EXPERIENCE AND TRANSITIONING BETWEEN VIRTUAL REALITY AND AUGMENTED REALITY ENVIRONMENTS USING A VIRTUAL ASSISTANT

Information

  • Patent Application
  • 20230086621
  • Publication Number
    20230086621
  • Date Filed
    September 23, 2021
    3 years ago
  • Date Published
    March 23, 2023
    a year ago
Abstract
Aspects of the subject disclosure may include, for example, a method in which a processing system facilitates a user session that includes a plurality of alternate reality environments; selects for each environment a format for presentation of the content in accordance with characteristics of that environment; and presents, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment. The method also includes facilitating sharing the content by user equipment in different environments, and facilitating a transition of a user between environments, including capturing user content consumed or generated by the user during the user session and formatting the user content for access in the user's new environment. Other embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The subject disclosure relates to online virtual reality (VR) and augmented reality (AR) environments, and more particularly to a virtual system assistant (VA) that facilitates a user's experience in, and transition between, those environments.


BACKGROUND

A user navigating in VR, AR, mixed and physical environments may need assistance to transition smoothly and consistently between environments, and to carry information, knowledge and context from one environment to another. A user choosing multiple modes of study (i.e. acquiring knowledge in VR/AR/mixed/audio/physical environments) may have difficulty finding and remembering relevant information. Similarly, in a social situation, users who have suspended some activity may have difficulty returning to that activity with its previous context.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 is a block diagram illustrating an exemplary, non-limiting embodiment of a communications network in accordance with various aspects described herein.



FIG. 2A is a block diagram schematically illustrating a virtual system assistant (VA) functioning within the communication network of FIG. 1 and coordinating transitions between environments, in accordance with various aspects described herein.



FIG. 2B schematically illustrates a VA managing VR and AR user sessions and managing transitions between those sessions and to a physical environment, in accordance with embodiments of the disclosure.



FIG. 2C schematically illustrates a VA managing a user VR session in which the user wishes to stay in the VR environment, in accordance with embodiments of the disclosure.



FIG. 2D schematically illustrates a VA managing a user VR session in which the user acquires knowledge on a subject from multiple sources of information, in accordance with embodiments of the disclosure.



FIG. 2E schematically illustrates a VA managing a meeting of users, where the VA facilitates transitions between environments for one or more users who wish to extend the meeting, in accordance with embodiments of the disclosure.



FIG. 2F schematically illustrates a procedure in which a VA manages a user environment, in accordance with embodiments of the disclosure.



FIG. 2G schematically illustrates a procedure in which a VA facilitates a user's navigation of content and performs content tagging, in accordance with embodiments of the disclosure.



FIG. 2H schematically illustrates a procedure in which a VA facilitates an extension of time of a user session, in accordance with embodiments of the disclosure.



FIG. 2I schematically illustrates a procedure in which a VA facilitates a backup session in the event of a network failure or power loss, in accordance with embodiments of the disclosure.



FIG. 2J schematically illustrates a procedure in which a VA manages a user environment, in accordance with embodiments of the disclosure.



FIGS. 2K and 2L depict an illustrative embodiment of a system including a VA, in accordance with various aspects described herein.



FIG. 3 is a block diagram illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein.



FIG. 4 is a block diagram of an example, non-limiting embodiment of a computing environment in accordance with various aspects described herein.



FIG. 5 is a block diagram of an example, non-limiting embodiment of a mobile network platform in accordance with various aspects described herein.



FIG. 6 is a block diagram of an example, non-limiting embodiment of a communication device in accordance with various aspects described herein.





DETAILED DESCRIPTION

The subject disclosure describes, among other things, illustrative embodiments for managing a user session in which content is shared across different user environments, and facilitating user transitions between environments. Other embodiments are described in the subject disclosure.


One or more aspects of the subject disclosure include a method in which a processing system facilitates a user session that includes a plurality of alternate reality environments each having one or more participating users; obtains content from a content source; and selects for each environment a format for presentation of the content in accordance with characteristics of that environment. The method also includes presenting, in each of the environments, the content according to the selected format, so that a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment. The method further includes facilitating sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment; the facilitating the sharing includes determining whether the content is available to share between the first environment and the second environment. The method also includes transmitting, in accordance with the content not being available to share, an invitation to the equipment of the first user and/or the equipment of the second user, to participate in another of the environments. The method further includes facilitating, in response to acceptance of the invitation transmitted by equipment of the first user and/or the second user, a transition of that user to participation in the other of the plurality of environments; the facilitating the transition comprises capturing user content consumed or generated by that user during the user session, and formatting the user content for access in the other of the plurality of environments.


One or more aspects of the subject disclosure include a device that comprises a processing system including a processor and a memory that stores executable instructions. The instructions, when executed by the processing system, facilitate performance of operations. The operations include facilitating a user session that includes a plurality of alternate reality environments each having one or more participating users; the environments include a virtual reality (VR) environment and an augmented reality (AR) environment. The operations also include obtaining content from a content source, and selecting for each environment a format for presentation of the content in accordance with characteristics of that environment. The operations also include presenting, in each of the environments, the content according to the selected format, so that a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment. The operations further include facilitating sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment; the facilitating the sharing includes determining whether the content is available to share between the first environment and the second environment. The operations also include transmitting, in accordance with the content not being available to share, an invitation to the equipment of the first user and/or the equipment of the second user, to participate in another of the environments. The operations further include facilitating, in response to acceptance of the invitation transmitted by equipment of the first user and/or the second user, a transition of that user to participation in the other of the plurality of environments; the facilitating the transition comprises capturing user content consumed or generated by that user during the user session, and formatting the user content for access in the other of the plurality of environments.


One or more aspects of the subject disclosure include a non-transitory machine-readable medium comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations. The operations include facilitating a user session that includes a plurality of alternate reality environments each having one or more participating users. The operations also include monitoring presence of the users participating in each of the plurality of environments; obtaining content from a content source; and selecting for each environment a format for presentation of the content in accordance with characteristics of that environment. The operations also include presenting, in each of the environments, the content according to the selected format, so that a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment. The operations further include facilitating sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment; the facilitating the sharing includes determining whether the content is available to share between the first environment and the second environment. The operations also include transmitting, in accordance with the content not being available to share, an invitation to the equipment of the first user and/or the equipment of the second user, to participate in another of the environments. The operations further include facilitating, in response to acceptance of the invitation transmitted by equipment of the first user and/or the second user, a transition of that user to participation in the other of the plurality of environments; the facilitating the transition comprises capturing user content consumed or generated by that user during the user session, and formatting the user content for access in the other of the plurality of environments.


