Existing file systems with files and directories may have overlays. Overlays may be used in streaming software applications where the system is “tricked” into believing that the streamed software actually exists on the file system, when it actually exists “virtually” in the overlay. A description of streaming software is provided with reference to U.S. Pat. No. 6,453,334 filed on Jun. 16, 1998, which is incorporated herein by reference.
In cases where the directories of the overlay and the file system do not overlap, the system does not have difficulty determining which directory to access or which file to use. The system simply accesses a directory or file in the file system or in the overlay, depending upon where the directory or file resides. When accessing a directory or file in the overlay, the file or system may reside in a local cache, or must be downloaded before access is possible. In some other respects, the access to the file or directory of the overlay is similar to that of access to the file or directory of the file system.
In cases where the overlay and the file system overlap, however, systems simply access the directory or file in the overlay. The access is not by any explicit rule mechanism. Rather, the overlay is simply treated as a layer on top of the file system through which the system reaches in order to access files. Thus, if the system reaches through the overlay and comes across the file or >directory that it wants while in the overlay, then the system treats the found directory or file as the desired directory or file.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
A technique for controlling access to files or directories in a system that includes and overlay involves the use of explicit overlay integration rules. An example of a method according to the technique may include providing an overlay to a file system structure; providing an explicit overlay integration rule; and directing a file access for a file that resides in the file system structure and in the overlay to either the file system structure or the overlay depending upon the explicit overlay integration rule. The overlay may or may not be associated with a streaming software program. A file or directory in the overlay may be identical to or different from a file or directory in the filesystem structure with the same name.
Another example of a method according to the technique may include receiving an access request for a file; consulting explicit overlay integration rules; accessing the file in an overlay if an explicit overlay integration rule indicates the overlay has precedence over a file system structure; accessing the file in the file system structure if the explicit overlay integration rule indicates the file system structure has precedence over the overlay; and accessing the file according to file characteristics if the overlay integration rule indicates the overlay and the file system structure have equivalent precedence.
A system according to the technique may include a means for providing an overlay to a file system structure; a means for providing an explicit overlay integration rule; and a means for directing a file access for a file that resides in the file system structure and in the overlay to either the file system structure or the overlay depending upon the explicit overlay integration rule.
The proposed system can offer, among other advantages more control over access to files and directories in the file system/overlay. These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following descriptions and a study of the several figures of the drawings.
One technique for streaming software is described in the co-pending patent application Ser. No. 10/988,014 filed Nov. 11, 2004, entitled “SYSTEM AND METHOD FOR PREDICTIVE STREAMING”, which is incorporated herein by reference.
Another explicit rule according to an aspect of an embodiment includes giving precedence to the file system over the overlay. The purpose of such a rule may be to give precedence to, by way of example but not limitation, local libraries so you have to stream less.
Another explicit rule according to an aspect of an embodiment includes merging the overlay directory and the file system directory. This rule may include exceptions and precedence rules based upon the directories themselves. For example, it may be desirable to access file system directories associated with Adobe Reader instead of the overlay directories. In this example, the Adobe Reader directories need not be streamed if the directories exist locally. In this way, the explicit rule may ensure that the local Adobe Reader directories are accessed in lieu of downloading.
In the example of
In the example of
In the example of
If the file is not represented in both the overlay and in the file system structure (404-N), then the flowchart 400 continues at block 406 wherein the file is accessed in the overlay or in the file system structure, as appropriate. For example, if the file resides in the overlay, then the file is accessed in the overlay, but if the file resides in the file system structure, then the file is accessed in the file system structure. Then the flowchart 300 ends.
If, on the other hand, the file is represented in both the overlay and in the file system structure (404-Y), then the flowchart 400 continues at block 408 wherein the explicit overlay integration rules are consulted. The flowchart 400 then continues at block 410 wherein the file is accessed in the overlay or the file system structure, as directed by an explicit overlay integration rule. For example, if the explicit overlay integration rule indicates the overlay has precedence, the file is accessed in the overlay. After block 410, the flowchart 400 ends.
