This disclosure relates generally to explosive charges and, more particularly, to methods and systems for deactivation of said explosive charges.
Explosives may frequently be used in oil and gas exploration and extraction, mining, and other industrial applications. Such explosives may include, for example, shaped charges, detonating cord, boosters, percussion igniters and initiators, etc. One challenge commonly encountered by explosive operators is the management of their explosive inventory. A particular project may require several different types and sizes of explosives in order to account for various conditions which may be encountered. Further, the explosive operator may prefer to have extra explosives on hand in the event they become necessary for the particular project. As a result, at the end of a project, unused explosive products may remain. In many countries, because of strict import and export laws, once these explosive products enter the country, it may not be possible to export them. These remaining explosives must be stored under strict conditions and may eventually exceed their allowable shelf-lives (typically five-years from the date of manufacture) without being used, thereby requiring disposal (e.g., destruction) of the remaining explosives. Depending on the location of the remaining explosives, various laws and/or government agencies may control or oversee the disposal of the remaining explosives and, in many cases, disposal of the remaining explosives can be expensive.
One reason that explosive disposal costs may be high is that even though designated shelf-life requirements may prohibit use of the explosive after a particular length of time, the explosive remains active, thereby requiring safe storage, handling, and ultimately, disposal. A common means for disposal of explosives is by open air burning (e.g., using diesel fuel) the explosive products, which presents environmental issues but renders the explosive deactivated and reduced to ashes and other discreet components. Unfortunately, some explosive products may contain heavy metals, lead, graphite, tungsten, or other dangerous material which, if not properly contained and disposed of, may create additional environmental hazards. A less common way to dispose of the explosive products is to dismantle the explosives into their core components, primarily by soaking the explosives in vats filled with water, alcohol, or other solvents and then working to remove the outer metal (aluminum, steel or zinc) shells or cases. Sonic vibration may assist with this process and does not pose a risk, however, the batch size is small, which extends the time and cost of disposal. This deactivation process may additionally produce contaminated water requiring additional costs for disposal. Accordingly, what is needed are improved methods and systems for deactivating explosives which address one or more of the above-discussed concerns.
It should be understood that any or all of the features or embodiments described herein can be used or combined in any combination with each and every other feature or embodiment described herein unless expressly noted otherwise.
According to an aspect of the present disclosure, a perforating gun assembly includes a body having an axial length extending between a first axial end and a second axial end, an outer radial surface extending between the first axial end and the second axial end, and an inner bore and at least one explosive charge extending from the outer radial surface to the inner bore. The at least one explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The at least one explosive charge further includes an explosive material retained within the charge cavity. The at least one explosive charge further includes a deactivation composition retained within the charge cavity.
In any of the aspects or embodiments described above and herein, the charge cavity is in fluid communication with the inner bore.
In any of the aspects or embodiments described above and herein, the at least one explosive charge further includes an adhesive disposed between and in contact with the explosive material and the cavity liner. The adhesive contains the deactivation composition.
In any of the aspects or embodiments described above and herein, the deactivation composition is disposed on an interior surface of the charge casing in contact with the explosive material.
In any of the aspects or embodiments described above and herein, the at least one explosive charge further includes a bonder intermixed with the explosive material. The binder contains the deactivation composition.
According to another aspect of the present disclosure, an explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The explosive charge further includes an explosive material retained within the charge cavity. The explosive charge further includes a deactivation composition retained within the charge cavity.
In any of the aspects or embodiments described above and herein, the explosive charge further includes an adhesive disposed between and in contact with the explosive material and the cavity liner. The adhesive contains the deactivation composition.
In any of the aspects or embodiments described above and herein, the deactivation composition is disposed on an interior surface of the charge casing in contact with the explosive material.
In any of the aspects or embodiments described above and herein, the explosive charge further includes a binder intermixed with the explosive material. The binder contains the deactivation composition.
In any of the aspects or embodiments described above and herein, the deactivation composition includes a microorganism.
According to another aspect of the present disclosure, a method for deactivating an explosive charge includes providing the explosive charge including a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The explosive charge further includes an explosive material retained within the charge cavity. The method further includes deactivating the explosive charge with a deactivation composition retained within the charge cavity by causing the deactivation composition to transition from a dormant state to an active state.