Referring now to FIG. 1, a block diagram is shown illustrating an example, non-limiting embodiment of a system 100 in accordance with various aspects described herein. For example, system 100 can, in whole or in part, facilitate a user session that includes a plurality of alternate reality environments; selecting for each environment a format for presentation of the content in accordance with characteristics of that environment; presenting, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment; and facilitating sharing the content by user equipment in different environments. The system can also facilitate, in whole or in part, a transition of a user between environments, including capturing user content consumed or generated by the user during the user session, and formatting the user content for access in the user's new environment. In particular, a communications network 125 is presented for providing broadband access 110 to a plurality of data terminals 114 via access terminal 112, wireless access 120 to a plurality of mobile devices 124 and vehicle 126 via base station or access point 122, voice access 130 to a plurality of telephony devices 134, via switching device 132 and/or media access 140 to a plurality of audio/video display devices 144 via media terminal 142. In addition, communication network 125 is coupled to one or more content sources 175 of audio, video, graphics, text and/or other media. While broadband access 110, wireless access 120, voice access 130 and media access 140 are shown separately, one or more of these forms of access can be combined to provide multiple access services to a single client device (e.g., mobile devices 124 can receive media content via media terminal 142, data terminal 114 can be provided voice access via switching device 132, and so on).


The communications network 125 includes a plurality of network elements (NE) 150, 152, 154, 156, etc. for facilitating the broadband access 110, wireless access 120, voice access 130, media access 140 and/or the distribution of content from content sources 175. The communications network 125 can include a circuit switched or packet switched network, a voice over Internet protocol (VoIP) network, Internet protocol (IP) network, a cable network, a passive or active optical network, a 4G, 5G, or higher generation wireless access network, WIMAX network, UltraWideband network, personal area network or other wireless access network, a broadcast satellite network and/or other communications network.


In various embodiments, the access terminal 112 can include a digital subscriber line access multiplexer (DSLAM), cable modem termination system (CMTS), optical line terminal (OLT) and/or other access terminal. The data terminals 114 can include personal computers, laptop computers, netbook computers, tablets or other computing devices along with digital subscriber line (DSL) modems, data over coax service interface specification (DOCSIS) modems or other cable modems, a wireless modem such as a 4G, 5G, or higher generation modem, an optical modem and/or other access devices.


In various embodiments, the base station or access point 122 can include a 4G, 5G, or higher generation base station, an access point that operates via an 802.11 standard such as 802.11n, 802.11ac or other wireless access terminal. The mobile devices 124 can include mobile phones, e-readers, tablets, phablets, wireless modems, and/or other mobile computing devices.


In various embodiments, the switching device 132 can include a private branch exchange or central office switch, a media services gateway, VoIP gateway or other gateway device and/or other switching device. The telephony devices 134 can include traditional telephones (with or without a terminal adapter), VoIP telephones and/or other telephony devices.


In various embodiments, the media terminal 142 can include a cable head-end or other TV head-end, a satellite receiver, gateway or other media terminal 142. The display devices 144 can include televisions with or without a set top box, personal computers and/or other display devices.


In various embodiments, the content sources 175 include broadcast television and radio sources, video on demand platforms and streaming video and audio services platforms, one or more content data networks, data servers, web servers and other content servers, and/or other sources of media.


In various embodiments, the communications network 125 can include wired, optical and/or wireless links and the network elements 150, 152, 154, 156, etc. can include service switching points, signal transfer points, service control points, network gateways, media distribution hubs, servers, firewalls, routers, edge devices, switches and other network nodes for routing and controlling communications traffic over wired, optical and wireless links as part of the Internet and other public networks as well as one or more private networks, for managing subscriber access, for billing and network management and for supporting other network functions.



FIG. 2A is a block diagram 201 schematically illustrating a system virtual assistant (VA) functioning within the communication network of FIG. 1 and coordinating transitions between environments, in accordance with various aspects described herein. In an embodiment, VA 210 (executing on a processing system, illustrated schematically in FIG. 2A) manages entry of a user 215 into, and facilitates activities in, VR environment 211 and/or AR/mixed environment 212. (As used herein, the term “mixed environment” refers to an environment in which some activities occur in a VR/AR mode while other activities are carried on in a physical environment.) The VA also facilitates the user's transitions between environments 211-212 and to physical environment 213.


In a situation where one or more users decide that that their current session environment needs to shift to a different environment (e.g., VR environment 211 to physical environment 213 or vice versa), the VA manages transfer of relevant information between the environments for the user(s) to continue that activity and/or interaction. The VA facilitates tracking (or backtracking) between environments; in particular, information/context/knowledge is accessible between the environments, thus providing an optimal transition experience.



FIG. 2B schematically illustrates 202 a VA managing VR and AR user sessions and managing transitions between those sessions and to a physical environment, in accordance with embodiments of the disclosure. As shown in FIG. 2B, a user 2211 in VR session 221 (wearing a VR headset 2214) may be reviewing content items 2212, while a user 2221 in a mixed reality session 222 may communicate with another user 2222 via a physical communication device (e.g. smart phone 2223).


In various embodiments, system VA 220 communicates with network elements, including a system administrator, over network 225. VA 220 can perform one or more of the following procedures, as detailed further below:


(1) Creating and managing user sessions: In one or more embodiments, VA 220 creates and manages user sessions in VR and AR/mixed reality environments 221-222. The VA can also control relay of content, manage interruptions, and facilitate transitions of user(s) between environments (e.g. from VR environment 221 to a mixed reality environment 222, AR/mixed environment 222 to physical environment 223, etc.). Users may thus participate in the same session while in different environments. The VA 220 determines which environment the users are in, and chooses the best relay procedure and format of the content depending on the environment. The VA can ensure that the same content is shared between multiple environments, so that users' experiences in different environments may be synchronized. The VA also can alert a user when a content item is not available to share, and offers alternatives (move users between sessions, or transcript of the content, etc.)