In an embodiment, the flowchart 500 continues at block 504 with receiving the explicit overlay integration rule from the user. For example, if the user checks the checkbox then the system may merge the files and/or directories of the overlay into the file system structure. If the checkbox is not checked, then the system may give precedence to the overlay.
In an embodiment, the flowchart 500 continues at block 506 with responding to a file access according to the explicit overlay integration rule. Then the flowchart 500 ends.
In the example of
In the example of
In the example of
In the example of
In the example of
The following description of
The web server 704 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the world wide web and is coupled to the Internet. The web server system 704 can be a conventional server computer system. Optionally, the web server 704 can be part of an ISP which provides access to the Internet for client systems. The web server 704 is shown coupled to the server computer system 706 which itself is coupled to web content 708, which can be considered a form of a media database. While two computer systems 704 and 706 are shown in
Access to the network 702 is typically provided by Internet service providers (ISPs), such as the ISPs 710 and 716. Users on client systems, such as client computer systems 712, 718, 722, and 726 obtain access to the Internet through the ISPs 710 and 716. Access to the Internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format. These documents are often provided by web servers, such as web server 704, which are referred to as being “on” the Internet. Often these web servers are provided by the ISPs, such as ISP 710, although a computer system can be set up and connected to the Internet without that system also being an ISP.
Client computer systems 712, 718, 722, and 726 can each, with the appropriate web browsing software, view HTML pages provided by the web server 704. The ISP 710 provides Internet connectivity to the client computer system 712 through the modem interface 714, which can be considered part of the client computer system 712. The client computer system can be a personal computer system, a network computer, a web TV system, or other computer system. While
Similar to the ISP 714, the ISP 716 provides Internet connectivity for client systems 718, 722, and 726, although as shown in
Client computer systems 722 and 726 are coupled to the LAN 730 through network interfaces 724 and 728, which can be Ethernet network or other network interfaces. The LAN 730 is also coupled to a gateway computer system 732 which can provide firewall and other Internet-related services for the local area network. This gateway computer system 732 is coupled to the ISP 716 to provide Internet connectivity to the client computer systems 722 and 726. The gateway computer system 732 can be a conventional server computer system.
Alternatively, a server computer system 734 can be directly coupled to the LAN 730 through a network interface 736 to provide files 738 and other services to the clients 722 and 726, without the need to connect to the Internet through the gateway system 732.
In the example of
The computer 742 interfaces to external systems through the communications interface 750, which may include a modem or network interface. It will be appreciated that the communications interface 750 can be considered to be part of the computer system 740 or a part of the computer 742. The communications interface can be an analog modem, isdn modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interfaces for coupling a computer system to other computer systems.
The processor 748 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. The memory 752 is coupled to the processor 748 by a bus 760. The memory 752 can be dynamic random access memory (DRAM) and can also include static ram (SRAM). The bus 760 couples the processor 748 to the memory 752, also to the non-volatile storage 756, to the display controller 754, and to the I/O controller 758.
The I/O devices 744 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device. The display controller 754 may control in the conventional manner a display on the display device 746, which can be, for example, a cathode ray tube (CRT) or liquid crystal display (LCD). The display controller 754 and the I/O controller 758 can be implemented with conventional well known technology.
The non-volatile storage 756 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 752 during execution of software in the computer 742. One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of storage device that is accessible by the processor 748 and also encompasses a carrier wave that encodes a data signal.
Objects, methods, inline caches, cache states and other object-oriented components may be stored in the non-volatile storage 756, or written into memory 752 during execution of, for example, an object-oriented software program. In this way, the components illustrated in, for example,
The computer system 740 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/o bus for the peripherals and one that directly connects the processor 748 and the memory 752 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computer system that can be used with the present invention. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 752 for execution by the processor 748. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in
In addition, the computer system 740 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 756 and causes the processor 748 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 756.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention, in some embodiments, also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the methods of some embodiments. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.
While this invention has been described in terms of certain embodiments, it will be appreciated by those skilled in the art that certain modifications, permutations and equivalents thereof are within the inventive scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention; the invention is limited only by the claims.
Number | Date | Country | |
---|---|---|---|
60664820 | Mar 2005 | US |