In any of the aspects or embodiments described above and herein, the deactivation composition has a deactivation temperature range within which the deactivation composition transitions to the active state.
In any of the aspects or embodiments described above and herein, causing the deactivation composition to transition from a dormant state to an active state includes exposing the explosive charge to a temperature condition within the deactivation temperature range.
In any of the aspects or embodiments described above and herein, the deactivation temperature range is higher than a threshold temperature for the explosive charge.
In any of the aspects or embodiments described above and herein, the method further includes maintaining the explosive charge at a storage temperature less than the threshold temperature prior to deactivating the explosive charge.
In any of the aspects or embodiments described above and herein, the deactivation composition comprises a microorganism.
In any of the aspects or embodiments described above and herein, the explosive charge further includes an adhesive disposed between and in contact with the explosive material and the cavity liner. The adhesive contains the deactivation composition.
In any of the aspects or embodiments described above and herein, the method further includes degrading the adhesive causing the deactivation composition to interact with the explosive material.
In any of the aspects or embodiments described above and herein, the explosive charge further includes a binder intermixed with the explosive material. The binder contains the deactivation composition.
In any of the aspects or embodiments described above and herein, the method further includes degrading the binder causing the deactivation composition to interact with the explosive material.
The present disclosure, and all its aspects, embodiments and advantages associated therewith will become more readily apparent in view of the detailed description provided below, including the accompanying drawings.
It is noted that various connections are set forth between elements in the following description and in the drawings. It is noted that these connections are general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect. A coupling between two or more entities may refer to a direct connection or an indirect connection. An indirect connection may incorporate one or more intervening entities. It is further noted that various method or process steps for embodiments of the present disclosure are described in the following description and drawings. The description may present the method and/or process steps as a particular sequence. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As a person of skill in the art will recognize, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the description should not be construed as a limitation.
Referring to
The body 14 of the perforating gun assembly 10 includes a plurality of shaped explosive charges 28 disposed in the outer radial surface 18 of the body 14 (see Step 502 of Method 500;
The inner bore 20 extends through the body 14 from the first axial end surface 24 to the second axial end surface 26 thereby providing an axially extending internal passage through the entirety of the perforating gun assembly 10. In various embodiments, the charge cavity 34 of each explosive charge 28 may be in fluid communication with the inner bore 20 at a base end 36 of the explosive charge 28. In various other embodiments, the inner bore 20 and the charge cavity 34 may be separated by a barrier 50 (e.g., a thin layer of adhesive tape such as aluminum tape) disposed at the base end 36 of the explosive charge 28 (see, e.g.,
A variety of different explosive materials 38 may be used with the present disclosure and the present disclosure is not, therefore, limited to any particular explosive material. Acceptable examples of explosive materials 38 include, but are not limited to, Cyclotrimethylenetrinitramine, C3H6N606 (sometimes referred to as “Royal Demolition Explosive” or “RDX”), cyclotetramethylene-tetranitramine (sometimes referred to as “High Melting Explosive” or “HMX”), Hexanitrostilbene (sometimes referred to as “HNS” or “JD-X”), and 2,6-Bis(Picrylamino)-3,5-dinitropyridine (sometimes referred to as “PYX”).
The cavity liner 32 is configured to mate with the respective charge casing 30 of an explosive charge 28 so as to retain explosive material 38 within the respective charge cavity 34. The cavity liner 32 may also form a seal that prevents well materials or environmental conditions from interacting with the explosive material 38. For example, the explosive material 38 may be environmentally sealed within the charge cavity 34 in order to prevent or inhibit degradation of the explosive material 38 by moisture/humidity. For example, the cavity liners 32 shown in
Referring to
The charge cavity 34 and the aperture 46 may contain the explosive material 38. As discussed above, the explosive material 38 may include, for example, the priming charge 40 and the main charge 42. In various embodiments, the priming charge 40 may be located within the aperture 46 while the main charge 42 may be located within the charge cavity 34. In various embodiments, the main charge 42 may include a binder 52 intermixed with the explosive material 38 of the main charge 42. The binder 52 may be formed from, for example, a wax, a polymer, or any other material suitable as a binder for an explosive material. The explosive charge 28 may further include an adhesive 54 disposed between and in contact with the explosive material 38 and the cavity liner 32. The adhesive 54 may be used to adhere the cavity liner 32 to the explosive material 38. An example of a material which may be suitable for the adhesive 54 may be an alkyd enamel such as, for example, the insulating alkyd enamel GLYPTAL 1201A manufactured by Glyptal Inc. of Chelsea, Mass. The contents of the charge cavity 34 (e.g., the explosive material 38, the binder 52, and the adhesive 54) may be pressed together within the charge cavity 34 to obtain an increased density of the explosive material 38.