(2) Controlling navigation of a user through content in a VR session, including tagging of content: In one or more embodiments, the VA 220 tracks navigation by user 2211 as the user searches for relevant content. Such a search (particularly an extensive search for details on a specific topic, sometimes called a deep dive into the content) can yield multiple items of content 2212 at different search levels. In an embodiment, the VA can control the user's navigation by providing a tag 2213 for a particular content item, and then returning the user back to the level of the tagged item. This tagging procedure permits information to be accessed in multiple modes and environments and retrieved in the appropriate format for the space that the user is in currently; for example, a VR 3D/virtual 360 degree panorama can become a 2D video or vice versa after the system identifies the current environment of the user. If the video is stopped in a 2D mode, the VA can tag it as such and thus permit the user to choose to resume viewing the content from that point in 3D on returning to a VR space.


(3) Managing session schedules, including obtaining extensions of time for sessions if requested: In an embodiment, the VA can negotiate for more time (based on pre-decided limits, schedule, etc.) and coordinate session schedules between the environments, to ensure that users are kept within their sessions as the primary priority. When a time limit for a session is reached, and users indicate that an extension of time is desired (either by direct request or by setting thresholds in advance) the VA begins to negotiate and coordinate between each of the environments to continue the session for a set amount of time. Alternatively, the VA may provide a session in an alternative environment, and move users to that environment. In another embodiment, the VA can offer users the option to meet again in the same environment at a specified future time.


(4) Managing user transitions between environments: In various embodiments, the VA manages the logistics, flow and experience for transitions between virtual, mixed and physical environments. User transitions may be based on the user's physical location and/or the type of content being consumed by the user. In a particular embodiment, the VA can detect that a user on a wireless network (e.g. in a 360° VR session) is physically moving from one area having relatively high bandwidth to another area having lower bandwidth; the VA may then offer the user options to continue their experience within the existing environment or transition into a different environment. It is understood that the term “experience” includes a wide range of user interaction with content, system components and other users (information access, knowledge transfer, guided study, interactive learning, mixed-reality interactive learning and/or socialization, to give only a few examples). In a particular embodiment, in a situation where a system limit has been reached (e.g. a maximum time limit for a session), the VA can create a session in a secondary environment and lead users into that session, if there is a subset of users that need to continue their session. In a further embodiment, the VA can buffer content in advance, and/or handoff a session to another device to continue a user's experience, if the user needs to continue the experience at a different place or time. In an additional embodiment, the VA can determine whether the user is permitted to access certain content only in specific environments; if so, the user is flagged accordingly (for example, if a VR experience has limited time or limited entry available, the user may not be permitted to access the content multiple times). In one or more embodiments where a user is transitioning from one environment to another, the VA constructs a package of information derived from the user's experience (e.g. the user's personal notes/settings/comments regarding content) and provides the package in an appropriate format/mode for the new environment. In a particular embodiment, the VA can offer the package to guests, or provide the package on request to specific users.


(5) Monitoring for system issues and creating backup sessions: In various embodiments, the VA can identify and attempt to mitigate issues arising within the system. For example, the VA can automatically switch to alternative session management procedures in network/signal loss situations, and/or switch to battery backup or secondary power sources in the event of a power loss. In particular embodiment, the VA can be enabled to keep systems online and ready when there is equipment failure, and offer users options to continue the experience.



FIG. 2C is a schematic illustration 203 of a VA 230 managing a user VR session in which the user 231 wishes to stay in the VR environment 234, in accordance with embodiments of the disclosure. If the user session is about to expire (e.g. the remaining time goes below a predetermined threshold), the VA can (either in response to a signal from the user or automatically) negotiate with other user VAs 232 (or directly with users 233 via their respective communication devices) to reserve additional time and/or adjust the session schedule so that the user 231 may continue the session. In an embodiment, the VA can offer an extended session, to begin at a later time, to another VA or user in order to accommodate user 231. In another embodiment, the VA can apply predetermined user priority rules to secure additional session time for user 231. In a further embodiment, the VA 230 can create a new session in an alternative environment 235, if a user or group of users is unable to continue in the current session


In additional embodiments, the VA determines the type of equipment of each user (VR headset 2214, smart phone 2223, etc.), and permits the user to enter or re-enter an environment based on the capabilities of the user equipment. The VA thus can ensure that each user (or group of users) is participating in an appropriate environment. More generally, within the limits of users' equipment capability, the VA can provide a multi-modal experience for all users, permitting them to share content and interact with each other.



FIG. 2D is a schematic illustration 204 of a VA 240 managing a user VR session in which the user 241 acquires knowledge on a subject from multiple sources of information, in accordance with embodiments of the disclosure. In an embodiment, the VA 240 obtains information from multiple different sources 242, and compiles the information for presentation at the user's equipment in an appropriate environment 245 (e.g. a 3D/360° VR experience). The VA can assign tags to each source of information, to create a record of each source's location and the order in which the sources were accessed. In a particular embodiment, the VA can compile a package of such records for presentation at the user's equipment; the package represents a learning path (navigation among the sources of information) that is unique to the user.



FIG. 2E is a schematic illustration 205 of a VA 250 managing a meeting of users (either a business or a social meeting), where the VA facilitates transitions between environments for one or more users 251 who wish to extend the meeting, in accordance with embodiments of the disclosure. In one or more embodiments, the VA 250 facilitates transitions between environments (more generally, between states of reality) for user participating in a session. For example, the user 251 (or a group of users) may be participating in a real-time event that is presented at equipment of each respective user, but the user 251 (or a subset of the group) cannot continue in the present environment; the VA 250 can present information from the previous environment in a new environment 255.


Alternatively, a subset of the group of users may wish to meet in a related session (often called a breakout session) and then return to the previous session. The VA 250 can create the breakout session, package information being shared in the main session, facilitate a transition to a new environment for the breakout session, and make the package available to the breakout session participants. At the conclusion of the breakout session, the VA 250 facilitates re-entry of participants to the main session.


In a further embodiment, the VA 250 can predict sources of information that may be useful in an upcoming meeting, based on a list of participants and the subject of recent meetings involving those participants. In particular, the VA can build a package of information, obtained from multiple sources, relevant to the subject of the meeting and provide that package to the equipment of the meeting participants (consistent with the environment in which the meeting is to be held). In an additional embodiment, the VA 250 can determine the environment for the upcoming meeting, based on types of content in the package (e.g. panoramic video, video animation, video with talking heads, audio, text, etc.).



