between the convex proximal end 84 of the expeller 16 and the convex knife edged face 94 of the pressure head 22. This is done by engaging a fingered tool into the set of identical, evenly radially spaced locking slots 155 or identical, evenly radially spaced locking orifices 157 formed on the proximal, planar face of the press head. There is a circular lock ring 24 (
The thorn housing 26 (
Into the proximal end of the thorn housing 26 is threadingly engaged a thorn 28. (
There are optional electric seed pre-heaters strapped around the head collar 30 so as to warm the incoming seeds softening the seed shell and inner content. As an unexpected result of running the press 2 at a slow speed, using a knife edge faced press head 22, and heating the seeds before compression, the seed oil is extracted with a lower overall oil temperature than not pre-heating the seeds. This is because the physical process of compressing the seeds does not gain temperature from the extra pressure that must be added to tear, rip, and grind the seeds to extract the oil.
Looking at
In operation, (with reference to
With respect to the tunability of the press 2, the amount of force exerted on the seeds in the head space determines the seed oil temperature and the percentage of total oil that is extracted from the seeds. This is adjusted by the depth the thorn 28 is inserted into the thorn housing 26 in relation to the speed of the seed feed (motor speed). These are varied by the amount of heat input to the seeds prior to compressing as well as the head volume (set by the distance between the expeller 16 and the press head 22).
Looking at
The unrivaled success of this press 2 is due to the synergistic effect of the adjustable thorn, the strap on preheaters, the variable speed motors, the polished expeller the knife faced head press, and the adjustable head volume. These parameters in combination allow for the adjustment of the temperature, pressure and volume of seeds processed.
While certain features and aspects have been described with respect to exemplary embodiments, one skilled in the art will recognize that numerous modifications are possible. Consequently, although at least one exemplary embodiment has been described above, it will be appreciated that the invention is intended to cover all modifications and equivalents within the scope of the following claims.
THIS APPLICATION IS A CONTINUATION IN PART OF U.S. patent application Ser. No. 15/869,952 FILED Jan. 12, 2018, WHICH IS INCORPORATED BY REFERENCE HEREIN IN ITS ENTIRETY.
Number | Name | Date | Kind |
---|---|---|---|
4097213 | McComb | Jun 1978 | A |
5188023 | Mansfield | Feb 1993 | A |
5596912 | Laurence | Jan 1997 | A |
5806413 | Trovinger | Sep 1998 | A |
20060196295 | Maeda | Sep 2006 | A1 |
20130284032 | Trovinger | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
19608379 | Sep 1997 | DE |
102006024017 | Nov 2007 | DE |
102006033507 | Jan 2008 | DE |
692628 | Nov 1930 | FR |
2030467 | Apr 1980 | GB |
2525421 | Oct 2015 | GB |
Number | Date | Country | |
---|---|---|---|
20200031077 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15869952 | Jan 2018 | US |
Child | 16565199 | US |