In some cases, it may be desirable to deactivate the explosive charge 28 so as to avoid the expenses associated with continued storage or conventional disposal (e.g., controlled detonation) of the explosive charge 28. Accordingly, the explosive charge 28 may include a deactivating composition 56 retained within the charge cavity 34. The deactivating composition 56 is configured to deactivate all or a substantial portion of at least the main charge 42 so as to deactivate the explosive charge 28. As used herein, the term “deactivate” means to render the explosive material 38 within the explosive charge 28 and, hence, the explosive charge 28 itself, incapable of detonation by the typical method(s) of initiating a detonation of the particular explosive charge 28. Once the explosive charge 28 has been deactivated, the explosive charge 28 may no longer require disposal by conventional methods or continued storage. The deactivating composition 56 may generally be stored with the explosive material 38 in the charge cavity 34 in an inactive state (e.g., a state in which the deactivating composition 56 will not deactivate the explosive material 38) or may be isolated from the explosive material 38 (e.g., by the binder 52 and/or the adhesive 54), in order to prevent an inadvertent deactivation of the explosive charge 28. Upon the occurrence of a predetermined condition, the deactivating composition 56 may interact with the explosive material 38, thereby deactivating the explosive charge 28. In various embodiments, the explosive charge 28 may be manufactured with the deactivating composition 56 present in the charge cavity 34 while in various other embodiments the deactivating composition 56 may be added to the charge cavity 34 after manufacturing (e.g., at a time when deactivation of the explosive charge 28 is desired).
Referring still to
The deactivating composition 56 may be configured to deactivate all or a substantial portion of the main charge 42 through direct interaction or indirect interaction (e.g., interaction with a product of the deactivating composition 56) between the deactivating composition 56 and the explosive material 38 of the main charge 42. The interaction between the deactivating composition 56 and the explosive material 38 which deactivates the explosive material 38 may be, for example, a chemical interaction. The deactivating composition 56 may include one or more biological and/or non-biological constituents. In various embodiments, the explosive charge 28 may include two or more different deactivating compositions 56 (e.g., deactivating compositions 56 each containing different biological and/or non-biological constituents).
In various embodiments, the deactivating composition 56 may include one or more biological constituents such as, for example, one or more types of microorganisms. The microorganisms may produce one or more enzymes which may chemically interact with the explosive material 38 of the explosive charge 28, thereby deactivating the explosive charge 28. In various embodiments, a microorganism constituent of the deactivating composition 56 may be a bacteria which may produce one or more enzymes capable of deactivating the explosive material 38 during growth (e.g., reproduction) of the bacteria. Examples of suitable bacteria may include, but are not limited to, Pseudomonas spp., Escherichia coli, Morganella morganii, Rhodococcus spp., and Comamanos spp. In various embodiments, a bacteria used in the deactivating composition 56 may be a thermophile (e.g., a type of bacteria which may thrive at relatively high temperatures compared to other bacteria) such as, for example, Geobacillus stearothermophilus. In various embodiments, the deactivating composition 56 may additionally or alternatively include one or more non-biological constituents such as those conventionally known in the art to be capable of deactivating an explosive material. Examples of suitable non-biological constituents may include, but are not limited to, various cleaning detergents (e.g., those containing nonylphenol ethoxylate oligomer, sodium alkyl naphthalene sulfonate, etc.), sodium hydroxide, superoxide salts, sodium percarbonate, etc.