FIG. 2F schematically illustrates a procedure 206 in which a VA manages a user environment, in accordance with embodiments of the disclosure. In an embodiment, a VA (e.g. VA 220) can create 2502 a user session having a VR, AR or mixed environment, and control 2504 entry (or re-entry) of users into an environment within the session. The VA can alert 2506 users within each environment regarding when, and in which environment, other users have joined the session. The VA can also alert each user regarding the status of other users (e.g. active, idle, present, incoming, newly invited, dropped, expelled, etc.). The VA can also select 2508 the best format for relaying and presenting content in each environment, and ensure that the same content is shared between environments substantially simultaneously. In one or more embodiments, substantially simultaneous presentation of content can include presentation of two or more content items at a same time or within a particular time differential threshold such as within 1 second, 0.5 second, 0.1 second, or some other selected or determined threshold. In one or more embodiments, substantially simultaneous presentation of content can include presentation of two or more content items within a time differential period that is determined not to adversely effect the experience of the users.


The VA can also alert 2510 users when content is not available to share in an environment or between certain environments, and offer alternatives (e.g. move users between sessions, or provide content in a different form, such as a transcript of a video call). In this situation, the VA can make a record of content that was shared in other environment(s), so that users can obtain the content at another time.



FIG. 2G schematically illustrates a procedure 207 in which a VA facilitates a user's navigation of content and performs content tagging, in accordance with embodiments of the disclosure. In an embodiment, a VA can control 2602 a user's navigation through online content (sometimes called a deep dive through layers of content), and retain 2604 a record of the user's navigation path. The VA thus can return a user to a desired point on the path; in a particular embodiment, this is done by tagging a content level previously visited by the user. Selection of a level for tagging may be performed by the user in real time, or may be performed by the VA based on a length of time the user visits that level, a number of visits, or some other criterion.


Additional items or layers of content can be tagged 2606 to facilitate access by the user across multiple environments. In particular, the VA can retrieve 2608 an item of content and present that content in a format appropriate to the user's current environment. For example, the VA can retrieve a VR 3D/360° video and convert it to a 2D video after the VA determines the current environment of the user. If presentation of this 2D video is paused at a given point, the VA can tag the video as such to permit the user to resume viewing the video from that point in 3D after the user returns to a VR environment.


The VA can also connect 2610 tags for content items, thus building a navigation path accessible to the user. In additional embodiments, the user can tag 2612 a portion of content, and add content to that portion; the VA can then save 2612 the different versions of the content portion for access by other users. The VA can also tag 2614 a new version, and convert that version to a new format compatible with the user's current environment. In a further embodiment, the VA can tag an item of content to indicate environment(s) in which it can be presented (e.g. “multi-environment compatible” or “single-environment compatible”).



FIG. 2H schematically illustrates a procedure 208 in which a VA facilitates an extension of time of a user session, in accordance with embodiments of the disclosure. When a session is scheduled 2702 to have a limited duration, the VA seeks to ensure that users remain in their session if desired. In various embodiments, the VA can detect 2704 that more session time is desired, based on a number and/or duration of interruptions meeting a threshold, a predetermined limit being reached, a direct request by one or more users, or some other criterion. The VA then begins to negotiate 2706 between environments for an extension of time in the current session. In an embodiment, the VA can coordinate 2708 a move of all session participants to a different environment (e.g. from VR to a mixed environment). The VA can also offer options 2710 for the users regarding an alternative environment (e.g. an AR environment for an additional 10 minutes, a mixed environment for an additional 30 minutes, etc.).



FIG. 2I schematically illustrates a procedure 209 in which a VA manages a user experience that includes a transition to a different environment, in accordance with embodiments of the disclosure. The VA can determine 2802 a need to transition a session having one or more users to a different environment, based (for example) on a session duration threshold being reached. The VA can then create 2804 a new session in a secondary environment, and offer users an option 2806 to transition to that environment.


In a particular embodiment, one or more users may request to stay in their present environment, based on credentials that permit them to do so. In another embodiment, a user can have a credential for forced entry or purge with respect to a session (authority to join a session and expel another user from that session; for example, parents allowed in all their children's sessions).


If a user is unable to continue in a session, the VA can capture 2808 that user's data (events, content shared, information accessed, conversations, etc.) and store 2810 that data for another session. In an embodiment, user data is buffered in advance, to facilitate the data capture procedure. The user can then create 2812 a new session with the same settings as the initial session, and retrieve the user data. In various embodiments, the user data is stored in a multi-environment format, and converted to a format compatible with the environment of the new session.



FIG. 2J schematically illustrates a procedure 210 in which a VA facilitates a backup session in the event of a network failure or power loss, in accordance with embodiments of the disclosure. The VA can monitor 2902 the system for issues within the system, and identify and/or attempt to remedy a system problem. In the event of a network outage or signal loss, the VA can automatically switch 2904 to an alternative environment. In the event of a power loss, the VA can automatically switch 2906 to a secondary power source.


In an embodiment, the VA can announce 2908 that a system or power failure has occurred, and offer options 2910 to session participants. In this embodiment, the VA can create 2912 a backup session for users who wish to continue their experience, and transfer those users to the backup session. The VA can also alert system administrators that a backup session is proceeding due to a system issue.


While for purposes of simplicity of explanation, the respective procedures are shown and described as a series of blocks in FIGS. 2F-2J, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the procedures described herein.



FIGS. 2K and 2L depict an illustrative embodiment of a system including a VA, in accordance with various aspects described herein. In an embodiment, system VA 2110 communicates with other VAs 2114 and with other users 2115. VA 2110 can create multiple sessions, e.g. a session 2111 (Session 1) and a session 2121 (Session 2). For each respective session, the VA performs functions 2112, 2122 that can include multi-environment session creation, control of user entry or re-entry, and session management (e.g. ensuring synchronized sharing of content across environments, transitions between environments, etc.). For each session, the VA can also perform procedures 2113, 2123 that can include creating, obtaining and relaying content for access by session users.


In this embodiment, the system VA 2110 can obtain information from external sources 2113; negotiate with other VAs 2114 and users 2115 for more session time; and store content in storage device(s) 2116.


In an embodiment, the VA can manage a session 2260 in which users participate in different environments 2261, including VR, AR, a phone conference, and a physical meeting. The VA can also perform content management procedures 2262 in the various environments, including content relay, sharing and storage in multiple formats; content tagging to facilitate user navigation; obtaining and tagging content from external sources; and creating new content from combinations of content from external source and content contributed by users.


