Exploring HIV-associated Neurocognitive Disorder (HAND) and HIV Latency at the Single Cell Level in Cerebral Organoids

Information

  • Research Project
  • 10237149
  • ApplicationId
    10237149
  • Core Project Number
    R01DA049525
  • Full Project Number
    5R01DA049525-03
  • Serial Number
    049525
  • FOA Number
    RFA-DA-19-009
  • Sub Project Id
  • Project Start Date
    9/15/2019 - 4 years ago
  • Project End Date
    8/31/2024 - 2 months from now
  • Program Officer Name
    POLLOCK, JONATHAN D
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
  • Award Notice Date
    8/10/2021 - 2 years ago

Exploring HIV-associated Neurocognitive Disorder (HAND) and HIV Latency at the Single Cell Level in Cerebral Organoids

Project Summary Fully half of all HIV-infected individuals continue to display some (often milder) form of HIV-associated neurocognitive disorder (HAND) despite the introduction of antiretroviral therapy (ART). More than one in 10 of these individuals will exhibit progressive neurologic deterioration on ART. More severe forms of HAND, including HIV-associated dementia, remain common in the developing world, especially in individuals not receiving ART. HAND is likely caused by chronic inflammation in the brain leading to neuronal dysfunction. The conundrum is how this inflammatory response is sustained despite effective suppression of viral replication with ART. We believe latent HIV infection of microglia likely plays a central role. Microglia comprise 10-15% of all cells in the CNS and serve as the brain's constant gardeners shaping neuronal plasticity through synaptic pruning and stripping; microglia also participate in bidirectional signaling with closely intertwined neurons. How best to study these microglia, their interplay with neurons, and the effects of HIV infection? We propose to coculture two iPSC- derived sub-lines engineered to express doxycycline-inducible transcription factors that are sufficient to drive differentiation into either microglia or excitatory neurons. When induced and cocultured in 3D conditions, these cells form cerebral microorganoids (CMs) that recapitulate many of the cytoarchitectural features and functions of the fetal brain. We will study these CMs in an unbiased manner using scRNA-seq to define gene expression profiles and scATAC-sec to interrogate chromatin accessibility. Use of a combinatorial indexing system of barcodes will allow measurement of these parameters in the same cell. We hypothesize that microglia are latently infected and that sustained neuronal neurotransmitter signaling is likely sufficient to reactivate virus expression plus exposure to opioids will further enhance reactivation (virus production is not impaired by ART). Release of reactivated virions may directly trigger a chronic inflammatory response. Additionally, when these viruses are transmitted cell-to-cell, an abortive form of HIV infection may ensue due to the action of the RT inhibitors present in ART. The IFI16 DNA sensor may detect these RT products leading to inflammasome assembly, caspase-1 activation, production of IL-1? and IL-18 and death by pyroptosis, a highly inflammatory form of programmed cell death. Because pyroptosis breeds more pyroptosis, this feed-forward form of inflammation could a create chronic inflammatory response resistant to ART. Finally, we are eager to explore two CNS-tailored approaches for attacking the latent HIV reservoir in microglia. In the first, virus will be purged with a CNS-penetrant LRA and cells producing viral RNA will be selectively killed by induction of RIG-I-dependent apoptosis. In the second, durable, sequence-specific transcriptional silencing of HIV proviruses will be tested using CRISPR interference to promote H3K9me3 and DNA methylation??both epigenetic modifications are needed for long term silencing. Together, these studies promise to provide new and exciting insights into HAND pathogenesis, HIV latency in the brain, effects of opioids, and the potential link between these processes.

IC Name
NATIONAL INSTITUTE ON DRUG ABUSE
  • Activity
    R01
  • Administering IC
    DA
  • Application Type
    5
  • Direct Cost Amount
    375000
  • Indirect Cost Amount
    333000
  • Total Cost
    708000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    279
  • Ed Inst. Type
  • Funding ICs
    NIDA:708000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZDA1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    J. DAVID GLADSTONE INSTITUTES
  • Organization Department
  • Organization DUNS
    099992430
  • Organization City
    SAN FRANCISCO
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    941582261
  • Organization District
    UNITED STATES