In order to understand the invention and to see how it may be carried out in practice, some embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:
In
In
As can be seen in
It is noticed that the armor module may include several cassettes and each cassette may be multi-layered. Furthermore, the thickness and component materials of each cassette may differ depending on the particular design of the reactive armor.
Furthermore, in an application comprising several cassettes in an armor module, the heating elements may be designed to yield different heat capacity for each of the cassettes, e.g. corresponding with the thickness of the explosive material and of the plates. It is also possible to sequentially heat the cassettes at a desired sequence.
According to other modifications, not illustrated, one or more of the cassettes fitted in a reactive module may comprise more than one layer of explosive material intermediately disposed between layers of metal, rubber, ceramic material, composite material, etc., wherein the thickness of such plates may be similar or different, as per different embodiments.
Turning now to
The heat exchanger 44 comprises an inlet conduit 46 coupled to a source of hot fluid (e.g. cooling liquid of an engine of the vehicle 10 or, to a gas exhaust system thereof), and a plurality of undulating heat pipes 48 terminating at an outlet tube 50, which is either connected back to the heating source (e.g. in the case of a cooling liquid system) or out to the atmosphere (in case of a gas exhaust system). The arrangement is such that fluid flowing through conduits 48 transfers heat to the heating surface 52 of the heat exchanger 44, which in turn transfers heat to the cassette plate 58B and in turn to the explosive material 56 within the armor module 42 (in this case, the explosive material 56 is disposed between two conductive plates (e.g. metal plates 58A and 58B).
The arrangement in accordance with the present invention is such that heat is controllably and selectively applied to the reactive armor module so as to increase its efficiency between different sensitivity levels.
By one example a reactive armor module is heated so as to change its efficiency between a so-called safe position, namely a position at which the explosive material is insufficiently sensitive to initiate by a kinetic projectile, and a so-called armed position, namely such that upon striking by a kinetic projectile the explosive material will detonate to obtain the required protective effect.
In the schematic graph of
Line II illustrates a self limiting explosive material (fitted in SLERA) which at the normal, unheated position, will react locally against a hollow charge (namely, the explosive material will react at a restricted area only) whilst upon heating thereof will result in enhancement of the reaction zone up to complete detonation of the explosive material within the reactive armor. Heating may be, for example, up to 150° C.
Line III represents an explosive material, e.g. LBR6, which at the normal, non-heated position will detonate completely whilst upon heating up to about 150° C. will significantly improve the efficiency of the armor module holding the explosive material.
In
An advantage of this system is that the detonator 88 may be permanently fixed to the booster 80 and its arming may be readily obtained by heating. This is in contrast to the need in some known systems to keep the detonator separate from the booster and hollow charge (for safety reasons) unless it is to be used.
Whilst some embodiments have been described and illustrated with reference to some drawings, the artisan will appreciate that many variations are possible which do not depart from the general scope of the invention, mutatis, mutandis.
Number | Date | Country | Kind |
---|---|---|---|
176454 | Jun 2006 | IL | national |