Referring now to FIG. 3, a block diagram 300 is shown illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein. In particular a virtualized communication network is presented that can be used to implement some or all of the subsystems and functions of system 100, the subsystems and functions of system 200, and method 230 presented in FIGS. 1, 2A, 2B, 2C, and 3. For example, virtualized communication network 300 can, in whole or in part, facilitate a user session that includes a plurality of alternate reality environments; selecting for each environment a format for presentation of the content in accordance with characteristics of that environment; presenting, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment; and facilitating sharing the content by user equipment in different environments. The virtualized communication network can also facilitate, in whole or in part, a transition of a user between environments, including capturing user content consumed or generated by the user during the user session, and formatting the user content for access in the user's new environment.


In particular, a cloud networking architecture is shown that leverages cloud technologies and supports rapid innovation and scalability via a transport layer 350, a virtualized network function cloud 325 and/or one or more cloud computing environments 375. In various embodiments, this cloud networking architecture is an open architecture that leverages application programming interfaces (APIs); reduces complexity from services and operations; supports more nimble business models; and rapidly and seamlessly scales to meet evolving customer requirements including traffic growth, diversity of traffic types, and diversity of performance and reliability expectations.


In contrast to traditional network elements—which are typically integrated to perform a single function, the virtualized communication network employs virtual network elements (VNEs) 330, 332, 334, etc. that perform some or all of the functions of network elements 150, 152, 154, 156, etc. For example, the network architecture can provide a substrate of networking capability, often called Network Function Virtualization Infrastructure (NFVI) or simply infrastructure that is capable of being directed with software and Software Defined Networking (SDN) protocols to perform a broad variety of network functions and services. This infrastructure can include several types of substrates. The most typical type of substrate being servers that support Network Function Virtualization (NFV), followed by packet forwarding capabilities based on generic computing resources, with specialized network technologies brought to bear when general purpose processors or general purpose integrated circuit devices offered by merchants (referred to herein as merchant silicon) are not appropriate. In this case, communication services can be implemented as cloud-centric workloads.


As an example, a traditional network element 150 (shown in FIG. 1), such as an edge router can be implemented via a VNE 330 composed of NFV software modules, merchant silicon, and associated controllers. The software can be written so that increasing workload consumes incremental resources from a common resource pool, and moreover so that it's elastic: so the resources are only consumed when needed. In a similar fashion, other network elements such as other routers, switches, edge caches, and middle-boxes are instantiated from the common resource pool. Such sharing of infrastructure across a broad set of uses makes planning and growing infrastructure easier to manage.


In an embodiment, the transport layer 350 includes fiber, cable, wired and/or wireless transport elements, network elements and interfaces to provide broadband access 110, wireless access 120, voice access 130, media access 140 and/or access to content sources 175 for distribution of content to any or all of the access technologies. In particular, in some cases a network element needs to be positioned at a specific place, and this allows for less sharing of common infrastructure. Other times, the network elements have specific physical layer adapters that cannot be abstracted or virtualized, and might require special DSP code and analog front-ends (AFEs) that do not lend themselves to implementation as VNEs 330, 332 or 334. These network elements can be included in transport layer 350.


The virtualized network function cloud 325 interfaces with the transport layer 350 to provide the VNEs 330, 332, 334, etc. to provide specific NFVs. In particular, the virtualized network function cloud 325 leverages cloud operations, applications, and architectures to support networking workloads. The virtualized network elements 330, 332 and 334 can employ network function software that provides either a one-for-one mapping of traditional network element function or alternately some combination of network functions designed for cloud computing. For example, VNEs 330, 332 and 334 can include route reflectors, domain name system (DNS) servers, and dynamic host configuration protocol (DHCP) servers, system architecture evolution (SAE) and/or mobility management entity (MME) gateways, broadband network gateways, IP edge routers for IP-VPN, Ethernet and other services, load balancers, distributers and other network elements. Because these elements don't typically need to forward large amounts of traffic, their workload can be distributed across a number of servers—each of which adds a portion of the capability, and overall which creates an elastic function with higher availability than its former monolithic version. These virtual network elements 330, 332, 334, etc. can be instantiated and managed using an orchestration approach similar to those used in cloud compute services.


The cloud computing environments 375 can interface with the virtualized network function cloud 325 via APIs that expose functional capabilities of the VNEs 330, 332, 334, etc. to provide the flexible and expanded capabilities to the virtualized network function cloud 325. In particular, network workloads may have applications distributed across the virtualized network function cloud 325 and cloud computing environment 375 and in the commercial cloud, or might simply orchestrate workloads supported entirely in NFV infrastructure from these third party locations.


Turning now to FIG. 4, there is illustrated a block diagram of a computing environment in accordance with various aspects described herein. In order to provide additional context for various embodiments of the embodiments described herein, FIG. 4 and the following discussion are intended to provide a brief, general description of a suitable computing environment 400 in which the various embodiments of the subject disclosure can be implemented. In particular, computing environment 400 can be used in the implementation of network elements 150, 152, 154, 156, access terminal 112, base station or access point 122, switching device 132, media terminal 142, and/or VNEs 330, 332, 334, etc. Each of these devices can be implemented via computer-executable instructions that can run on one or more computers, and/or in combination with other program modules and/or as a combination of hardware and software. For example, computing environment 400 can, in whole or in part, facilitate a user session that includes a plurality of alternate reality environments; selecting for each environment a format for presentation of the content in accordance with characteristics of that environment; presenting, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment; and facilitating sharing the content by user equipment in different environments. The computing environment can also facilitate, in whole or in part, a transition of a user between environments, including capturing user content consumed or generated by the user during the user session, and formatting the user content for access in the user's new environment.


Generally, program modules comprise routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the methods can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.


As used herein, a processing circuit includes one or more processors as well as other application specific circuits such as an application specific integrated circuit, digital logic circuit, state machine, programmable gate array or other circuit that processes input signals or data and that produces output signals or data in response thereto. It should be noted that while any functions and features described herein in association with the operation of a processor could likewise be performed by a processing circuit.


The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


Computing devices typically comprise a variety of media, which can comprise computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and comprises both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data.


Computer-readable storage media can comprise, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.


Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.


Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and comprises any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media comprise wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.


With reference again to FIG. 4, the example environment can comprise a computer 402, the computer 402 comprising a processing unit 404, a system memory 406 and a system bus 408. The system bus 408 couples system components including, but not limited to, the system memory 406 to the processing unit 404. The processing unit 404 can be any of various commercially available processors. Dual microprocessors and other multiprocessor architectures can also be employed as the processing unit 404.


The system bus 408 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 406 comprises ROM 410 and RAM 412. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 402, such as during startup. The RAM 412 can also comprise a high-speed RAM such as static RAM for caching data.