As previously discussed, upon the occurrence of a predetermined condition, the deactivating composition 56 may interact with the explosive material 38, thereby deactivating the explosive charge 28. In various embodiments, occurrence of the predetermined condition may cause degradation of the binder 52 and/or the adhesive 54, thereby allowing the deactivating composition 56 included in the binder 52 and/or the adhesive 54 to contact or otherwise interact with the explosive material 38. For example, in various embodiments, the binder 52 or the adhesive 54 may be configured to degrade (e.g., melt, decompose, etc.) as a function of time or based on exposure to one or more environmental conditions such as heat, atmospheric gas composition, moisture, etc. In order to initiate deactivation of the explosive charge 28, the explosive charge 28 may be introduced to the predetermined condition(s) necessary to effect degradation of the binder 52 and/or the adhesive 54.
In various other embodiments, degradation of the binder 52 and/or the adhesive 54 may not be necessary to cause the deactivating composition 56 to interact with the explosive material 38. For example, the predetermined condition may be a condition which may cause the deactivating composition 56 to transition from a dormant state to an active state, thereby deactivating the explosive charge 28. Accordingly, in various embodiments, the deactivating composition 56 may be a microorganism, such as a bacteria, which is expected to grow when introduced to the predetermined condition. As previously discussed, the active bacteria may produce one or more enzymes capable of deactivating the explosive material 38.
In various embodiments, where the deactivating composition 56 is a thermophile bacteria, the deactivating composition 56 may have a deactivation temperature range within which the deactivation composition 56 will deactivate the explosive charge 28, by encouraging growth of the thermophile bacteria. Accordingly, exposing the explosive charge 28 to a predetermined temperature condition within the deactivation temperature range may initiate the deactivation of the explosive charge 28 (see Step 506 of Method 500;
In various embodiments, during use of the explosive charge 28, the explosive charge 28 may be exposed to the predetermined condition necessary to cause the deactivation composition 56 to transition from the dormant state to the active state. For example, insertion of perforating gun assembly 10, including the plurality of explosive charges 28, into a wellbore in preparation for detonation of the explosive charges 28 may expose the explosive charges 28 to the predetermined condition, for example, a temperature which is within the deactivation temperature range for the deactivation composition. As will be understood by persons of skill in the art, deactivation of the explosive charges 28 may occur over an amount of time which may be longer than the amount of time required to prepare the explosive charges 28 for detonation, thereby allowing the explosive charges 28 to be used without concern for inadvertent deactivation of the explosive charges 28 before they can be detonated.
Aspects of the present disclosure may provide an explosive charge, such as the explosive charge 28, which may be manufactured to modified to include a deactivation composition 56 sealed within the charge cavity 34 of the explosive charge 28 with the explosive material 38. The explosive charge 28 may be deactivated upon the occurrence of a predetermined condition which predetermined condition may occur naturally or may be initiated to effect an intentional deactivation of the explosive charge 28. Accordingly, expensive storage and/or disposal requirements for the explosive charge 28 and well as release of environmental contaminants as a result of the disposal may be avoided.
The detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the inventions, it should be understood that other embodiments may be realized and that logical, chemical, and mechanical changes may be made without departing from the spirit and scope of the inventions. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented.
Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
5392860 | Ross | Feb 1995 | A |
6120627 | Badger | Sep 2000 | A |
8754284 | Goodridge | Jun 2014 | B2 |
8850984 | Smylie | Oct 2014 | B2 |
9714199 | Meeker | Jul 2017 | B2 |
10351485 | Decker | Jul 2019 | B1 |
20110041718 | Lubbe | Feb 2011 | A1 |
20110056362 | Yang | Mar 2011 | A1 |
20120037368 | Eick | Feb 2012 | A1 |
20120282680 | Goodridge | Nov 2012 | A1 |
20150330757 | Soohoo | Nov 2015 | A1 |
Entry |
---|
International search report for PCT/US21/35160 dated Nov. 18, 2021. |
Number | Date | Country | |
---|---|---|---|
20210372759 A1 | Dec 2021 | US |