The computer 402 further comprises an internal hard disk drive (HDD) 414 (e.g., EIDE, SATA), which internal HDD 414 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 416, (e.g., to read from or write to a removable diskette 418) and an optical disk drive 420, (e.g., reading a CD-ROM disk 422 or, to read from or write to other high capacity optical media such as the DVD). The HDD 414, magnetic FDD 416 and optical disk drive 420 can be connected to the system bus 408 by a hard disk drive interface 424, a magnetic disk drive interface 426 and an optical drive interface 428, respectively. The hard disk drive interface 424 for external drive implementations comprises at least one or both of Universal Serial Bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 1394 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein.


The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 402, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein.


A number of program modules can be stored in the drives and RAM 412, comprising an operating system 430, one or more application programs 432, other program modules 434 and program data 436. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 412. The systems and methods described herein can be implemented utilizing various commercially available operating systems or combinations of operating systems.


A user can enter commands and information into the computer 402 through one or more wired/wireless input devices, e.g., a keyboard 438 and a pointing device, such as a mouse 440. Other input devices (not shown) can comprise a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 404 through an input device interface 442 that can be coupled to the system bus 408, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc.


A monitor 444 or other type of display device can be also connected to the system bus 408 via an interface, such as a video adapter 446. It will also be appreciated that in alternative embodiments, a monitor 444 can also be any display device (e.g., another computer having a display, a smart phone, a tablet computer, etc.) for receiving display information associated with computer 402 via any communication means, including via the Internet and cloud-based networks. In addition to the monitor 444, a computer typically comprises other peripheral output devices (not shown), such as speakers, printers, etc.


The computer 402 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 448. The remote computer(s) 448 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically comprises many or all of the elements described relative to the computer 402, although, for purposes of brevity, only a remote memory/storage device 450 is illustrated. The logical connections depicted comprise wired/wireless connectivity to a local area network (LAN) 452 and/or larger networks, e.g., a wide area network (WAN) 454. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.


When used in a LAN networking environment, the computer 402 can be connected to the LAN 452 through a wired and/or wireless communication network interface or adapter 456. The adapter 456 can facilitate wired or wireless communication to the LAN 452, which can also comprise a wireless AP disposed thereon for communicating with the adapter 456.


When used in a WAN networking environment, the computer 402 can comprise a modem 458 or can be connected to a communications server on the WAN 454 or has other means for establishing communications over the WAN 454, such as by way of the Internet. The modem 458, which can be internal or external and a wired or wireless device, can be connected to the system bus 408 via the input device interface 442. In a networked environment, program modules depicted relative to the computer 402 or portions thereof, can be stored in the remote memory/storage device 450. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.


The computer 402 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can comprise Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.


Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, ag, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.


Turning now to FIG. 5, an embodiment 500 of a mobile network platform 510 is shown that is an example of network elements 150, 152, 154, 156, and/or VNEs 330, 332, 334, etc. For example, platform 510 can, in whole or in part, facilitate a user session that includes a plurality of alternate reality environments; selecting for each environment a format for presentation of the content in accordance with characteristics of that environment; presenting, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment; and facilitating sharing the content by user equipment in different environments. The platform can also facilitate, in whole or in part, a transition of a user between environments, including capturing user content consumed or generated by the user during the user session, and formatting the user content for access in the user's new environment. In one or more embodiments, the mobile network platform 510 can generate and receive signals transmitted and received by base stations or access points such as base station or access point 122. Generally, mobile network platform 510 can comprise components, e.g., nodes, gateways, interfaces, servers, or disparate platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data), as well as control generation for networked wireless telecommunication. As a non-limiting example, mobile network platform 510 can be included in telecommunications carrier networks, and can be considered carrier-side components as discussed elsewhere herein. Mobile network platform 510 comprises CS gateway node(s) 512 which can interface CS traffic received from legacy networks like telephony network(s) 540 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a signaling system #7 (SS7) network 560. CS gateway node(s) 512 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway node(s) 512 can access mobility, or roaming, data generated through SS7 network 560; for instance, mobility data stored in a visited location register (VLR), which can reside in memory 530. Moreover, CS gateway node(s) 512 interfaces CS-based traffic and signaling and PS gateway node(s) 518. As an example, in a 3GPP UMTS network, CS gateway node(s) 512 can be realized at least in part in gateway GPRS support node(s) (GGSN). It should be appreciated that functionality and specific operation of CS gateway node(s) 512, PS gateway node(s) 518, and serving node(s) 516, is provided and dictated by radio technology(ies) utilized by mobile network platform 510 for telecommunication over a radio access network 520 with other devices, such as a radiotelephone 575.


In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 518 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can comprise traffic, or content(s), exchanged with networks external to the mobile network platform 510, like wide area network(s) (WANs) 550, enterprise network(s) 570, and service network(s) 580, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform 510 through PS gateway node(s) 518. It is to be noted that WANs 550 and enterprise network(s) 570 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) or radio access network 520, PS gateway node(s) 518 can generate packet data protocol contexts when a data session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 518 can comprise a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks.


In embodiment 500, mobile network platform 510 also comprises serving node(s) 516 that, based upon available radio technology layer(s) within technology resource(s) in the radio access network 520, convey the various packetized flows of data streams received through PS gateway node(s) 518. It is to be noted that for technology resource(s) that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) 518; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) 516 can be embodied in serving GPRS support node(s) (SGSN).


For radio technologies that exploit packetized communication, server(s) 514 in mobile network platform 510 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can comprise add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by mobile network platform 510. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 518 for authorization/authentication and initiation of a data session, and to serving node(s) 516 for communication thereafter. In addition to application server, server(s) 514 can comprise utility server(s), a utility server can comprise a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through mobile network platform 510 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 512 and PS gateway node(s) 518 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 550 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to mobile network platform 510 (e.g., deployed and operated by the same service provider), such as the distributed antennas networks shown in FIG. 1 (s) that enhance wireless service coverage by providing more network coverage.


It is to be noted that server(s) 514 can comprise one or more processors configured to confer at least in part the functionality of mobile network platform 510. To that end, the one or more processor can execute code instructions stored in memory 530, for example. It is should be appreciated that server(s) 514 can comprise a content manager, which operates in substantially the same manner as described hereinbefore.


In example embodiment 500, memory 530 can store information related to operation of mobile network platform 510. Other operational information can comprise provisioning information of mobile devices served through mobile network platform 510, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flat-rate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; and so forth. Memory 530 can also store information from at least one of telephony network(s) 540, WAN 550, SS7 network 560, or enterprise network(s) 570. In an aspect, memory 530 can be, for example, accessed as part of a data store component or as a remotely connected memory store.


In order to provide a context for the various aspects of the disclosed subject matter, FIG. 5, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that the disclosed subject matter also can be implemented in combination with other program modules. Generally, program modules comprise routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types.


Turning now to FIG. 6, an illustrative embodiment of a communication device 600 is shown. The communication device 600 can serve as an illustrative embodiment of devices such as data terminals 114, mobile devices 124, vehicle 126, display devices 144 or other client devices for communication via either communications network 125. For example, computing device 600 can, in whole or in part, facilitate a user session that includes a plurality of alternate reality environments; selecting for each environment a format for presentation of the content in accordance with characteristics of that environment; presenting, in each of the environments, the content according to the selected format, so that a presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment; and facilitating sharing the content by user equipment in different environments. The computing device can also facilitate, in whole or in part, a transition of a user between environments, including capturing user content consumed or generated by the user during the user session, and formatting the user content for access in the user's new environment.


The communication device 600 can comprise a wireline and/or wireless transceiver 602 (herein transceiver 602), a user interface (UI) 604, a power supply 614, a location receiver 616, a motion sensor 618, an orientation sensor 620, and a controller 606 for managing operations thereof. The transceiver 602 can support short-range or long-range wireless access technologies such as Bluetooth®, ZigBee®, WiFi, DECT, or cellular communication technologies, just to mention a few (Bluetooth® and ZigBee® are trademarks registered by the Bluetooth® Special Interest Group and the ZigBee® Alliance, respectively). Cellular technologies can include, for example, CDMA-1X, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, as well as other next generation wireless communication technologies as they arise. The transceiver 602 can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCP/IP, VoIP, etc.), and combinations thereof.


The UI 604 can include a depressible or touch-sensitive keypad 608 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 600. The keypad 608 can be an integral part of a housing assembly of the communication device 600 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth®. The keypad 608 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI 604 can further include a display 610 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 600. In an embodiment where the display 610 is touch-sensitive, a portion or all of the keypad 608 can be presented by way of the display 610 with navigation features.


The display 610 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 600 can be adapted to present a user interface having graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The display 610 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 610 can be an integral part of the housing assembly of the communication device 600 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface.


The UI 604 can also include an audio system 612 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 612 can further include a microphone for receiving audible signals of an end user. The audio system 612 can also be used for voice recognition applications. The UI 604 can further include an image sensor 613 such as a charged coupled device (CCD) camera for capturing still or moving images.


The power supply 614 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 600 to facilitate long-range or short-range portable communications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies.


The location receiver 616 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 600 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 618 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 600 in three-dimensional space. The orientation sensor 620 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 600 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics).


The communication device 600 can use the transceiver 602 to also determine a proximity to a cellular, WiFi, Bluetooth®, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller 606 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), programmable gate arrays, application specific integrated circuits, and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 600.


Other components not shown in FIG. 6 can be used in one or more embodiments of the subject disclosure. For instance, the communication device 600 can include a slot for adding or removing an identity module such as a Subscriber Identity Module (SIM) card or Universal Integrated Circuit Card (UICC). SIM or UICC cards can be used for identifying subscriber services, executing programs, storing subscriber data, and so on.


The terms “first,” “second,” “third,” and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and doesn't otherwise indicate or imply any order in time. For instance, “a first determination,” “a second determination,” and “a third determination,” does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc.


In the subject specification, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory, non-volatile memory, disk storage, and memory storage. Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.


Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, smartphone, watch, tablet computers, netbook computers, etc.), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


In one or more embodiments, information regarding use of services can be generated including services being accessed, media consumption history, user preferences, and so forth. This information can be obtained by various methods including user input, detecting types of communications (e.g., video content vs. audio content), analysis of content streams, sampling, and so forth. The generating, obtaining and/or monitoring of this information can be responsive to an authorization provided by the user. In one or more embodiments, an analysis of data can be subject to authorization from user(s) associated with the data, such as an opt-in, an opt-out, acknowledgement requirements, notifications, selective authorization based on types of data, and so forth.


Some of the embodiments described herein can also employ artificial intelligence (AI) to facilitate automating one or more features described herein. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to determine a ranking or priority of each cell site of the acquired network. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, . . . , xn), to a confidence that the input belongs to a class, that is, f(x)=confidence (class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to determine or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches comprise, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.


As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc.


As used in some contexts in this application, in some embodiments, the terms “component,” “system” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.


Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital versatile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.


In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


Moreover, terms such as “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings.


Furthermore, the terms “user,” “subscriber,” “customer,” “consumer” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.


As employed herein, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units.


As used herein, terms such as “data storage,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory.


What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.


In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.


As may also be used herein, the term(s) “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via one or more intervening items. Such items and intervening items include, but are not limited to, junctions, communication paths, components, circuit elements, circuits, functional blocks, and/or devices. As an example of indirect coupling, a signal conveyed from a first item to a second item may be modified by one or more intervening items by modifying the form, nature or format of information in a signal, while one or more elements of the information in the signal are nevertheless conveyed in a manner than can be recognized by the second item. In a further example of indirect coupling, an action in a first item can cause a reaction on the second item, as a result of actions and/or reactions in one or more intervening items.


Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement which achieves the same or similar purpose may be substituted for the embodiments described or shown by the subject disclosure. The subject disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, can be used in the subject disclosure. For instance, one or more features from one or more embodiments can be combined with one or more features of one or more other embodiments. In one or more embodiments, features that are positively recited can also be negatively recited and excluded from the embodiment with or without replacement by another structural and/or functional feature. The steps or functions described with respect to the embodiments of the subject disclosure can be performed in any order. The steps or functions described with respect to the embodiments of the subject disclosure can be performed alone or in combination with other steps or functions of the subject disclosure, as well as from other embodiments or from other steps that have not been described in the subject disclosure. Further, more than or less than all of the features described with respect to an embodiment can also be utilized.

Claims
  • 1. A method comprising: facilitating, by a processing system including a processor, a user session comprising a plurality of alternate reality environments each having one or more users participating therein;obtaining, by the processing system, content from a content source;selecting, by the processing system for each environment of the plurality of environments, a format for presentation of the content in accordance with characteristics of that environment;presenting, by the processing system in each environment of the plurality of environments, the content according to the selected format, wherein a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment;facilitating, by the processing system, sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment, wherein the facilitating the sharing comprises determining whether the content is available to share between the first environment and the second environment;transmitting, by the processing system in accordance with the content not being available to share, an invitation to at least one of the equipment of the first user and the equipment of the second user, to participate in another of the plurality of environments; andfacilitating, by the processing system in response to acceptance of the invitation transmitted by equipment of at least one of the first user and the second user, a transition of that user to participation in the other of the plurality of environments, wherein the facilitating the transition comprises capturing user content consumed or generated by that user during the user session and formatting the user content for access in the other of the plurality of environments.
  • 2. The method of claim 1, wherein the first environment comprises a virtual reality (VR) environment.
  • 3. The method of claim 2, further comprising facilitating, by the processing system, navigation by a user through content items presented in the VR environment by providing a tag to be associated with a selected one of the content items.
  • 4. The method of claim 3, wherein the selected one of the content items is selected by the processing system in accordance with a duration of access to that content item by equipment of the user, a number of times that content has been accessed by the equipment of the user, or a combination thereof.
  • 5. The method of claim 2, wherein the second environment comprises an augmented reality (AR) environment.
  • 6. The method of claim 1, further comprising: monitoring, by the processing system, presence of the one or more users participating in each of the plurality of environments; andtransmitting, by the processing system to equipment of each of the one or more users, a notice of a status of each of the one or more users.
  • 7. The method of claim 1, further comprising: determining, by the processing system, capabilities of equipment of each of the one or more users participating in each of the plurality of environments; andpermitting, by the processing system, participation by a user of the one or more users in an environment of the plurality of environments in accordance with the capabilities.
  • 8. The method of claim 1, further comprising transmitting, by the processing system in accordance with a physical location of equipment of a user of the one or more users, an invitation to participate in a different one of the plurality of environments.
  • 9. The method of claim 1, wherein the user session is scheduled for a predetermined duration, and further comprising: detecting, by the processing system, an impending expiration of the user session;determining, by the processing system, that an extension of time is desired for the user session; andnegotiating, by the processing system, with systems and system users external to the processing system to obtain the extension of time.
  • 10. The method of claim 1, wherein the processing system is in communication with the equipment of the one or more users via a network, and further comprising: detecting, by the processing system, a network outage;facilitating, by the processing system, a backup user session; andfacilitating, by the processing system, transition of the one or more users to the backup user session.
  • 11. A device comprising: a processing system including a processor; anda memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, the operations comprising:facilitating a user session comprising a plurality of alternate reality environments each having one or more users participating therein, the plurality of environments comprising a virtual reality (VR) environment and an augmented reality (AR) environment;obtaining content from a content source;selecting, for each environment of the plurality of environments, a format for presentation of the content in accordance with characteristics of that environment;presenting, in each environment of the plurality of environments, the content according to the selected format, wherein a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment;facilitating sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment, wherein the facilitating the sharing comprises determining whether the content is available to share between the first environment and the second environment;transmitting, in accordance with the content not being available to share, an invitation to at least one of the equipment of the first user and the equipment of the second user, to participate in another of the plurality of environments; andfacilitating, in response to acceptance of the invitation transmitted by equipment of at least one of the first user and the second user, a transition of that user to participation in the other of the plurality of environments, wherein the facilitating the transition comprises capturing user content consumed or generated by that user during the user session and formatting the user content for access in the other of the plurality of environments.
  • 12. The device of claim 11, wherein the first environment comprises a virtual reality (VR) environment, and wherein the operations further comprise facilitating navigation by a user through content items presented in the VR environment by providing a tag to be associated with a selected one of the content items.
  • 13. The device of claim 11, wherein the operations further comprise: monitoring presence of the one or more users participating in each of the plurality of environments; andtransmitting, to equipment of each of the one or more users, a notice of a status of each of the one or more users.
  • 14. The device of claim 11, wherein the user session is scheduled for a predetermined duration, and wherein the operations further comprise: detecting an impending expiration of the user session;determining that an extension of time is desired for the user session; andnegotiating with systems and system users external to the processing system to obtain the extension of time.
  • 15. The device of claim 11, wherein the processing system is in communication with the equipment of the one or more users via a network, and wherein the operations further comprise: detecting a network outage;facilitating a backup user session; andfacilitating transition of the one or more users to the backup user session.
  • 16. A non-transitory machine-readable medium comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations, the operations comprising: facilitating a user session comprising a plurality of alternate reality environments each having one or more users participating therein;monitoring presence of the one or more users participating in each of the plurality of environments;obtaining content from a content source;selecting, for each environment of the plurality of environments, a format for presentation of the content in accordance with characteristics of that environment;presenting, in each environment of the plurality of environments, the content according to the selected format, wherein a first presentation of the content according to a first format in a first environment is substantially simultaneous with a second presentation of the content according to a second format in a second environment;facilitating sharing the content by equipment of a first user participating in the first environment and equipment of a second user participating in the second environment, wherein the facilitating the sharing comprises determining whether the content is available to share between the first environment and the second environment;transmitting, in accordance with the content not being available to share, an invitation to at least one of the equipment of the first user and the equipment of the second user, to participate in another of the plurality of environments; andfacilitating, in response to acceptance of the invitation transmitted by equipment of at least one of the first user and the second user, a transition of that user to participation in the other of the plurality of environments, wherein the facilitating the transition comprises capturing user content consumed or generated by that user during the user session and formatting the user content for access in the other of the plurality of environments.
  • 17. The non-transitory machine-readable medium of claim 16, wherein the first environment comprises a virtual reality (VR) environment, and wherein the operations further comprise facilitating navigation by a user through content items presented in the VR environment by providing a tag to be associated with a selected one of the content items.
  • 18. The non-transitory machine-readable medium of claim 16, wherein the operations further comprise transmitting, to equipment of each of the one or more users, a notice of a status of each of the one or more users.
  • 19. The non-transitory machine-readable medium of claim 16, wherein the user session is scheduled for a predetermined duration, and wherein the operations further comprise: detecting an impending expiration of the user session;determining that an extension of time is desired for the user session; andnegotiating with systems and system users external to the processing system to obtain the extension of time.
  • 20. The non-transitory machine-readable medium of claim 16, wherein the processing system is in communication with the equipment of the one or more users via a network, and wherein the operations further comprise: detecting a network outage;facilitating a backup user session; andfacilitating transition of the one or more users to the backup user session.